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Abstract—Retinal disorders such as age-related macular 

degeneration and diabetic macular edema can lead to permanent 

blindness. Optical coherence tomography (OCT) enables 

professionals to observe cross-sections of the retina, which aids in 

diagnosis. Manually analyzing images is time-consuming, 

difficult, and prone to mistakes. In the dynamic and constantly 

evolving domain of artificial intelligence (AI) and medical 

imaging, our research represents a significant development in the 

field of retinal diagnostics. In this study, we introduced 

“RetiNet”, an advanced hybrid model that is derived from the 

best features of ResNet50 and DenseNet121. To the model, we 

utilized an open-source retinal dataset that underwent a 

meticulous refinement process using a series of preprocessing 

techniques. The techniques involved Histogram Equalization for 

the purpose of achieving optimal contrast, Gaussian blur to 

mitigate noise, morphological operations to facilitate precise 

feature extraction, and Data Balancing to ensure impartial model 

training. These operations led to the attainment of a test 

accuracy of 98.50% by RetiNet, surpassing the performance 

standard set by existing models. A web application has been 

developed with the purpose of disease prediction, providing 

doctors with assistance in their diagnostic procedures. Through 

the development of RetiNet, our research not only transforms the 

accuracy of retinal diagnostics but also introduces an innovative 

combination of deep learning and application-oriented solutions. 

This innovation brings in a novel era characterized by improving 

reliability and efficiency in the field of medical diagnostics.   

Keywords—Retinal disease; RetiNet; hybrid model; learning; 

Web application; gaussian blur; histogram equalization 

I. INTRODUCTION  

This Retinal disorders commonly result from a combination 
of predispositions and environmental factors, mostly affecting 
the structures within the eyes, such as the membrane, lens, and 
nerve systems within eye. These conditions exert a significant 
impact on individuals‟ quality of life. Notably, approximately 
7% of those aged 65 and above report experiencing a form of 
visual impairment [1]. The importance of timely and accurate 
diagnosis cannot be overstated in mitigating the severity of 
these conditions. The usage of inappropriate diagnostic 
approaches may exacerbate the issue. Diabetic Eye Disease 
(DED), comprising conditions such as diabetic retinopathy, 
glaucoma, and cataracts, is a significant cluster of visual 
impairment that impacts individuals with diabetes. Extended 
periods of diabetics can result in a decline in visual acuity and, 
in severe cases, substantial visual loss. As stated by the World 

Health Organization (WHO), among the global population of 
2.2 billion people affected by visual impairments, it is 
estimated that approximately one billion cases may have been 
preventable with proper diagnostics and treatment [2].  

Artificial Intelligence has become an essential resource in 
assisting healthcare professionals in the early diagnosis of 
diseases [3, 4].  Currently, numerous AI-driven systems 
integrate medical test results with domain-specific knowledge 
to detect and categorize diseases. Furthermore, deep learning 
(DL) has been employed in various practical contexts, 
showcasing its promise. Specifically, researchers have utilized 
DL techniques to identify retinal disorders by analyzing retinal 
fundus images. Although DL approaches in the field of 
machine learning (ML) succeed at distinguishing between 
healthy and diseased retinal images, the challenge of 
classifying varied retinal disorders into multiple classes 
remains complex and unresolved.  

Numerous studies have attempted to predict or characterize 
retinal health by analyzing eye images. For instance, the 
authors in [5] proposed an enhanced technique that employs a 
novel CenterNet model in conjunction with a DenseNet-100 
feature extractor. The study aimed to identify and characterize 
lesions associated with diabetic retinopathy and macular 
edema. The approach demonstrated exceptional accuracies of 
97.93% and 98.10% when assessed on the APTOS-2019 and 
IDRiD benchmark datasets. In a comparable way, the study 
conducted by [6] tested the performance of three distinct 
classification algorithms across various classes. These 
algorithms included the Convolutional Neural Network (CNN), 
Visual Geometry Group 16 (VGG16), and InceptionV3. The 
analysis and comparison of each approach were performed 
using the confusion matrix.     

The prevalence of retinal disease in ophthalmology has 
been a significant concern due to its diverse manifestations and 
rising frequency. Traditional diagnostic approaches, although 
valuable, may prove ineffective due to inherited human 
fallibility, namely inaccurate assessment of the intricate details 
of retinal vision. In order to address challenges, we devised 
“RetiNet”. RetiNet has been developed to surpass the existing 
limitations in the field of retinal image diagnosis by harnessing 
the potential of DL to address the associated challenges. The 
primary focus of RetiNet is the enhancement of diagnostic 
accuracy. Our study presents a comprehensive approach that 
presents cutting-edge AI techniques aiming to improve the 
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standards of retinal disease detection. Fig. 1 represents the 
overall workflow of the proposed system. The primary findings 
of the study are as follows: 

 This study introduced “RetiNet”, a novel hybrid model 
generated from the fusion of ResNet50 and 
DenseNet121. 

 A comprehensive set of preprocessing techniques were 
utilized, including Histogram Equalization, Gaussian 
Blur, Morphological Operations, and Data Balancing. 
The methods guaranteed optimal image quality and 
consistency, hence facilitating efficient model training 
and accurate diagnosis. 

 The performance of RetiNet surpasses that of other 
popular models. The outcome emphasizes the efficiency 
of our hybrid methodology, demonstrating its potential 
for real-world implementation and reliability.  

 This study incorporates a web application in a novel 
way, providing an efficient instrument for the diagnosis 
of retinal diseases.  

The paper's structure is outlined in the following manner: 
Section II thoroughly examines previous research. Section III, 
which focuses on technique, addresses several issues such as 
data acquisition, data preparation, use of pre-trained models, 
proposed models, and their corresponding hyperparameters. 
Section IV provides an in-depth analysis of the results obtained 
from the research. Section V is on the development and 
implications of a functional web application. Section VI 
involves a discourse and comparative examination with prior 
research. Section VII eventually concludes the article by 
presenting essential findings and valuable perspectives.

 
Fig. 1. The overall architecture of the proposed hybrid model RetiNet.

II. LITERATURE REVIEW 

Throughout several decades, the scientific community has 
diligently advocated for the advancement of automated 
diagnostic systems, with the ultimate goal of revolutionizing 
the field of medical diagnostics. Traditional expert systems, 
albeit groundbreaking, operated based on meticulously defined 
rules, occasionally encountering difficulties when confronted 
with complex classification challenges. Nevertheless, 
introducing machine and deep learning has brought forth a 
renewed vigor in this sector. Through the use of data training, 
these algorithms have made a substantial contribution to the 
improvement of research endeavors. Significantly, within the 
scope of medical research, machine learning distinguishes 
itself due to its remarkable versatility, demonstrating 

proficiency in detecting and classifying a multitude of 
disorders across various domains.  

In a recent study by Arslan et al. [7], various CNN 
architectures were employed to evaluate a 2748 Retinal Fundus 
images dataset. This dataset comprised 1374 images from 
healthy individuals and 1374 images from diverse diseased 
groups. The CNN models underwent thorough evaluation using 
the 10-fold cross-validation methodology. Remarkably, the 
EfficientNet architecture demonstrated superior performance 
with an impressive accuracy and recall rate of 94.88% in 
measurements. Similarly, Malik et al. [8] developed a rapid 
diagnosis approach for eye diseases by utilizing a diverse range 
of machine learning models using Neural Networks. This array 
consisted of algorithms such as the Decision Tree, Random 
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Forest, and Naïve Bayes. The ICD-10 codes were used for 
specific disease diagnoses. Among the classifiers, the Random 
Forest model had superior performance, achieving an accuracy 
rate of 86.63%. The Neural Network model closely trailed 
after, achieving an accuracy rate of 85.98%. In a separate 
investigation centered on Optical Coherence Tomography, 
Metin and Karasulu [9] employed two CNN models, ResNet50 
and MobileNetV2, as the foundation for their research. When 
the aforementioned models were employed to analyze data 
pertaining to several retinal diseases, ResNet50 exhibited an 
accuracy of 94% whilst MobileNetV2 dropped to 81%.   

Sarki et al. [10] introduced an automated technique for the 
detection of Diabetic Eye Diseases (DEDs) by the analysis of 
retinal fundus images. The classifier chosen for their study was 
the CNN model, which was further optimized by fine-tuning 
using the RMSprop optimizer. The dataset, comprised of 
images from multiple sources, was specifically curated to 
facilitate multi-class classification. Remarkably, their classifier 
achieved an accuracy rate of 81.33% in retinal disease 
classification. Hussain et al. [11] conducted another study 
utilizing a dataset consisting of 251 spectral-domain optical 
coherence tomography (SD-OCT) images. Among the sample, 
a total of 192 cases were indicative of retinal diseases, while 
the remaining 59 cases were of healthy eyes. The researchers 
utilized the Random Forest classification technique to 
differentiate between data indicative of illness and normal 
conditions. To ensure the model's robustness, a 15-fold cross-
validation process was utilized, yielding a remarkable 
classification accuracy of 96.89%. 

Additionally, Almansour et al. [12] introduced a CNN 
architecture that drew inspiration from the VGG16 model, with 
a specific focus on glaucoma detection. The researchers 
acquired data from a total of seven distinct databases. The 
localization of the Region of Interest (ROI) was given 
particular emphasis, resulting in the allocation of a total of 
2084 samples for classification subsequent to ROI analysis. To 
enhance the performance of the VGG16 model, two more 
layers were incorporated, ending with the Softmax activating 
function. Upon evaluating the combined data from all the 
datasets, the model demonstrated a noteworthy accuracy rate of 
78%. In an independent study, Seker et al. [13] developed a 
CNN model using Keras framework for the purpose of 
glaucoma classification. The fundus images were first 
subjected to preprocessing using the Irfanview graphic 
schemes prior to being inputted into the classification pipeline. 
The suggested framework was robust, consisting of 49 layers 
and employing the Adam optimizer with binary cross-entropy 
loss function. This demonstrates a classification accuracy of 
85%. 

The limitations in the current retinal disease identification 
using conventional imaging techniques have been evident 
through various research. Numerous contemporary models 
encounter challenges pertaining to the accuracy rate of 
predictions and the complexity involved in augmenting retinal 
image datasets. In order to address these challenges and 
enhance the quality of retinal diagnostics, we introduced 
“RetiNet”. The primary objective with RetiNet is to utilize its 
hybrid architecture to achieve exceptional accuracy in the 
diagnosis and classification of retinal diseases. This attempt 

highlights our commitment to enhancing diagnostic skills and 
redefining the parameters of retinal imaging diagnostics. 

III. METHODOLOGY 

A. Data Acquisition 

In the context of retinal disease diagnosis investigation, we 
employed an extensive dataset of retinal images collected from 
the renowned open-source platform Kaggle [14]. The dataset is 
crucial to our study as it contains many images corresponding 
to various eye conditions. This comprehensive collection 
allows for a balanced and intricate approach to our analysis. 
The dataset consists of 1074 images depicting Healthy Eyes, 
1038 images of Cataract, 1098 images implying Diabetic 
Retinopathy, and 1007 images displaying Glaucoma. Such 
heterogeneity not only contributes to the robust classification 
of various eye diseases but also provides a dimension of 
authenticity to our investigation. For an understanding of the 
range of diversity present in the dataset, Fig. 2 may serve as a 
useful reference, as it displays sample images from each 
category. The utilization of this dataset has played a pivotal 
role in our research, facilitating the establishment of 
evaluations and findings based on empirical evidence from the 
real world.   

 
Fig. 2. Sample images of the four classes from the selected retinal datasets. 

B. Data-preparation 

1) Histogram equalization: The study utilized a 

specialized histogram equalization technique to manage 

variations in contrasts across color images effectively. The 

first step involved the conversion of each image from the RGB 

color system to the YCbCr color space. The application of 

histogram equalization was restricted solely to the Y channel, 

representing luminance, to mitigate any potential color 

distortion. The equalization procedure commenced by 

calculating the histogram for the Y channel, which signifies 

the distribution of pixel intensities. The resulting Cumulative 

Distribution function (CDF) was utilized to remap each pixel 

intensity, r in the Y channel according to the following 

formula: 

  
      )       )

         )
     )                        (1) 

Here, L is the grayscale level, and CDFmin is the smallest 
non-zero value in the CDF. 
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This process facilitates the even dispersion of luminance 
intensities, consequently enhancing regions with low contrast. 
After equalization, the modified Y channel was reintegrated 
into the YCbCr image, which was subsequently transformed 
back to RGB. This approach resulted in a standardized contrast 
through the entire dataset, generating a consistent foundation 
for subsequent analysis. Algorithm 1 outlines the operational 
steps involved in the implementation of histogram 
equalization. 

Algorithm 1: Histogram Equalization for Retinal Images  

1: Procedure ColorHistEqu (Image  , GrayscaleLevels  ) 

2:               Convert   to YCbCr color space 

3:     Extract   channel as    

4:     Initialize histogram array   [0…. -1] to zeros 

5:     Initialize CDF array     [0…. -1] to zeros 

6:     for each pixel   in    do 

7:             [              ]     [              ] + 1 

8:     end for  

9:     CDF [0]   H [0] 

10:   for   = 1 to  -1 do 

11:         CDF [ ]   CDF [   ] +      
12:   end for    

13:             minimum non-zero value of CDF 

14:   for   = 0 to     do 

15:                              
              )

         )
     ) 

16:   end for 

17:   for each pixel   in    do 

18:                                                        

19:   end for  

20:   Replace Y channel in        with    

21:   Convert        back to RGB color spcae 

22:   Save        as „Output.jpg‟ 

23:   return        

24: end procedure 

2) Gaussian blur: The Gaussian blur is a widely used 

convolutional technique where Gaussian Kernel G is 

convolved with an image I. In the domain of image 

processing, a technique akin to a weighted average of pixel 

values is employed, wherein the weights progressively 

diminish as the distance from the center pixel increases. The 

Gaussian function in two dimensions is mathematically 

defined in Eq. (2). 

     )  
 

      
 

     

                                 (2) 

Here, the variables x and y represent spatial coordinates, 
whereas σ is the standard deviation that governs the extent of 
the Gaussian kernel‟s distribution. The kernel radius is 
commonly selected as µ =3 σ to account for more than 99% of 
the Gaussian distribution. To implement the Gaussian Blur on 
an image, a convolution operation is executed between the 
image and the Gaussian kernel. 

    )    )  ∑ ∑          )       )
 
    

 
      (3) 

The variable     ) represent the pixel coordinates in image 
I, whereas the variables     ) iterate over the dimensions of 
the Gaussian kernel. The outcome, denoted as     )    ), 
represents a blurred image. 

The convolution process is employed to amplify the 
influence of the central pixels relative to the distant ones, 
resulting in a visible smoothing effect. As σ increases, the level 
of blurring becomes more pronounced, resulting in a greater 
impact on the surrounding pixels. Algorithm 2 is an illustration 
of the Gaussian blur technique. 

Algorithm 2: Gaussian Blur for Image Smoothing  

1: Procedure GaussianBlur(Image  , StandardDeviation  ) 

2:     Compute Gaussian kernel radius     3×  

3:     Initialize Gaussian Kernel G with size      )       ) 

4:     for                  do 

5:                         
 

      
 

     

    

6:     end for  

7:     Normalize kernel   such that its sum is 1 

8:     for each pixel     ) in   do 

9:                             ∑ ∑          )  
 
    

 
    

                             
10:    end for    

11:    return          

12: end procedure 

3) Morphological operations: The assessment of eye 

diseases using retinal images requires meticulous attention to 

image quality and clarity. Morphological methods, which are 

fundamentally non-linear in nature, have been integral to our 

efforts in enhancing these images based on their form. For 

instance, the dilation technique is used to amplify white 

regions of the foreground of images. The process of enlarging 

retinal images improves recognizable characteristics, 

particularly, blood vessels, to make them easier to identify 

when applied on images. The concept can be articulated as, 

        )         )            )          (4) 

In contrast, erosion functions as an inverse of dilation as it 
reduces the white regions in the images. This contraction is 
highly advantageous for the purpose of severing associated 
objects or eliminating minor noise components, as observed in 
the context. 

        )         )            )                (5) 

The improvement of images can be achieved by 
implementing the opening operation, which involves a 
sequential process of erosion followed by dilation. This 
technique effectively eliminates minor protrusions or objects, 
which is a necessary tool for reducing noise and artifacts. This 
operation can be represented as, 

        )                               (6) 

The final component of the morphological approaches is 
the closure procedure. Starting with dilating, followed by 
degrading an image, it adeptly closes tiny holes or breaches in 
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the foreground, required to restore the discontinuities in blood 
vessels. The aforementioned procedure can be depicted as, 

        )                          (7) 

Following the series of preprocessing techniques, such as 
histogram Equalization, Gaussian Blur, and Morphological 
Operations, the retinal images underwent processing to achieve 

optimal clarity and enhancement of features. The images 
generated are prepared for training and subsequently fed into 
our neural network model, as illustrated in Fig. 3. The 
histogram of both images (original and preprocessed) shows 
the changes after applying all the preprocessing techniques 
(Histogram Equalization, Gaussian blur, and morphological 
operations). 

 
Fig. 3. After all preprocessed steps histogram showing the changes of image enhancement ratio.

4) Data balancing: In the domain of machine learning and 

data analysis, the presence of an unbalanced dataset has the 

potential to introduce bias into the model predictions, 

particularly when one class is disproportionately represented 

in comparison to the others. The disparity between the classes 

was detected in our study by analyzing retinal images. The 

data under-sampling method was employed to resolve this 

issue. Strategic undersampling involves reducing the number 

of instances in the overrepresented or majority classes in order 

to align with the size of the minority class rather than 

artificially increasing the number of instances in the 

underrepresented class. This approach equalized 1000 images 

for each class covering Normal, Diabetic Retinopathy, 

Cataract, and Glaucoma. While implementing this strategy 

decreased the overall amount of data for the majority classes, 

it played a vital role in achieving a balanced distribution of 

data. A balanced dataset reduces the potential for biased 

predictions while simultaneously improving the model‟s 

capacity for generalization. Algorithm 3 illustrates the general 

under-sampling technique. 

Algorithm 3: Data Undersampling for Class Balance 

1: Procedure Undersample (Dataset D) 

2:      Determine the size of the smallest class, minSize 

3:      for each class   in   do 

4:            datac   Data instances of class c 

5:            if size of datac > minSize then 

6:                Randomly select minSize instances from datac      

                              to form newdatac  

7:            else 

8:                 newdatac 

9:            end if 

10:    end for           

11:    Merge all newdatac to form the balanced dataset    
12:    return    
13: end procedure 

After establishing a balanced dataset, we further split our 
data into training, test, and validation subsets to assist the 
modeling stage. The division adopted a ratio of 70:20:10. The 
training set consists of 70% of the images from each class, 
serving as the fundamental data for model learning. The test set 
comprised 20% of the data and was used to evaluate the 
performance of the training model on previously unseen data. 
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The remaining 10% of the data was allocated as the validation 
set, which serves as an essential component for repeated 
modification and fine-tuning of the model during the training 
process. Table I presents a comprehensive analysis detailing 
the distribution of images across each set and class. The table 
presented visually demonstrates the rigorous distribution 
method adopted to achieve effective model training and 
validation.   

TABLE I.   FINAL DATA DISTRIBUTION FOR EACH CLASS AND THE 

ALLOCATION OF DATA INTO TRAINING, TESTING, AND VALIDATION SETS 

Class Original Balance 

Normal 1074 1000 

Diabetic Retinopathy 1098 1000 

Cataract 1038 1000 

Glucoma 1007 1000 

Total 4217 4000 

Train 2800 Images (70%) 

Test 800 Images (20%) 

Validation 400 Images (10%) 

C. Model Evaluation and Classification 

The primary objective of our proposed approach is to 
automatically identify eye disorder while delivering an 
improved level of classification accuracy. To address the 
challenges of classifying retinal conditions from retinal 
datasets, we have developed a novel and robust hybrid CNN 
model RetiNet. This model is characterized by its 
distinctiveness, reliability and resilience. In the pursuit of 
identifying the most effective transfer learning approach for the 
classification task at hand, we tested seven recognized pre-
trained models: VGG16 [15], ResNet50 [16], AlexNet [17], 
MobileNetV2 [18], InceptionV3 [19], DenseNet121 [20] and a 
CNN [21].  Table II provides an overview of the important 
characteristics and fundamental elements of the chosen deep 
CNN models. The subsequent sections provide a 
comprehensive evaluation of the architecture and performance 
of RetiNet, as well as the primary focus of the study.  

TABLE II.  FEATURES AND ATTRIBUTES OF EVALUATED DEEP LEARNING 

MODELS 

Model 
Input 

Shape 

Custom Input 

Shape 
Parameters 

Size 

(MB) 

VGG16 224×224 224×224 138,35,7544 528 

ResNet50 224×224 224×224 25,636,712 98 

AlexNet 227×227 224×224 62,378,344 233 

MobileNetV2 224×224 224×224 35,38,984 14 

InceptionV3 229×229 224×224 23,851,784 92 

DenseNet121 224×224 224×224 80,62,504 33 

CNN 224×224 224×224 78,81,365 39 

RetiNet 224×224 224×224 35,100,000 136 

1) Proposed Models (RetiNet): In the context of eye 

disease classification from retinal images, a sensitive field of 

study, the deliberate and evidence-driven decision to combine 

the capabilities of ResNet50 and DenseNet121. ResNet50 is 

renowned for its innovative skip or “residual connections” 

which efficiently counteracts the vanishing gradient issues that 

often arise in deep neural networks. This ensures that, 

regardless of the depth of the network, gradients flow 

smoothly, hence facilitating rapid learning. This ResNet has 

consistently exhibited its efficacy in many image classification 

challenges, successfully detecting both broad structures, such 

as the overarching form of blood vessels, as well as the 

intricate details, such as subtle deviations that may indicate 

potential disorders. In contrast, DenseNet121 exhibits an 

exceptionally thick architecture, where each layer establishes 

intimate interconnections with all other layers, facilitating a 

seamless transmission of information.  

Since minor details in retinal images might function as 
early indicators of disorders such as diabetic retinopathy or 
glaucoma, the dense linkage encourages feature reuse. 
Additionally, it functions as a built-in regularization 
mechanism, safeguarding against overfitting, a critical 
consideration when dealing with constrained datasets. While 
architectures such as VGG and Inception possess their own 
merits, our hybrid model is particularly well-suited for the 
complex demands of retinal image classification due to the 
combination of the depth and skip connections of ResNet50, 
along with the extensive feature extraction capabilities of 
DenseNet-121. The proposed RetiNet model is outlined as 
follows: 

When presented with an input image I, both the ResNet50 
and DenseNet121 architectures execute a series of 
convolutional operations to extract feature maps.  

         )             )                                (10) 

           )                )                  (11) 

where,         and           are the feature maps from 
ResNet50 and DenseNet121, respectively.  

Furthermore, we apply global average pooling (GAP) to 
these feature maps to get a fixed-size feature vector. For a 
given feature map F, the GAP operation can be expressed as,  

      )  
 

   
 ∑ ∑      ) 

   
 
                   (12) 

where, W and H are the width and height of the feature 
maps, respectively.  

However, the feature vectors obtained from the GAP 
operation on both networks are concatenated. 

                          )              ))   (13) 

The concatenated feature vector   is passed through a dense 
layer with a ReLU activation function,  

             )                      (14) 

where,   is the ReLU activation function,    represents the 
weight of the dense layer and   is the bias.  

Finally, the feature vector from the dense layer is passed 
through another dense layer with softmax activation to classify 
the image into the four classes of eye disease.  

                   )                    (15) 

where,    represents the weights of the output layer and    
is the bias. 
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The output   will be a vector with four values, each 
representing the probability of the image belonging to the 
corresponding class (Normal, Diabetic Retinopathy, Cataract, 
and Glaucoma). Algorithm 4 demonstrates the procedural steps 
of the proposed RetiNet model. Furthermore, Fig. 4 illustrates 
the architecture of the hybrid model. 

Algorithm 4: RetiNet: Hybrid Model for Eye Disease 

Classification 

1: Procedure RetiNet (Image I) 

2:              Normalize I 

3:           ResNet50_Extract (     ) 

4:           DenseNet121_Extract (     ) 

5:          GAP (   ) 

6:          GAP (   )         

7:                       ) 

8:                       ) 

9:                    ) 

10:    return             

11: end procedure 

D. Hyperparameters Optimization 

Hyperparameters are significant variables that might have 
an influence on the training dynamics and overall performance 
of the model [22], [23]. The variables include the number of 
epochs, batch size, image dimensions, optimizer options, 
activation functions, learning rate, decay rate, dropout rate, and 
regularization parameters. During the experiment, we 
repeatedly modified several parameters, including batch size, 
learning rate, and regularization variables, resulting in 
improvements in the model's accuracy and efficiency. RetiNet 
was subjected to benchmarking against several prominent 
architectures, namely VGG16, ResNet50, AlexNet, 
MobileNetV2, InceptionV3, DenseNet121, and a customized 
CNN. The training process for each model consisted of 300 
epochs, during which various optimizers were employed to 
facilitate a comprehensive evaluation. To fine-tune our model 
and to determine the optimal hyperparameter configuration, we 
apply the keras-tune tool, followed by an extensive grid search 
technique. Table III presents the final set of hyperparameters 
post-tuning. 

 

Fig. 4. The architecture of the proposed model RetiNet. 

TABLE III.  OPTIMIZED HYPERPARAMETERS FOR MODEL TRAINING 

Model 
No. of 

Epochs 
Batch Size Image Size Optimizers 

Activation 

Function 

Learning 

Rate 
Decay Rate 

Dropout 

Rate 
Regularizer 

VGG16 300 64 224×224 Adam Softmax 0.000001 1e-3 0.5 5e-4 

ResNet50 300 64 224×224 SGD ReLU 0.0001 1e-4 - 1e-4 

AlexNet 300 64 224×224 Adagrad ReLU 0.00001 1e-2 0.2 5e-4 

MobileNetV2 300 64 224×224 SGD Softmax 0.1 1e-4 0.5 1e-5 

InceptionV3 300 64 224×224 Adam Sigmoid 0.001 1e-3 - 1e-4 

DenseNet121 300 64 224×224 Adam ReLU 0.0000001 1e-2 - 1e-4 

CNN 300 64 224×224 Adam ReLU 0.001 1e-2 0.5 1e-4 

RetiNet 300 128 224×224 RMSProp Sigmoid 0.001 1e-6 0.9 1e-4 
 

IV. ANALYSIS OF EXPERIMENTAL OUTCOMES 

A. Environmental Setup and Tools 

We implemented all the deep learning models using Keras 
(version 2.10.0) and TensorFlow (version 2.0) frameworks 
using Python 3.7. For data visualization, we deployed the 
Seaborn and Matplotlib packages. The evaluation was carried 

out on a device powered by an AMD Ryzen 7 CPU clocked at 
3.90 GHz, 32 GB RAM, and an AMD Radeon RX 580 series 
GPU, functioning on a Windows 10 operating system. 

B. Assessment Metrics 

To comprehensively evaluate the performance of our model 
in the classification of retinal images, we adopted a set of 
statistical metrics that involves Accuracy, Specificity, Recall, 
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Precision, False Positive Rate (FPR), F1-score, Mean Squared 
Error (MSE), and Mean Absolute Error (MAE). 

Accuracy: Represents the proportion of correct predictions 
made by the model over the total predictions.  

         
     

           


Here,    = True Positives,   = True Negatives,   = False 
Positives and    = False Negatives. 

Precision: Indicates the fraction of relevant instances 
among the instances that the model predicted as positive. It 
provides insight onto the correctness of positive predictions.  

          
  

     
 

Recall: Signifies the proportion of real positive occurrences 
that the model managed to predict accurately, demonstrating its 
ability to detect positive cases. 

       
  

     
 

Specificity: Measures the actual negative rate, indicating 
the model‟s effectiveness in accurately recognizing the 
negative class amongst all the classes.  

            
  

     


FPR: Proportion of negative instances that are incorrectly 
classified as positive.  

    
  

     
 

F1-Score: Provides a balance between Precision and Recall 
by combining them into a single measure. This metric also 
shows how well a model can be used to identify both positive 
and negative data.  

           
                

                


MSE: Determines the average squared variance between 
the predicted outcomes and the actual values, delivering a 
sense of prediction error size.  

    
 

 
∑       

 
)  

                           (22) 

Here    is the actual value,   
 
 is the predicted value, and   

is the number of observations.   

MAE: Provides the mean of the absolute variance between 
predictions and actual observations, exhibiting the model‟s 
accuracy.  

    
 

 
∑       

 
  

                        (23) 

C. Study Outcomes 

In this study, eight algorithms were utilized to classify 
retinal image data. These algorithms comprised seven transfer 
learning models and the novel RetiNet model. These models 
aim to assist in identifying eye conditions by accurately 
detecting abnormalities in retinal images. In order to conduct 
an extensive evaluation, each model underwent training for 300 
epochs, with the results being recorded at each iteration. The 
performance measures of each model can be calculated by 
utilizing Eq. (16) to Eq. (23). This thorough methodology 
provides a profound understanding of the functioning of each 
model when exposed to retinal data.  

This study systematically evaluated the performance of 
eight distinct models on their ability to classify retinal images 
with high consistency. Fig. 5 illustrates the performance of all 
the models. Among the employed transfer learning models, 
VGG16 exhibited commendable performance, achieving an 
accuracy of 91.58% and a precision of 92.1%. These results 
serve as evidence of its proficiency in accurately classifying 
positive instances. The model, ResNet50, achieved an accuracy 
of 86.36% and a specificity of 86.7%, indicating its ability to 
classify negative samples effectively. The AlexNet model, with 
its accuracy and recall rates of 92.76% and 92.9%, 
respectively, demonstrated its adeptness in identifying actual 
positive rates. 

The MobileNetV2 and InceptioV3 models exhibited 
distinct performance characteristics, achieving accuracies of 
93.31% and 93.5%, respectively. Both models displayed 
impressive F1 scores, representing the harmonic mean of 
accuracy and recall, indicating a well-balanced performance 
across both metrics. InceptionV3 demonstrated a balanced 
detection capability, as evidenced by the achievement of an F1-
score of 93.35%. When comparing the performance of 
DenseNet121 and CNN, it is observed that both models 
achieved satisfactory results, with accuracies of 90.86% and 
88.34%, respectively. These findings suggest that there may be 
potential for further enhancement in the model‟s performance. 
The accuracy rate of the improved model, RetiNet is 98.50%. 
Another notable statistical measure that evaluates the average 
squared variations between predicts and actual observations, 
known as the Mean Squared Error (MSE), was found to be 
exceptionally low for RetiNet at 0.015. This indicates that the 
predictions made by RetiNet are highly accurate and closely 
aligned with the actual results.  

Nevertheless, the focal point of the assessment was the 
cutting-edge RetiNet model. The system exhibits a remarkable 
level of accuracy of 98.50% and F1-score of 98.65%. 
Additionally, it demonstrates a precision of 98.7% and an 
impressively low FPR of 1.7%. This accomplishment 
showcases the proficiency of RetiNet in accurately identifying 
and distinguishing retinal abnormalities with high precision.  

The combination of all these measurements offers an 
exhaustive overview of the capabilities of each model. The 
detailed analysis depicted in Fig. 5 not only highlights the 
potential of models such as RetiNet but also paves the path for 
future advancements in the field of retinal image diagnostics. 
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Fig. 5. Comparative performance matrics of retinal image classification models. Here „V16‟ indicates „VGG16‟, „RNet‟ indicates „ResNet50‟, „Anet‟ indicates 

„AlexNet‟, „MV2‟ indicates „MobileNetV2‟, „IV3‟ indicates „InceptionV3‟, „D121‟ indicates „DenseNet121‟. 

 
Fig. 6. Confusion matrix of all classification models. Here „NL‟ indicates „Normal‟ class, „DR‟ indicates „Diabetic Retinopathy‟ class, „CT‟ indicates „Cataract‟ 

class, GA indicates „Glaucoma‟ class. 

During the testing phase, the model's performance is 
evaluated using confusion matrices and observing significant 
patterns of classification and misclassification illustrated in 
Fig. 6. Out of the 200 Normal data, the VGG16 model 
accurately classified 185 data while misclassifying 15 data. 
More specifically, 10 of the data was misclassified as Diabetic 
Retinopathy. In the Diabetic Retinopathy class, 180 images 
were correctly identified, whereas five images were incorrectly 
categorized as Cataract. On the other hand, 182 images 
depicting Cataract were accurately identified, whereas eight 
images were erroneously interpreted as Diabetic Retinopathy. 
Lastly, 185 images were accurately classified in the Glaucoma 
class, yet seven were mislabeled as Cataracts.  

The ResNet50 model accurately classified 190 images as 
normal and misclassified 10 images, of which four were 
incorrectly labeled as Diabetic Retinopathy. In the class 
focused on Diabetic Retinopathy, 175 images were accurately 
recognized, whereas 12 were mislabeled as Cataract. Among 
the images in the Cataract class, 180 were found to be correct, 
while five were classified as Glaucoma. Finally, for the 
Glaucoma class, 184 accurate classifications were made, and 
four images were misclassified as Cataract.   

AlexNet properly classified 186 images as Normal, while 
six images as misdiagnosed as Diabetic Retinopathy. In the 
case of Diabetic Retinopathy, 184 images were correctly 
classified, except six were misclassified as Cataract. From the 
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Cataract class, a total of 175 images were correctly identified, 
and 14 were wrongly identified as Glaucoma. A total of 179 
images from the Glaucoma class were classified, and 12 were 
misclassified as Cataract. The model MobileNetV2 
demonstrated proficiency in correctly classifying 182 images 
as Normal but misclassified eight as Diabetic Retinopathy.  
The condition known as Diabetic Retinopathy found 185 
accurate classifications, but 12 images were mistakenly 
classified as Normal. The model correctly classified 183 
Cataract images but labeled 8 as Glaucoma. Similarly, 182 
Glaucoma images could be correctly predicted but seven 
images were misinterpreted as Normal.   

In the case of the model InceptionV3, 184 Normal images 
were correctly classified and eight were classified as Diabetic 
Retinopathy. The model identified 178 images of Diabetic 
Retinopathy but incorrectly identified eight images as Cataract. 
Within the Cataract class, 182 images were diagnosed, but 5 
were misdiagnosed as Glaucoma. From the Glaucoma class, 
178 instances were identified, while 12 instances were 
misidentified as Diabetic Retinopathy. The DenseNet121 
properly identified 178 Normal images while incorrectly 
identifying six as Diabetic Retinopathy. The model accurately 
classified 183 Diabetic Retinopathy images yet six images 
wrongly fell into the Cataract category. Within the Cataract 

class, a total of 185 images were correctly recognized, while 
four images were erroneously classified as Glaucoma. In the 
Glaucoma class, there were 178 accurate predictions and 12 
instances where the classification was incorrectly assigned as 
Normal. 

In the CNN model, 200 Normal images were tested, of 
which 181 were correctly classified, while 10 were 
inaccurately classified as Diabetic Retinopathy. The model 
properly recognized 176 Diabetic Retinopathy images while 
incorrectly reporting 14 as the Normal group. For cataract, 182 
were accurately recognized, with three misinterpreted for 
Glaucoma. In the Glaucoma category, 183 were correctly 
classified, with five misclassified as Diabetic Retinopathy.  

Finally, the RetiNet model, the standout performer, 
successfully identified an outstanding 196 out of 200 Normal 
images, with only two misclassifications into the Diabetic 
Retinopathy group. It also properly detected 195 Diabetic 
Retinopathy images, with misinterpretation of two images into 
the Cataract class. In the cataract group, 196 interpretations 
were correctly made, with only two misclassifications into the 
Glaucoma class. The Glaucoma class witnessed 197 valid 
classifications with just a single misclassification into the 
Cataract class. The performance of all the eight models 
employed in the study is presented in Table IV. 

TABLE IV.  PERFORMANCE SCORES OF ALL EMPLOYED MODELS FOR RETINAL DISEASE DIAGNOSIS 

Model VGG16 ResNet50 AlexNet MobileNetV2 InceptionV3 DenseNet121 CNN RetiNet 

Accuracy 91.58% 86.36% 92.76% 93.31% 93.50% 90.86% 88.34% 98.50% 

Precision 92.10% 86.00% 93.00% 93.20% 93.40% 91.00% 88.10% 98.70% 

Specificity 90.80% 86.70% 92.40% 93.50% 93.60% 90.50% 88.50% 98.30% 

Recall 91.30% 86.20% 92.90% 93.00% 93.30% 90.90% 88.20% 98.60% 

F1-score 91.70% 86.10% 92.95% 93.10% 93.35% 90.95% 88.15% 98.65% 

MSE 0.083 0.137 0.072 0.067 0.065 0.092 0.117 0.015 

MAE 0.084 0.139 0.070 0.066 0.064 0.091 0.116 0.014 

FPR 9.2% 13.3% 7.6% 6.5% 6.4% 9.5% 11.5% 1.7% 
 

V. WEB INTERFACE 

A precisely designed digital interface has been built 
exclusively for medical professionals, with a focus on 
facilitating their use of medical imaging for diagnosing 
different retinal diseases. The implementation of this modern 
interface plays a crucial role in facilitating healthcare 
professionals, particularly doctors, and experts, in effectively 
and accurately identifying the medical issues impacting their 
patients. Fig. 7 displays the general interface of the web 
application.  

Doctors initiate the procedure by entering medical images 
of the patient‟s retina into the system. The images are instantly 
uploaded to the server and merged into the proposed RetiNet 
diagnostic model. Concurrently, the diagnostic form that goes 
with it is filled out with essential patient data and sent to the 
server again.  

During this phase, the server conducts an essential 
verification process evaluating the quality of the retinal images 
that have been submitted to ensure they satisfy the requisite 
criteria for precise analysis. After conducting this verification 
process the server utilizes proposed RetiNet technology to 

examine the images and generate an advanced AI supported 
estimation of the stage of the disease. This process entails 
employing of an advanced algorithmic interpretation of the 
retinal images to determine the condition‟s progression and 
severity. 

 
Fig. 7. Web application interface. 
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Fig. 8. Disease diagnosis interface. 

After the analysis is accomplished, the server aggregates 
the findings, which include the AI-generated estimate of 
disease‟s stage. The doctor is then instantly informed of these 
findings. Fig. 8 shows the prediction of AI technology help 
doctors diagnose patients more accurately with more expertise.  

VI. COMPARISON OF EXISTING STUDIES 

This study presents the “RetiNet” model, an advanced 
CNN model specifically developed for accurately classifying 
retinal images. One of the primary objectives is to solve the 
significant challenge of accurately diagnosing retinal disease 
within the imaging datasets. Prior to training, the dataset was 
subjected to thorough preprocessing techniques. These 
techniques involve Histogram Equalization for optimum image 
contrast, Gaussian Blur for noise reduction, and Morphological 
Operations for enhanced feature extraction and Data Balancing 
to offset class imbalances. During the testing phase, RetiNet 
demonstrates a remarkable accuracy of 98.50%, surpassing 
other existing models and effectively enabling disease 
detection. Moreover, A web-based tool has been created to 
assist medical professionals in detecting and diagnosing retinal 
disorders. This initiative set the benchmark for retinal image-
based diagnosis and provides medical practitioners with a 
robust diagnostic tool. Table V provides a detailed analysis of 
the performance of RetiNet in comparison to other prominent 
models.  

TABLE V.  PROPOSED MODEL COMPARISON OF EXISTING STUDIES 

Authors Methods Accuracy 

Arslan et al. [7] EfficientNet 94.88% 

Malik et al. [8] Random Forest 86.63% 

Metin and Karasulu [9] ResNet50 94.00% 

Sarki et al. [10] CNN 81.33% 

Hussain et al. [11] Random Forest 96.89% 

Almansour et al. [12] Fine-tuned VGG16 78.00% 

Seker et al. [13] Keras-based CNN 85.00% 

Barai et al. Proposed Model (RetiNet) 98.50% 

VII. CONCLUSION 

This study discusses the significant advantages of 
employing retinal images for accurately identifying retinal 
diseases through utilizing our cutting-edge “RetiNet” model. 
The study subjects each image to a comprehensive 
preprocessing procedure that includes Histogram Equalization, 
Gaussian Blur, Morphological Operations, and Data Balancing. 
We have obtained the highest degree of classification for 
images that are well-suited for the purpose of extracting 
features efficiently. A web application has been designed and 
developed to assist medical professionals in identifying retinal 
diseases. Although RetiNet‟s ability did detect some 
misclassification, its overriding performance spotlighted the 
transformational potential of CNN models in retinal imaging. 
Further studies will prioritize the improvement of these 
methods in order to increase preciseness, with the ultimate goal 
of transforming the diagnosis of retinal diseases worldwide and 
significantly influencing ophthalmic healthcare. 
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