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Abstract—A crucial component of industrial operations is the 

detection of production system failures, which aims to spot any 

problems before they get worse. By applying cutting-edge 

methods like deep learning and genetic algorithms, failure 

detection accuracy may be improved, allowing for preemptive 

actions to reduce downtime and maximize system availability. 

These methods improve reactivity to possible errors and solve 

dynamic issues, which enhances the overall efficiency and 

reliability of production systems. This study offers a novel 

method for improving the availability and failure detection of 

production systems using deep learning techniques and genetic 

algorithms in a data-driven strategy. The goal of the project is to 

provide a complete framework for efficient failure detection that 

incorporates deep learning models, particularly Convolutional 

Neural Network (CNN) Autoencoder. Furthermore, system 

configurations are optimized through the use of genetic 

algorithms, improving overall availability. The suggested model 

is able to identify complex patterns and connections in the data 

by being trained on a variety of datasets that contain information 

about equipment failure. The incorporation of genetic algorithm 

guarantees flexibility and resilience in system setups, hence 

augmenting total availability. The study presents a proactive and 

flexible approach to the dynamic issues encountered in industrial 

environments, providing a notable breakthrough in failure 

detection and availability improvement. The proposed model is 

implemented in Python software. It achieves an astounding 

99.32% accuracy rate, which is 3.58% higher than that of 

current techniques like CNN-LSTM (Long Short-Term 

Memory), Bi-LSTM (Bi-directional Long Short-Term Memory), 

and CNN-RNN (Recurrent Neural Network). The data-driven 

approach's high accuracy highlights its efficacy in forecasting 

and avoiding problems, which minimizes downtime and 

maximizes production efficiency. 
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I. INTRODUCTION 

Improving the performance of production systems on an 
ongoing basis is a primary goal in the manufacturing and 
industrial domains [1]. It is a result of the necessity to 
maximize productivity, reduce downtime, and guarantee the 
reliable provision of high-quality goods and services. 
Production systems must adapt to the competitive 
environment by moving beyond conventional paradigms and 
embracing novel approaches in order to remain robust in the 

face of shifting consumer expectations and technology 
breakthroughs [2]. This study explores the crucial area of 
production system improvement in an effort to push the 
envelope by presenting cutting-edge tactics that go beyond 
accepted constraints [3]. It begins with the planning and 
design of the product, moves through the complex 
manufacturing procedures, and concludes with the distribution 
and pleasure of the consumer [4]. 

The intrinsic difficulties that production systems 
encounter, such as the requirement to strike a balance between 
competing demands like cost-effectiveness, quality control, 
and on-time delivery, necessitate improvement [5]. Reactive 
methods of system optimization, which deal with problems as 
they arise, frequently lead to inefficient use of resources and 
more downtime [6]. The emphasis is shifting towards 
proactive and predictive techniques that foresee problems 
before they become serious ones as industries seek for leaner, 
more flexible production processes. In order to improve 
production system performance, this research will critically 
assess current approaches and offer novel solutions that make 
use of state-of-the-art technology [7]. It attempts to close the 
knowledge gap between theoretical developments and real-
world application by offering sectors looking to stay 
competitive in a time of quickening technology change and 
shifting consumer expectations practical insights [8]. 

The early detection and mitigation of possible system 
failures in production systems represent key problems in the 
context of industrial operations and critical infrastructure [9]. 
Conventional failure detection techniques can result in 
expensive downtime and inefficiencies since they are reactive 
in nature and frequently rely on rule-based systems or simple 
algorithms. Recognizing this, the current research offers a 
deep learning-based data-driven approach for failure 
detection, which represents a revolutionary paradigm change 
[10]. Using deep learning to uncover complex patterns from 
large datasets, this methodology deviates from traditional 
methods and improves the system’s capacity to anticipate and 
proactively handle failure situations. [11].  

Deep learning has the potential to improve failure 
detection accuracy and provide the necessary scalability for 
the complicated production situations of today [12]. 
Improving availability is a complex task that goes beyond 
maintaining system uptime. It entails striking a tactical 
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balance between the effectiveness of maintenance, system 
dependability, and flexibility in response to shifting operating 
circumstances [13]. In order to identify optimal solutions 
within the large parameter space of a production system, 
genetic algorithms, as an optimization tool, replicate the 
process of evolution and provide a possible path towards 
overcoming these obstacles. 

Conventional methods of accomplishing these goals 
frequently depend on reactive tactics, which deal with 
problems only after they occur, resulting in downtime and 
inefficient use of resources [14]. Genetic algorithms are 
incorporated into the framework as a complement to the deep 
learning paradigm in order to optimize system availability. 
Natural selection and evolution serve as the inspiration for 
genetic algorithms, which offer a potent way to discover and 
develop the best possible configurations for the production 
system. These algorithms constantly alter parameters, 
searching for configurations that minimize failure risk and 
maximize total system availability through recurrent processes 
of crossover, mutation, and selection. This study’s 
combination of genetic algorithms and deep learning offers a 
clever and comprehensive method for managing production 
systems. Through the integration of deep learning’s predictive 
powers with genetic algorithms’ optimization skills, the 
suggested framework seeks to create a proactive system that 
can both detect possible malfunctions and modify the system 
configuration to improve overall availability. The study is at 
the vanguard of efforts to transform the monitoring, 
maintenance, and optimization of production systems due to 
the synergy between innovative data-driven technologies. 

Thekey contributions of the article is, 

 The CNN Autoencoder based on deep learning is 
incorporated for failure detection. By automatically 
extracting pertinent features from the input data, the 
CNN Autoencoder improves the model's ability to 
identify complex patterns that may indicate probable 
problems, offering a reliable and data-driven method of 
failure detection. 

 The Genetic Algorithm is employed to improve 
availability by optimizing system configurations in 
response to changing operating circumstances. This 
genetic algorithm-based method guarantees flexibility 
and resilience, tackling the intricacies of industrial 
production processes and leading to increased 
availability overall. 

 The integration of CNN Autoencoder and Genetic 
Algorithm, results in a comprehensive approach for 
availability improvement and failure detection. By 
using cutting-edge data-driven methodologies to 
systematically handle both failure detection and system 
optimization elements, this all-encompassing strategy 
improves the overall resilience and efficiency of 
production systems. 

There are five primary sections of the paper: In Section II, 
relevant works in the subject of production system failure 
detection are reviewed and current techniques are 
summarized. The issue statement is defined in Section III, 

along with the shortcomings and difficulties of the existing 
methods. The suggested technique, which combines genetic 
algorithms and deep learning to provide an advanced data-
driven solution, is described in Section IV. The model's output 
is shown in Section V, along with a discussion of the model's 
performance and accuracy in relation to other techniques. The 
report is finally concluded in Section VI, which summarizes 
the main conclusions and offers directions for further research 
into the field of production system failure detection. 

II. RELATED WORKS 

In light of climate change and sustainability issues, this 
study discusses the pressing need for smart energy production 
and highlights the shortcomings of conventional first-principle 
model-based strategies in an environment of growing system 
scale and uncertainty [15]. The article provides a thorough 
analysis and emphasizes the ways in which Data-Driven 
Control (DDC) and Machine Learning (ML) approaches are 
used to the tracking, regulating, optimizing, and fault-
detection of power production facilities. It provides a thorough 
analysis of the ways in which these cutting-edge techniques 
help to resolve ambiguities and improve the efficiency of both 
traditional thermal power generation and renewable energy 
sources. In regards to visibility, maneuverability, adaptability, 
economic viability, and safety, the article lists the benefits of 
ML and DDC. It is crucial to remember that the study does not 
go into great detail about the particular difficulties or 
restrictions related to the application of ML and DDC 
procedures to power production structures, leaving space for 
additional investigations to investigate the possible downsides 
and improve these strategies for real-world use. The inherent 
drawback of data-driven modeling becomes apparent when 
confronted with the constraints of both online and offline data, 
including issues such as data incompleteness stemming from 
loss, uncertainty, and bias. 

In the framework of ring spinning technological advances, 
the study presents a unique method to preventative care with 
an emphasis on forecasting and health monitoring [16]. It 
suggests utilizing predictive analytics to create a data-driven 
preventive service system built on a regularized Deep Neural 
network (DNN). To keep an eye on crucial parts, the method 
makes use of a system of sensors that is built into the frames 
of spinning machines, each of which has many spindles. A 
GA is developed for multi-sensor assessments and prediction, 
demonstrating its efficiency in leveraging bigger amounts of 
data with comparatively small training data sets. With the use 
of a neural sensor network, the framework provides condition-
based evaluation for every component in order to anticipate 
anomalies, disruptions, and failures in real time. The study 
does not, however, go into great detail on the shortcomings or 
difficulties of the suggested model, providing opportunity for 
more study to investigate such limits and improve the 
execution for more widespread industrial uses. 

In order to forecast failure behavior in the industrial 
environment, the study investigates the use of sophisticated 
data analytics, more especially a data-driven Failure Mode and 
Effective Analysis (FMEA) approach [17]. Utilizing 
operational and historical data from investment in industrial 
items' usage stage, the technique applies DL models to 
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improve maintenance scheduling visibility and decision 
assistance. A real-world scenario in the aviation industry is 
used to verify the structure, and the results show an 
astounding 95% accuracy in defect prediction. By 
incorporating these findings into a data-driven FMEA 
framework, the dependency on employee knowledge and skill 
is lessened, and variability in risk and failure probability 
predictions is eliminated. Nevertheless, the study does not go 
into great detail about any drawbacks or difficulties with the 
suggested technique, providing opportunity for more research 
into real-world implementation problems and wider 
application across other industrial settings. 

This study explores the intricacies of semiconductor 
production, which is a multistep process that uses a variety of 
equipment’s and sub processes to create miniaturized 
electronic circuits [18]. With the goal of improving the 
process of producing semiconductors, the study uses data 
mining, SPC, and data-driven decision-making frameworks to 
analyze production process information in great detail. The 
goal is to use the newest technologies powered by data to 
increase productivity and reliability. The study highlights the 
potential for major process enhancements and offers a 
thorough analysis of current procedures; however, it does not 
go into great length on the drawbacks or difficulties that come 
with using methods that use data in the production of 
semiconductors. Some issues are not completely addressed, 
such as possible biases, execution difficulties, and the 
adaptation of these approaches to varied production contexts. 
To evaluate the applicability and constraints of these methods 
based on data in a wider range of semiconductor production 
environments, more investigation is necessary. 

This study tackles the critical problem of estimating 
RUL for equipment predictions, highlighting the importance 
of precise forecasts in reducing maintenance expenses and 
improving system dependability[19]. This study presents a 
new data-driven methodology called Convolutional Neural 
Network- Long-Short Term Memory- Particle Swarm 
Optimization (CNN–LSTM–PSO) hybrid DNN, which 
integrates conventional neural networks, LSTM networks, and 
CNN. In order to increase the accuracy of Remaining Useful 
Life (RUL) forecasting, this hybrid model seeks to identify 
spatial relations from time series with multiple variables data 
and retain nonlinear properties. To improve the efficiency of 
the network, the research uses PSO to optimize the network's 
hyper parameters. The suggested CNN–LSTM–PSO model is 
noteworthy for its ability to provide multi-step-ahead 
recommendations. Utilizing a NASA-provided lithium-ion 
battery dataset, the validation test shows that the CNN–
LSTM–PSO model outperforms other cutting-edge ML and 
Deep Learning (DL) techniques when evaluating a variety of 
efficiency metrics. To allow for more research into the 
suggested model's relevance across various datasets and 
commercial situations, the report nevertheless fails to go into 
great detail about its drawbacks or possible drawbacks. 
Further investigation might examine the model's applicability 
to other machinery kinds and operating environments. 

This paper explores the topic of smart production, with a 
particular emphasis on utilizing Artificial Intelligence (AI), 
ML, and sophisticated data analysis to optimize 

semiconductors production processes [20]. It emphasizes how 
Industrial Internet of Things (IIOT) sensors are being used in 
production more and more, which means effective data 
management is required. To solve issues in semiconductor 
production, the study suggests a dynamic method that 
combines algorithms for neural networks with evolutionary 
programming. In particular, the study presents a novel feature 
selection technique employing neural networks and 
evolutionary algorithms to improve the production process 
efficiency. Although the research offers a detailed analysis 
and innovative approaches, it does not fully address any 
potential drawbacks or difficulties related to the suggested 
dynamic algorithms and smart feature selection. Additional 
investigation is necessary due to practical issues, the 
algorithms' adaptation to a variety of industrial contexts, and 
possible limitations. Subsequent investigations have to 
evaluate the resilience and constraints of these suggested 
remedies in diverse semiconductor production environments 
and take into account practical implementation difficulties. 

In order to anticipate the initial yields in semiconductor 
production, the research presents a combined structure that 
focuses on finding the best companion combinations for the 
Final Testing (FT) procedure [21]. In order to create an 
efficient prediction of yield model, the process entails 
converting categorical information into multivariate vectors 
using the entity anchoring technique and assessing several 
ML methods. A Genetic Algorithm (GA) incorporated in the 
yield prediction framework is used to find the optimal 
accessory combinations, optimizing for the greatest initial 
yield estimation, after the best-fit ML model has been 
identified. By combining the strengths of ML and GA, a smart 
prediction method is created that stabilizes the Overall 
Equipment Effectiveness (OEE) for the FT process and 
reduces the negative effects of improper accessory pairings on 
yield rates. But the report does not go into great detail about 
any drawbacks or difficulties with the proposed design, thus 
there is need for more research to examine concerns of 
adaptability, versatility, and practical application in various 
semiconductor production settings. To evaluate the combined 
framework's resilience and generality in various production 
contexts, more research is necessary. 

In addition to highlighting reliability's critical role in 
modern production facilities, the article also addresses 
reliability's influence on systems lives, expenses for upkeep, 
and repair charges [22]. Although a number of reliability 
modelling approaches have been investigated, including Fault 
Trees, Petri Nets, and Markov Chains, the process of 
developing dependability models is still demanding of labor 
and dependent on expertise. The report suggests using data 
from contemporary manufacturing facilities for automation or 
assist in the creation of dependability models as a solution to 
this problem. With an emphasis on information-driven 
reliability evaluation for cyber-physical machines, the 
suggested methodology seeks to capitalize on the abundance 
of data produced in sophisticated production lines. A case 
study is included to test and improve the suggested data-
driven strategy from a practical standpoint. Nevertheless, the 
study does not go into great detail about the possible 
drawbacks or difficulties with the suggested structure, 
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providing opportunity for further investigation into real-world 
application problems, potential exaggerations in the data, and 
the applicability of the method in various manufacturing 
contexts. To evaluate the security and sustainability of the 
data-driven resilience evaluation in actual manufacturing 
environments, more research is necessary. 

In order to increase system accessibility and lower life 
cycle costs, the study tackles the crucial job of forecasting the 
RUL of systems [23]. Using numerous sensor time series 
indications, a Deep Long-Short Term Memory 
(DLSTM) network-based technique is introduced in this 
suggested solution. Through the usage of its DL framework, 
the DLSTM model is intended to fuse the aforementioned 
signals in order to provide precise predictions for RUL by 
revealing latent long-term relationships. The DLSTM's 
attributes and network layout are effectively tuned for accurate 
and reliable predictions in this article using an adaptive 
moment assessment approach and a grid-based searching 
strategy. Utilizing two turbofan engine datasets, the DLSTM 
model's efficacy is verified, showing favorable outcomes 
when contrasted to other neural network algorithms and the 
latest methods documented in the available literature. Though 
there is room for additional studies to examine real-world 
difficulties in implementation, possible prejudices in the data, 
and the framework's flexibility to various system forms and 
operational circumstances, the article does not go into great 
detail about potential drawbacks or difficulties connected with 
the recommended DLSTM model. To evaluate the DLSTM 
model's adaptability and generalization in actual 
manufacturing environments, more research is necessary. 

The essential subject of forecasting RUL in diverse 
engineering and manufacturing scenarios is the focus of the 
literature review. The use of sophisticated deep learning and 
machine learning methods, such LSTM networks, is a 
recurring topic in the development of precise and effective 
RUL forecasts. These models make use of many sensor time 
series signals, which makes it possible to identify complex 
patterns and hidden connections in the data. The importance of 
RUL prediction in raising system availability, cutting life 
cycle costs, and improving maintenance plans is emphasized 
in the studies. To ensure optimal performance, model 
parameters are often tuned using grid search techniques and 
adaptive algorithms. Experimental validation on various 
datasets, such as turbofan engines, consistently shows these 
models to perform as robustly and competitively against other 
neural network designs and state-of-the-art methodologies. All 
of these studies have one thing in common, though: they 
refrain from going into great detail about the difficulties, 
biases, and real-world implementation problems that come 
with using these sophisticated predictive models in industrial 
settings. This leaves space for future research to address these 
important issues. 

III. PROBLEM STATEMENT 

The current problem in industrial environments is the 
inefficiencies and disruptions brought about by unanticipated 
breakdowns in production systems, which result in more 
downtime, less efficient use of resources, and weakened 
system availability overall. These problems are not fully 
addressed by traditional reactive techniques to failure 
detection and system optimization. In order to address this 
issue, this research offers a novel solution: a deep learning-
based, data-driven method for failure detection and 
availability augmentation that makes use of genetic 
algorithms. The challenge at hand is creating a comprehensive 
approach that uses genetic algorithms to dynamically optimize 
system configurations for increased availability and deep 
learning techniques to proactively identify failure antecedents 
in production systems. The goal is to revolutionize the way 
that production system management is now done by offering a 
proactive, adaptable framework that not only foresees 
problems before they happen but also continuously improves 
the system to maximize availability and overall performance 
[24]. Because of its ability to improve pattern recognition in 
industrial data—especially in identifying minor symptoms of 
equipment failure—the suggested CNN Autoencoder-GA 
approach has been chosen. The utilization of Convolutional 
Neural Network (CNN) Autoencoder enables efficient 
recognition of intricate patterns, and the incorporation of 
Genetic Algorithms (GA) guarantees the adaptability and 
durability of system configurations in ever-changing industrial 
settings. By training on a variety of datasets, the data-driven 
approach improves the model's resilience and adaptability. On 
the other hand, the shortcomings of current approaches, like 
insufficient pattern recognition, static configurations, and 
insufficient forecasting abilities, make them less appropriate 
for handling the dynamic issues associated with effective 
failure detection and availability enhancement in operational 
systems. 

IV. PROPOSED CNN AUTOENCODER – GENETIC ALGORITHM 

FRAMEWORK 

In this paper, a unique data-driven technique for improving 
production system availability and failure detection is 
presented. The suggested system uses state-of-the-art 
techniques, such as deep learning and evolutionary algorithms, 
and integrates CNN Autoencoder for accurate failure 
detection. System configurations are optimized via genetic 
algorithms, increasing overall availability. The model, which 
has been trained on a variety of datasets, recognizes intricate 
patterns, and evolutionary methods guarantee system 
configuration flexibility. The model, which is implemented in 
Python, emphasizes how effective the data-driven approach is 
at issue prediction and prevention, downtime minimization, 
and production efficiency maximization. It is depicted in Fig. 
1. 
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Fig. 1. Proposed methodology.

A. Data Collection 

Kaggle, a well-known website for data science and 
machine learning contests, provided datasets for the 
equipment failure prediction. The meticulously selected 
datasets, which are publicly accessible on Kaggle, are an 
invaluable tool for practitioners and academics who are trying 
to create predictive models that may detect any malfunctions 
in machinery. The datasets available in Kaggle’s repository 
cover a wide range of sectors and machinery kinds, making it 
possible to investigate various failure patterns and advance the 
creation of reliable prediction algorithms. These datasets are a 
great source of data for developing and accessing machine 
learning models, and they often contain elements like 
timestamps, operating parameters, and sensor readings. 
Researchers may test their models against pre-existing 
datasets by utilizing Kaggle’s equipment failure prediction 
dataset platform. This approach promotes cooperation and 
creativity in the domain of predictive maintenance and 
reliability engineering [25]. 

B. Preprocessing using Min-Max Normalization 

Preprocessing is essential when attempting to improve 
production system performance using a deep learning-based, 
data-driven strategy for genetic algorithm-based failure 
diagnosis and availability augmentation. In particular, 
applying Min-Max Normalization sticks out as an essential 
step in bringing the input data into compliance. This method 
makes sure that every variable contributes equally to the 
learning process by scaling the feature values within a given 
range, usually between 0 and 1. Normalizing the input data 
makes the deep learning model less susceptible to changes in 
the magnitude of various characteristics and more resilient, 
which supports steady and efficient training. By reducing the 
effect of different scales among input characteristics, Min-
Max Normalization enhances the overall dependability of the 
model. This is important when it comes to failure detection 
and availability enhancement in intricate production systems. 
Moreover, the use of Min-Max Normalization is consistent 
with the overall objective of maximizing the accuracy and 
speed of convergence of the deep learning model. A more 

effective learning process is made possible by the standardized 
data distribution, which also helps to avoid particular traits 
from predominating during the training phase and thereby 
distorting the model's predictions. When it comes to 
availability enhancement and failure detection, wherein subtle 
patterns may signal approaching problems, and when accuracy 
is critical, the preprocessing step of Min-Max Normalization 
guarantees that the deep learning model is capable of 
identifying pertinent patterns and trends, which in turn 
enhances the model's ability to improve production system 
performance as shown in Eq. (1). 

            
      

         
              (1) 

C. Deep Learning-based CNN Autoencoder for Failure 

Detection 

In the field of industrial system failure detection, this study 
presents a new method based on Deep Learning using CNN 
Autoencoder architecture. The main goal is to create a 
complicated model that can learn nuanced patterns from large, 
complex information in order to proactively anticipate 
probable problems. A change from conventional techniques is 
marked by the use of CNN Autoencoders, which use neural 
networks' capacity to automatically extract pertinent 
characteristics from input data. The CNN design is very useful 
for jobs that need spatial connections, which makes it suitable 
for examining images, sensor data, and other 
multidimensional data sources that are frequently found in 
industrial settings. 

An encoding phase that compresses input data into a latent 
representation and a decoding phase that reconstructs the input 
from this compressed representation are the fundamental 
workings of the CNN Autoencoder. The model gains the 
ability to reflect typical operating patterns throughout training, 
which makes it sensitive to variations that might signal 
impending problems. Deep learning guarantees a data-driven 
and adaptable approach to failure detection, able to identify 
intricate patterns that may defy conventional rule-based or 
heuristic techniques. Using this cutting-edge method, the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

721 | P a g e  

www.ijacsa.thesai.org 

research hopes to enhance the creation of reliable and 
effective failure detection systems that may improve the 
performance and dependability of industrial production 
systems. 

The encoder, which is composed with a number of layers 
of convolution, one or more fully connected layers, and a 
pooling procedure make up the CNN autoencoder. The 
decoder is proportionately made up of convolutional and 
upsampling layers after either two or three fully linked layers. 
In contrast to the fully connected autoencoder, the CNN 
autoencoder functions on a series of R includes vectors rather 
than just one. To keep things simple, let's look at an encoder 
and a decoder like the ones in Fig. 2 that have one 
convolutional layer and one fully linked layer. The 
convolutional component of the encoder works with an input 
matrix Y ∈ R B×R, wherein R is the sequence's frames count. 
The layer yields a B × R × C tensor H, the components of 
which are computed as shown in Eq. (2). 

K(a,b,c) = g (∑ ∑                  
    
   

    
       (2) 

where, Y(a, b) is the component at row a and column b of 
matrix Y, C is the total amount of kernels, g(•) is the non-
linear activating operation, and hcis a two-dimensional kernel 
of size ha × hb. Keep in mind that because of zero-padding, K's 
initial measurements are the identical as Y's. Furthermore, 
although the operation carried out in the aforementioned 
equation is really a cross-correlation, the ML group generally 
refers to it as "convolution to operate. 

Convolutional layers are frequently succeeded by a 
pooling process that lowers the input's complexity. The max-
pooling procedure, that determines the highest value across a q 
× q windows, was utilized in (3): 

 ̃(a,b,c) = max {K(a’,b’,c’) : a’ ∈[ a . s, a . s+q-1], b’ ∈  [b . s, 

b . s+q-1]  (3) 

where the step is located. It utilized q = 2 and s = 2 in the 
present study. A fully linked layer makes up the encoder's last 
layer. 

The decoder is proportionately made up of a fully 
connected layer as the first layer, a layer that performs 
convolution, and an upsampling layer that replicates the input 
matrix's rows and columns using the identical factor 2, in this 
case that was utilized throughout pooling. In order to achieve 
two identical dimensions for the final output matrix as X, the 
system's final layer consists of one kernel and a convolutional 
layer with a linear activating function. 

Applying additional convolutional and fully connected 
layers to the encoder and subsequently to the decoder would 
enhance the network's overall depth. In the trials, the real 
architecture was ascertained employing a validation set. 

D. Employing Genetic Algorithm for Availability 

Enhancement 

Towards strengthening the availability of production 
systems, the study deliberately employs Genetic Algorithms 
(GAs) as a sophisticated optimization method. Fundamentally, 
the main issue being addressed is the necessity of a methodical 
and flexible strategy to improve system availability by means 
of dynamic configuration optimization. Inspired by the ideas 
of evolution and natural selection, genetic algorithms are a 
powerful tool for negotiating the large solution space present 
in production systems' complexity. Potential system 
configurations are encoded into a population of people inside 
this optimization framework, each of which represents a 
distinct solution to the optimization issue. These solutions' 
fitness is carefully assessed using predetermined goals that are 
especially designed to improve system availability. This 
comprehensive strategy guarantees that the evolutionary 
algorithm converges to configurations that optimize the 
production system's overall availability while simultaneously 
reducing the likelihood of failures. 

People in the population go through selection, crossover, 
and mutation processes as part of an iterative process known 
as the optimization journey. Individuals are chosen for 
development based on their fitness, and genetic material is 
transferred through crossover to produce progeny. Stochastic 
variations brought about by mutation encourage variety 
among the population. Motivated by availability-related goals, 
the fitness evaluation serves as a compass, pointing the 
algorithm in the direction of configurations that are reliable in 
reducing the likelihood of failure. The Genetic Algorithm 
becomes a powerful tool for converging across multiple 
generations to achieve configurations that dynamically adapt 
to the changing operational landscape, which eventually 
results in a production system optimized for increased 
resilience and availability. 

Every individual in the population or possible solution is 
represented by a chromosome, frequently in binary form.   , 
wherei is the person's index, can be thought of as an individual 
solution in Eq. (4). 

                               (4) 

 
Fig. 2. Architecture of CNN Autoencoder.
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The fitness of the individual is assessed by the objective 
function      based on the problem-specific goals. The 
measure of an individual's performance in relation to the 
optimization criteria is represented by this function. 

The likelihood of choosing a person for development is 
directly correlated with their level of fitness. Proportional 
selection is a popular technique of selection in which 
candidates who are more fit have a larger probability of being 
chosen as shown in Eq. (5). 

Q            ) = 
     

∑  (  )
 
   

             (5) 

Crossover generates offspring by fusing the genetic 
material of two parent solutions. Genetic material is 
exchanged between parents to form the offspring, and the 
crossover point is randomly selected as in Eq. (6). 

           = (                  )             (6) 

A mutation modifies a person randomly; usually, this is 
done by flipping binary representation bits as shown in Eq. 
(7). The possibility of a mutation happening is determined by 
the mutation probability, or          . 

          = (          ̃        )          (7) 

where,  ̃   is the mutated bit. 

The genetic procedures result in the creation of a new 
population. To guarantee that the best answers are kept, the 
members of the new population replace the members of the 
old population. Until a termination requirement is satisfied, the 
algorithm iterates continuously. A maximum number of 
generations, reaching a particular fitness level, or convergence 
are examples of common requirements. Through these 
iterations, genetic algorithms gradually evolve the population 
in the direction of ideal solutions. The particulars and 
parameters, including crossover and mutation rates, vary 
depending on the nature of the optimization task at hand and 
should be adjusted accordingly. The algorithm for CNN 
Autoencoder-GA is given below: 

Algorithm 1: CNN Autoencoder-GA 

Import the required data 
Describe the CNN Autoencoder architecture 
Develop the CNN Autoencoder 
Specify the goal function that the genetic algorithm will 

optimize 
Analyze the system's performance using the specified 

configuration 
Provide a fitness score based on availability and 

additional pertinent data 
Set the Genetic Algorithm up initially 
Utilize the Genetic Algorithm to maximize system settings 
For increased availability, apply the optimized 

configuration to the production system 

V. RESULTS AND DISCUSSION 

Through the use of a data-driven approach, this study 
presents a unique way for improving production system 
availability and failure detection. The suggested architecture 

uses CNN Autoencoder for accurate failure detection and 
makes use of state-of-the-art techniques like deep learning and 
evolutionary algorithms. Overall availability is increased by 
using genetic algorithms to optimize system settings. The 
model recognizes intricate patterns after being trained on a 
variety of datasets, and evolutionary techniques guarantee 
system configuration flexibility. The model, which is 
implemented in Python, highlights the effectiveness of the 
data-driven approach in identifying and averting issues, 
reducing downtime, and optimizing production efficiency. 

A. Model Accuracy 

The degree of agreement between the deep learning 
model's predictions and the actual results in terms of failure 
detection and availability enhancement in a production system 
is known as model accuracy. It measures the model's 
efficiency in accurately detecting malfunctions and 
maximizing system availability. The accuracy statistic 
measures the percentage of cases that are properly categorized 
out of all the instances that the model evaluates. A high model 
accuracy suggests a stable and dependable performance, 
demonstrating the effectiveness of the data-driven, deep 
learning approach in conjunction with genetic algorithms in 
accurately predicting failure events and improving production 
system availability overall. 

 
Fig. 3. Model accuracy. 

The visual model accuracy graph illustrated in Fig. 3 how 
well the deep learning-based, data-driven strategy performed 
in improving production system performance. Any upward 
trend on the accuracy graph demonstrates an increase in the 
model's capacity to accurately forecast failure occurrences and 
raise system availability. In the context of failure detection and 
availability enhancement, fluctuations or plateaus may indicate 
regions that require extra data collection or more optimization 
to reach greater levels of accuracy. 

B. Model Loss 

When it comes to failure detection and availability 
enhancement in a production system, model loss is the 
quantitative measure of how different the actual observed 
values are from the projected outcomes produced by the deep 
learning model. This measure captures the discrepancy 
between the model's predictions and the actual data, indicating 
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the degree of departure or mistake in the model's predictions. 
One of the main goals of training procedures is to reduce the 
model loss, which indicates how well the model is able to 
capture and reflect the underlying patterns in the data. In the 
context of this study, minimizing model loss is essential to 
guaranteeing the efficacy of the data-driven, deep learning 
technique and the use of genetic algorithms for production 
system performance optimization via improving availability 
and failure detection. 

 

Fig. 4. Model loss. 

The deep learning model's predicted mistakes are shown to 
have evolved in the model loss graph in Fig. 4 within the 
framework of improving production system performance. The 
model's enhanced capacity to reduce differences between 
expected and actual results, especially in failure detection and 
availability augmentation, is indicated by a declining trend in 
the loss graph. Finding trends or plateaus in the loss graph 
could inspire additional research into improving the model's 
architecture or training parameters to provide predictions that 
are more accurate. 

C. ROC Curve 

A graphical depiction known as the Receiver Operating 
Characteristic (ROC) evaluates the deep learning model's 
performance in terms of the trade-off between true positive 
rates and false positive rates.  

 
Fig. 5. ROC. 

As it is depicted in Fig. 5, a thorough understanding of the 
model's capacity to distinguish between positive and negative 
occurrences linked to failure detection and availability 
enhancement in a production system is offered by the ROC 
curve, which plots the sensitivity (true positive rate) against 1-
specificity (false positive rate) at various threshold settings. 
An increased area under the ROC curve signifies enhanced 
model performance in terms of accurate prediction-making 
while accounting for the proper ratio of true positives to false 
positives. 

D. Performance Metrics 

1) Accuracy: Accuracy is used to evaluate the system 

model's overall performance. Its fundamental premise is that 

all interactions are foreseeable. The accuracy is provided by 

Eq. (8). 

NegPosNegPos

NegPos

FFTT

TT
Accuracy






 (8) 

2) Precision: Precision describes how comparable two or 

more calculations are to each other in addition to being 

correct. The link between accuracy and precision shows how 

quickly opinions may change. It is discussed in Eq. (9). 

PosPos

Pos

FT

T
P




                          (9) 

3) Recall: The percentage of all pertinent discoveries that 

were correctly sorted utilizing the procedures is known as 

recall. By dividing the genuine positive by the erroneously 

negative values, one may get the proper positive for these 

integers. The passage is located in Eq. (10). 

 NegPos

Pos

FT

T
R




   (10) 

4) F1-Score: The F1-Score computation combines recall 

and accuracy. To find the F1-Score, use (11), this divides the 

recall by the accuracy. 

         
                  

                
  (11) 

TABLE. I MODEL PERFORMANCE 

Model Performance Percentage (%) 

Accuracy 95.54 

Precision 93.78 

Recall 98.67 

F1-Score 99.32 

The model given has great efficacy in anomaly 
identification, as indicated by the performance indicators, 
which are summarized in Table I. With an accuracy of 
95.54%, the model's predictions are shown to be generally 
accurate. With a precision of 93.78%, the model is able to 
correctly detect true positives among the occurrences that it 
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classifies as anomalies. At 98.67%, the recall rate is quite 
high, indicating that the model is capable of accurately 
identifying a significant proportion of real abnormalities. 
Moreover, the F1-Score a balanced statistic that takes recall 
and accuracy into account stands out at 99.32%, highlighting 
the model's resilience in reaching a pleasing combination of 
recall and precision. Together, these measures highlight the 
model's excellent performance in industrial systems' real-time 
anomaly detection, highlighting its capacity for precise 
identification and reduction of false positives and false 
negatives. 

TABLE. II COMPARISON OF PERFORMANCE METRICS 

Methods 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 

CNN-LSTM [26] 95.54 94.67 94.55 92.44 

Bi-LSTM [27] 93.78 97.12 92.63 95.87 

CNN-RNN [28] 98.67 97.35 94.69 94.26 

Proposed CNN 
Autoencoder-GA 

99.32 99.12 98.99 98.34 

Table II shows the success of various techniques in the 
enhancing production system performance research is 
demonstrated by the classification performance metrics that 
are supplied. With an astounding accuracy of 99.32%, the 
Proposed CNN Autoencoder-GA notably surpasses existing 
models, demonstrating its capacity to accurately identify 
occurrences relevant to availability enhancement and failure 
detection. 

Furthermore, a significant percentage of real positive cases 
are captured by the model, as seen by the high recall (98.99%) 
and precision (99.12%) values. The robustness of the 
suggested model is further shown by the F1-Score of 98.34%, 
which takes into account the harmonic mean of accuracy and 
recall. By comparison, the CNN-RNN approach has a high 
accuracy of 98.67%, highlighting its ability to make accurate 
predictions. These thorough metrics offer insightful 
information on the advantages of each model, with the 
Proposed CNN Autoencoder-GA demonstrating significant 
promise as a method for obtaining better results in the 
intended production system applications. It is depicted in Fig. 
6. 

 

Fig. 6. Comparison of performance metrics. 

E. Discussion 

Through the integration of state-of-the-art methods for 
failure detection and availability enhancement in production 
systems, the suggested approach leads the way in the 
advancement of industrial operations. Through the use of CNN 
Autoencoder and deep learning, the model is able to identify 
complex patterns in a variety of datasets that contain data on 
equipment failures. A proactive approach to failure 
identification is made possible by this strong feature extraction 
capacity, which enables preventive measures to alleviate 
possible problems before they worsen. Furthermore, system 
configurations are optimized through the use of genetic 
algorithms, improving overall availability. With its ability to 
adapt to changing operating circumstances, this adaptive 
optimization mechanism provides a robust and effective 
production system management solution. 
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The suggested method stands out because to its exceptional 
accuracy of 99.32%, outperforming state-of-the-art methods 
such as CNN-LSTM[26], BiLSTM [27], and CNN-RNN 
[28]by 3.58%. This exceptional accuracy is ascribed to the 
complementary work of genetic algorithms and deep learning, 
which together offer a comprehensive approach to availability 
enhancement and failure detection. The suggested model, in 
contrast to traditional techniques, captures intricate linkages in 
the data, allowing for a more sophisticated comprehension of 
possible errors. By guaranteeing flexibility and resilience in 
system configurations, the application of genetic algorithms 
further sets the technique apart and addresses the inherent 
difficulties of industrial production processes. All things 
considered, the suggested methodology represents a major 
breakthrough in failure detection and availability 
enhancement, not only surpassing previous approaches but 
also providing a proactive and adaptable solution to dynamic 
difficulties in industrial situations. 

Methodological relevance and industry prevalence served 
as the foundation for the benchmarking approaches chosen for 
this investigation. The selection of CNN-LSTM, Bi-LSTM, 
and CNN-RNN as typical benchmarks for well-established 
approaches stemmed from their extensive use in industrial 
settings for time-series data processing. LSTM variations such 
as CNN-LSTM and Bi-LSTM, which concentrate on 
managing temporal dependencies, tackle the sequential 
character of industrial data and guarantee a thorough 
assessment of the temporal relationship capabilities of the 
suggested model. Furthermore, the incorporation of CNN-
based techniques takes into account the intricacy of equipment 
failure data, enabling a thorough evaluation of the suggested 
model's capacity to identify complex spatial patterns. This 
comprehensive comparison, which includes both CNN-based 
and LSTM-based approaches, offers a modern, industry-
relevant framework that guarantees a careful assessment of the 
suggested deep learning and genetic algorithm strategy in the 
context of enhancing production system performance. 

VI. CONCLUSION AND FUTURE SCOPE 

This research has shown encouraging outcomes for 
improving availability and detecting failures, with a focus on 
using genetic algorithms. With its impressive 99.32% accuracy 
as well as its excellent precision, recall, and F1-Score values, 
the suggested CNN Autoencoder-GA model stands out as a 
reliable option for handling the difficulties associated with 
complicated production systems. The model's stability and 
effectiveness are further enhanced by the preprocessing stage's 
use of Min-Max Normalization, which guarantees that the 
model can absorb and analyze a variety of standardized input 
data. The study emphasizes how important cutting-edge 
methods like CNN and Autoencoder are for identifying 
complex patterns in real-world data, and how working in 
tandem with genetic algorithms improves the model's capacity 
to optimize for better availability and failure detection. In the 
future, this study will focus on extending the suggested 
approach's utility to other industrial contexts and investigating 
how well it can be tailored to real-time production scenarios. 
Furthermore, additional research on the interpretability of the 
model's decision-making procedures would improve industry 
acceptance and confidence in the suggested technique. The 

model's performance may be further enhanced by including 
more complex evolutionary algorithms or investigating hybrid 
models that incorporate other optimization methods. 
Furthermore, in order to support large-scale production 
systems, the scalability of the deep learning-based technique 
should be investigated. The landscape of intelligent systems 
for fault detection and availability enhancement in industrial 
settings will be significantly shaped by the ongoing 
improvement and adaption of these approaches as 
technological developments persist. All things considered, this 
work establishes the groundwork for a proactive and effective 
strategy for managing production systems by utilizing genetic 
algorithms in conjunction with deep learning. 

The study's efficacy may be impacted by real-world 
unpredictability, and its generalizability to various industrial 
settings and datasets is restricted. The computational resources 
required for optimizing system setups and training the deep 
learning model may give rise to practical limits. The emphasis 
on accuracy measures obscures a thorough evaluation of the 
robustness of the model in different scenarios or with respect 
to outside influences. Furthermore, the Python software 
implementation might make it more difficult to integrate 
seamlessly with production systems that use other technology 
stacks. 
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