
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

741 | P a g e

www.ijacsa.thesai.org

Comparative Analysis of Weighted Ensemble and

Majority Voting Algorithms for Intrusion Detection in

OpenStack Cloud Environments

Pravin Patil, Geetanjali Kale, Nidhi Bivalkar, Agneya Kolhatkar

Department of Computer Engineering, Pune Institute of Computer Technology, Pune, Maharashtra, India

Abstract—In the ever-evolving landscape of cybersecurity, the

detection of malicious activities within cloud environments

remains a critical challenge. This research aims to compare the

effectiveness of two ensemble algorithms, the weighted ensemble

algorithm and the majority voting algorithm, in the context of

intrusion detection within an OpenStack cloud environment. To

conduct this study, a dataset was generated using a network of 10

virtual machines, simulating the complex dynamics of a real

cloud infrastructure. Various attack scenarios were simulated,

and system metrics including CPU usage, memory utilization,

and network traffic were monitored and logged. The weighted

ensemble algorithm combines the predictions of multiple

individual models with varying weights, while the majority

voting algorithm aggregates predictions from multiple models.

Through a rigorous experimental setup, these algorithms were

applied to the generated dataset, and their performance was

evaluated using standard metrics such as accuracy, precision,

recall, and F1-score. These findings provide valuable insights into

the strengths and weaknesses of ensemble algorithms for

intrusion detection in cloud environments. It highlights the

importance of selecting appropriate algorithms based on specific

security requirements and threat profiles. Different attack

scenarios may require different algorithmic approaches to

achieve optimal results. Overall, this study contributes to the

understanding of ensemble techniques in cloud security and

offers a foundation for further research in optimizing intrusion

detection strategies within dynamic and complex cloud

environments. By identifying the strengths and weaknesses of

different ensemble algorithms, cybersecurity professionals can

make informed decisions in selecting the most suitable approach

to enhance the security of cloud environments.

Keywords—Intrusion detection; ensemble algorithms; cloud

security; openstack; weighted ensemble; majority voting

I. INTRODUCTION

The advancement of computing has ushered in
transformative technologies, with cloud environments being at
the forefront. These digital ecosystems offer unparalleled
convenience, scalability, and connectivity, fundamentally
reshaping the storage and processing of data. However, along
with these advantages comes the pressing challenge of
securing data within interconnected cloud systems. These
systems, while efficient, create pathways for a diverse range
of cyber threats that require robust and adaptable intrusion
detection mechanisms. In the pursuit of fortifying cloud
security, traditional intrusion detection approaches have
played a crucial role [1], [3]. Nevertheless, these

methodologies face limitations as attackers continuously
evolve their tactics. Rule-based systems prescribe inflexible
attack patterns, signature detection relies on pre-identified
attack signatures, and anomaly detection, while effective
against new attacks, often yields high false positive rates. To
overcome these limitations, the integration of ensemble
techniques into intrusion detection systems (IDS) has emerged
as a promising strategy. Ensembles amalgamate the insights of
multiple models to enhance accuracy and robustness, enabling
systems to adapt to evolving attack strategies. Within the
realm of ensembles, two methods stand out prominently: the
weighted ensemble and the majority voting algorithms.

This research embarks on a comprehensive exploration of
these two algorithms within the dynamic framework of
OpenStack cloud environments. OpenStack, renowned as an
open-source cloud platform, provides an intricate architecture
and susceptibility to real-world cyber threats, making it an
ideal evaluation ground for ensemble techniques. At the heart
of our investigation lies the question of which ensemble
algorithm, between the weighted ensemble and majority
voting, demonstrates superior performance in the field of
intrusion detection within OpenStack environments. To
address this question, our methodology involves meticulously
simulating a wide range of attack scenarios within the
OpenStack ecosystem. By creating a synthetic environment
consisting of virtual machines that mimic the complexities of
cloud ecosystems, we subject our algorithms to various cyber-
attacks. This deliberate diversification encompasses different
tactics and vectors, resulting in a comprehensive evaluation of
the algorithms' resilience and adaptability. Furthermore,
during these simulations, we diligently record and analyze
intricate system metrics. This detailed dataset sheds light on
how the algorithms behave under dynamic attack conditions,
enhancing our understanding of their effectiveness and
response. In essence, the main contribution of this research
lies in the empirical evaluation of the weighted ensemble and
majority voting algorithms. Through rigorous experimentation
and thorough analysis of the results, we uncover valuable
insights into their operational dynamics, strengths, and
limitations. Additionally, our findings have practical
implications for the real-world deployment of these algorithms
within intrusion detection systems. Fig. 1 gives an overall
research workflow.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

742 | P a g e

www.ijacsa.thesai.org

Fig. 1. Workflow.

This research paper unfolds in several sequential sections
following the introduction. The Related Work section delves
into existing intrusion detection systems, thereby establishing
the groundwork for ensemble techniques. Following this, the
Data Collection section provides an in-depth account of the
creation of a synthetic dataset, designed to simulate a wide
range of cyber-attacks within an OpenStack environment.
Subsequently, in the Classification Algorithms section, ten
different supervised learning models are introduced, serving as
the foundation for subsequent evaluations of ensemble
techniques. The obtained results yield a comprehensive
performance analysis, comparing various metrics such as
accuracy, precision, recall, and F1 score and further
implications of those results are discussed. Finally, the
Conclusion synthesizes the findings, highlighting the strengths
of the research and proposing potential avenues for future
investigations.

II. RELATED WORK

The continuous pursuit of enhancing intrusion detection
systems has propelled researchers to explore a diverse range
of methodologies. Traditional approaches encompass rule-
based systems, signature detection, and anomaly detection.
Rule-based systems prescribe static attack patterns, yet
struggle to accommodate the dynamic nature of evolving
attack strategies.

Signature detection relies on predefined attack signatures,
rendering it ineffective against novel attacks that evade
established patterns [1], [4]. Wie et al. and W. Hu et al. used
the AdaBoost Classifier for a Network IDS [5], [6]. A. Rai et
al. designed optimized IDS using deep neural networks and
the GradientBoost Classifier [7].

Ensemble methods leverage the collective insights of
multiple models to enhance accuracy and resilience, enabling
systems to adapt to emerging attack tactics. Notably, the
weighted ensemble and majority voting algorithms have
emerged as formidable contenders within the realm of
ensemble-based intrusion detection. The weighted ensemble
algorithm hinges on the principle of model weighting,
dynamically assigning importance to individual model
predictions [8]. This adaptability empowers the algorithm to
excel across diverse attack scenarios, optimally adjusting the
influence of each model based on its performance
characteristics.

Conversely, the majority voting algorithm capitalizes on
the synthesis of predictions from multiple models [9]. By

establishing a consensus among models, this approach fosters
robustness, mitigating the impact of errors arising from
individual models. Several studies have explored the
applications of ensemble techniques for intrusion detection
[8], [2] [10], [9], [11], [12].

There has also been significant research on the
applications of these classifiers on multi-tenant systems [8],
[9]. While these previous studies have enriched the discourse
on ensemble-based intrusion detection, the comparative
assessment of the weighted ensemble and majority voting
algorithms remains a relatively unexplored area, particularly
within the dynamic context of OpenStack cloud environments
[4]. It is within this realm that our research finds its
foundation, systematically evaluating the performance of these
algorithms in a relevant cloud security landscape. Previous
studies have shed light on the potential of ensemble
techniques. However, these studies often lack a
comprehensive analysis of the strengths and weaknesses of the
algorithms. The specific limitations of each method,
particularly within the OpenStack environment, have not been
thoroughly addressed. To bridge this gap, our research
undertakes an extensive comparative analysis of the weighted
ensemble and majority voting algorithms. By subjecting these
algorithms to attack scenarios within OpenStack cloud
environments, we aim to discern their nuanced responses and
understand their operational dynamics in the face of complex
threats. Through this exploration, our study strives to offer
practical insights into the adaptability and effectiveness of
these algorithms, enabling informed decision-making for
intrusion detection in multi-tenant distributed systems.

III. DATA COLLECTION

The research methodology encompasses a seamless
continuum from data collection to model training. System
metrics are meticulously collected from a simulated
OpenStack cloud, replicating real-world dynamics during
attacks. The raw data undergoes thorough preprocessing,
including cleaning and feature engineering, transforming the
metrics into meaningful attributes for insightful analysis. The
refined dataset is used to train weighted ensemble and
majority voting models. The models undergo iterative
adjustments and fine-tuning to optimize their intrusion
detection capabilities. This integrated process establishes a
robust evaluation framework for ensemble algorithms within
the intricate context of OpenStack cloud scenarios.

A. Dataset Generation

In our pursuit of conducting a comprehensive evaluation,
we systematically undertook the task of creating a virtual
cloud environment utilizing the OpenStack framework. This
task utilized the computational resources of two laptops, one
with 8GB of RAM and the other with a substantial 32GB.
Within this setup, we deployed ten strategically distributed
virtual machines (VMs) across the laptops, each serving as a
control node or a compute node. These roles mirrored the
dynamics of a real-world cloud ecosystem and facilitated a
highly realistic evaluation [13]. To further enhance the realism
of our evaluation, we simulated cyber-attacks on this virtual
cloud environment, with a focus on the control node, a vital
component of the cloud infrastructure. The attacks

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

743 | P a g e

www.ijacsa.thesai.org

encompassed a wide range of threats, including Cross-Site
Request Forgery (CSRF), XML External Entity (XXE)
Injection, Brute Force, Cross-Site Scripting (XSS), Open
Redirect, Directory Traversal, SQL Injection, Command
Injection, and Remote Code Execution. Each attack category
had the potential to impact various critical parameters within
the cloud environment. Each attack category had distinct
implications for the cloud environment, leading to specific
performance metrics. Each attack category had the potential to
influence these system performance metrics, resulting in
nuanced impacts on the operational landscape of the cloud
environment.

1) CSRF could compromise data integrity and disrupt user

interactions, potentially affecting transaction success rates and

request latencies [14].

2) XEE could impact system behaviour and data

confidentiality, potentially influencing system response times

and memory utilization [15].

3) Brute Force attacks on authentication mechanisms

could have system-wide consequences, impacting

authentication failure rates and overall system availability.

4) XSS could undermine user interactions and data

integrity, posing threats to user session durations and

engagement metrics.

5) Open Redirect vulnerabilities could impact user

navigation experiences, potentially affecting click-through

rates and user satisfaction levels.

6) Directory Traversal exploits could influence file access

rates and disk I/O operations.

7) SQL Injection could jeopardize data confidentiality and

system availability, influencing query execution times and

database throughput.

8) Command Injection could manipulate system

commands, potentially affecting CPU usage and system

response times.

9) Remote Code Execution posed severe risks to system

integrity and availability, potentially impacting memory usage

and network traffic rates.

The execution of these attacks was randomized to ensure a
diverse range of threat scenarios. To capture the dynamics of
the cloud environment during attacks, we utilized the Netdata
REST API service to collect real-time system metrics. These
metrics were meticulously organised into a structured CSV
format for subsequent analysis. The extent of our evaluation is
evident in the execution of a total of 10,000 attack instances,
showcasing the rigorous and dedicated nature of our study.
This comprehensive exploration serves as a robust foundation
for analyzing the performance of ensemble algorithms in real-
world scenarios.

The distribution of attack and non-attack instances is
clearly shown in Table I.

The dataset utilized in this study comprises a diverse range
of system metrics and attributes collected from a simulated
OpenStack cloud environment. With a total of 63 distinct
parameters, each column represents a specific system
parameter or feature [16]. These parameters encompass

various measurements related to CPU utilization, memory
consumption, disk activity, network behaviour, process
behaviour, firewall activity, and more. Each row in the dataset
corresponds to a specific time instance during simulated attack
scenarios. A value of 1 or 0 is assigned to categorise the
instances, where 1 denotes an attack instance and 0 represents
a non-attack instance. For attack instances, an additional
column specifies the type of attack executed, providing
valuable insights into the nature of each attack scenario.

TABLE I. DATASET DISTRIBUTION

Attack Instances 10000

Non-attack instances 90000

Total instances 100000

B. Oversampling and Undersampling

The ratio of attack to non-attack instances is 1:9 causing
the dataset to be slightly imbalanced. To improve the
performance of classification algorithms, we employed two
essential techniques: Synthetic Minority Over-sampling
Technique (SMOTE) and Random Under-sampling. SMOTE
generates synthetic instances for the minority class by
interpolating existing instances, effectively balancing class
proportions [17]. This technique mitigates the risk of the
model favouring the majority class due to its higher
representation. Conversely, Random Under-sampling reduces
the majority of class instances randomly, aligning class
distributions [18]. By employing SMOTE and Random Under-
sampling, we aimed to strike a harmonious balance between
class representations, enabling the models to train on a more
equitable dataset.

IV. CLASSIFICATION ALGORITHMS

The dataset is split into training and testing data in a ratio
of 1:4. 10 different supervised learning algorithms are trained
on this data comprising 17998 non-attack instances and 2002
attack instances.

A. Supervised Classification Algorithms

1) Logistic regression: Logistic Regression is a linear

classifier that estimates instance probabilities by identifying

an optimal hyperplane separating different class data points. It

is particularly essential when assuming a linear relationship

between input features and the outcome.

2) Support Vector Machine (SVM): Support Vector

Machine aims to find the hyperplane that maximizes the

margin between data points of different classes, thereby

enhancing the separation between classes. SVM is particularly

effective in handling complex datasets and can handle non-

linear decision boundaries through kernel transformations.

3) k-Nearest Neighbours (KNN): KNN is a powerful

instance-based classification algorithm that focuses on the

local neighbourhood of data points. It assigns a class label to a

new instance based on the majority class of its k closest

neighbours. This algorithm is beneficial for capturing the local

characteristics of data, making it effective for tasks with

irregular data distributions and localized patterns.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

744 | P a g e

www.ijacsa.thesai.org

4) Random forest: Random Forest is a versatile ensemble

learning technique that addresses overfitting and improves

predictive performance. It constructs multiple decision trees

during training and combines their outputs to make

predictions. By doing so, it mitigates the risk of overfitting

associated with individual decision trees and provides robust

results across a variety of datasets.

5) Gradient boosting: Gradient Boosting is a powerful

ensemble algorithm that constructs a strong predictive model

by iteratively improving upon the errors of previous iterations.

It sequentially builds a series of weak learners, often decision

trees, and places emphasis on instances that were misclassified

earlier. This approach is particularly advantageous for

capturing complex relationships and delivering high predictive

accuracy.

6) Adaptive Boosting (AdaBoost): AdaBoost is a boosting

algorithm that iteratively trains weak learners and combines

them into a robust ensemble model. What makes AdaBoost

instrumental is its ability to adapt to difficult instances by

assigning higher weights to misclassified instances in the

previous iteration. This adaptability enhances the model's

performance and is particularly beneficial when dealing with

imbalanced class distributions [5].

7) Naive bayes: Naive Bayes is a probabilistic

classification algorithm that makes an instrumental

simplifying assumption: feature independence given the class.

Despite this assumption, it's highly efficient, making it

suitable for large datasets. Naive Bayes excels in text

classification and tasks where the independence assumption

approximately holds, showcasing its instrumental role in such

contexts.

8) Decision tree: Decision Trees are simple yet effective

models that recursively partition data based on feature

attributes. They're instrumental in understanding the hierarchy

of decisions within a model. However, they're prone to

overfitting, which can be mitigated through ensemble methods

like Random Forest or Gradient Boosting, making them an

essential foundational element in machine learning.

9) Multi-Layer Perceptron (MLP): Multi-Layer

Perceptron is an instrumental neural network architecture

composed of multiple layers of interconnected neurons. Its

ability to capture complex patterns in data makes it highly

versatile across various domains. However, its instrumental

application requires thoughtful architecture design and

hyperparameter tuning to prevent overfitting and ensure

effective learning [19].

10) XGBoost: XGBoost is an advanced gradient boosting

library instrumental for improved model performance. It

incorporates regularization techniques, optimized tree pruning,

and effective handling of missing data [20]. XGBoost's

instrumental role lies in its capability to provide robust results

with minimal overfitting, making it a go-to choice for

boosting-based ensemble methods.

All classification algorithms have been trained on the same
data with default parameters. The data has been scaled using

the standard scaler. The decision function shape for the SVM
algorithm is One-vs-Rest by default and max iterations for
Logistic Regression have been set to 1000 to account for the
size of the dataset. Now let us explore the two ensemble-based
classification algorithms in consideration for this comparative
analysis.

B. Ensemble-based Classification Algorithms

1) Weighted ensemble classifier: A weighted ensemble

classifier is a machine learning technique that combines the

predictions of multiple base classifiers, each with its own

assigned weight (see Fig. 2). The weights reflect the strengths

and weaknesses of each base classifier, and they determine the

contribution of each classifier's prediction to the final

ensemble prediction. By giving more weight to the predictions

of more accurate or reliable classifiers, and less weight to

those of less accurate ones, the weighted ensemble aims to

improve the overall performance of the ensemble. The weights

of the classifiers were decided using cross-validation f1 scores

and came out to be in the range of 0.0872 for KNN to 0.1049

for AdaBoost.

Fig. 2. Weighted ensemble classifier.

2) Majority voting ensemble classifier: The Majority

Voting ensemble method is a powerful technique used to

enhance the accuracy and robustness of machine learning

models [9]. It involves combining the predictions of multiple

individual models to make a final prediction. In Majority

Voting, each model's prediction is considered a "vote" for a

specific class label. The class label that receives the most

votes becomes the ensemble's final prediction. This method

leverages the wisdom of the crowd by aggregating the

predictions of multiple models, which can lead to more

accurate and reliable results. Fig. 3 diagrammatically shows its

working. One of the key advantages of Majority Voting is its

ability to reduce variance and errors. Even if some individual

models make incorrect predictions, the ensemble can still

provide accurate results if the majority of the models are

correct. In cases where there is a tie in the votes, various

strategies can be employed to handle it.

Fig. 3. Majority voting classifier.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

745 | P a g e

www.ijacsa.thesai.org

V. RESULTS AND DISCUSSION

In this section, we will conduct a detailed examination of
the Weighted Ensemble and Majority Voting algorithms,
specifically in the context of identifying potential attacks
within OpenStack cloud configurations and being able to
extend them to broader multi-tenant environments in the
future. We will evaluate the effectiveness of these algorithms
using various metrics such as accuracy, F1 score, precision,
recall, and confusion matrices. By analyzing these metrics, we
aim to gain insights into how well these algorithms distinguish
between attack and non-attack instances in an OpenStack
cloud environment. Furthermore, this section also discusses
the reasoning behind choosing Majority Voting and Weighted
Ensemble as the two algorithms in this comparison.

A. Performance Metrics

1) Confusion matrix: A confusion matrix provides a

detailed breakdown of a model's predictions by comparing

them against actual class labels. It includes four metrics: true

positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN). True positives represent the instances

that were correctly predicted as positive by the model, while

true negatives represent the instances that were correctly

predicted as negative. False positives are instances incorrectly

predicted as positive, and false negatives are those incorrectly

predicted as negative. From these metrics, other evaluation

metrics can be derived.

2) Accuracy: Accuracy is the ratio of correctly predicted

instances to the total instances in a dataset, offering an overall

performance assessment across all classes, particularly

effective for balanced datasets. Nevertheless, in imbalanced

class scenarios, accuracy might be skewed by the majority

class. In such cases, metrics like precision, recall, and F1 score

offer deeper insights into performance, particularly for

identifying attacks in intricate multi-tenant setups.

 (1)

3) Precision: Precision evaluates the proportion of true

positive predictions out of all positive predictions made by the

model (see Eq. (2)). It is an important metric when the cost of

false positives is high, as it indicates how trustworthy the

positive predictions are. A high precision value indicates a low

rate of false alarms.

 (2)

4) Recall: Recall calculates the proportion of true positive

predictions from all actual positive instances in the dataset. It

is valuable when the cost of false negatives is high, as it

measures how effectively the model captures all actual

positives. A high recall value indicates that the model is good

at identifying positives. However, a high recall value may

come at the cost of more false positives.

 (3)

5) F1 Score: The F1 score is a balanced metric that takes

into account both precision and recall. It is particularly

valuable when the dataset is imbalanced and there is a need to

consider false positives and false negatives. The F1 score is

calculated as the harmonic mean of precision and recall,

helping to strike a balance between them and providing a more

comprehensive assessment of a model's performance.

 (4)

B. Performance

The performance results obtained from the Weighted
Ensemble and Majority Voting classifiers based on the above
performance five metrics are given in Table II.

The Weighted Ensemble Classifier holds a slight
performance edge over the Majority Voting Classifier in
accuracy, recall, and F1 score. Although the latter has higher
precision, the difference between the two precision values is
not as significant as that of the two recall values. It is also
noteworthy that the Majority Voting Classifier incurred an
extra 1161-second runtime compared to the Weighted
Ensemble. Consequently, the Weighted Ensemble Classifier
emerges as the more efficient and effective choice overall.

Table III and Table IV show the confusion matrices of
both classifiers for a more in-depth review of the results.

TABLE II. RESULTS

Algorithms
Performance Metrics

Accuracy Precision Recall F1 Score

Weighted

Ensemble
0.9942 0.9876 0.9535 0.9703

Majority

Voting
0.9926 0.9920 0.9336 0.9619

TABLE III. CONFUSION MATRIX FOR WEIGHTED ENSEMBLE

Weighted

Ensemble

Actual

20000 logs Non-attack Attack

Prediction
Non-attack 17974 24

Attack 93 1909

TABLE IV. CONFUSION MATRIX FOR MAJORITY VOTING

Majority Voting
Actual

20000 logs Non-attack Attack

Prediction
Non-attack 17983 15

Attack 133 1869

TABLE V. F1 SCORES AFTER OVERSAMPLING

Algorithm with oversampling F1 Score

Weighted Ensemble 0.9711

Majority Voting 0.9702

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

746 | P a g e

www.ijacsa.thesai.org

From these matrices, one can see that the two algorithms
performed very similarly. The Weighted Ensemble could
classify more attack instances correctly whereas the Majority
Voting Classifier could classify more non-attack instances
correctly. The Weighted Ensemble does have one
disadvantage which is that it requires the calculation of
weights as an extra step before the classification process.
Furthermore, we have also extracted performance results after
using SMOTE and RandomUndersampler on the data to get a
balanced dataset [17], [18].

Table V clearly shows that oversampling reduced the
performance gap between the two algorithms but the
Weighted Ensemble still has slightly higher performance. Add
to this, the fact that the Weighted Ensemble did not require the
extra pre-processing step of Oversampling and
Undersampling.

C. Discussion

Now, we delve into the evaluation of classification
algorithms, and their comparison with Weighted Ensemble
and Majority Voting with a particular emphasis on the
stability of predictions. To simulate scenarios involving
unseen data, random test-train dataset splits are utilized. A key
metric used to assess the consistency of algorithmic
performance is the standard deviation of F1 scores for each
split.

Notably, the KNN algorithm stands out as it exhibits the
lowest standard deviation (see Fig. 4), demonstrating a
remarkable level of consistency across diverse dataset splits.
However, its performance pales in comparison to other
algorithms as shown in Fig. 5. From Fig. 4 it is evident that
both the Weighted Ensemble and Majority Voting techniques
prove to be the strongest contenders, displaying low standard
deviations and highlighting their stability. One could argue
that the Random Forest algorithm displays similar levels of
stability but Fig. 5 clearly shows the lower F1 score as
compared to Majority Voting and Weighted Ensemble.

This discussion provides valuable insights into the realm
of intrusion detection algorithms. These algorithms carry the
dual responsibility of accurately classifying threats while
avoiding the pitfall of overfitting specific threat types.

Fig. 4. Standard deviation of f1 scores of algorithms.

Fig. 5. Comparison of f1 scores of algorithms.

VI. CONCLUSION

Thus, we comprehensively compared the Weighted
Ensemble and Majority Voting algorithms for intrusion
detection in OpenStack cloud environments. Our analysis
aimed to assess their ability to identify attacks and non-attacks
and their real-world applicability. Through extensive
evaluation, both algorithms demonstrated strong performance
in distinguishing between attack and non-attack instances,
highlighting their effectiveness as ensemble-based intrusion
detection methods. While the Weighted Ensemble algorithm
showcased a slight edge in terms of accuracy, recall, and F1
score, it is important to note that both algorithms demonstrated
comparable performance. Additionally, the runtime analysis
revealed that the Weighted Ensemble algorithm exhibited
faster processing times compared to the Majority Voting
algorithm, highlighting its potential efficiency advantage
during real-time intrusion detection scenarios. However, it is
essential to consider that real-time performance is influenced
by various dynamic factors specific to the operational
environment. Although one outperforms the other, both these
algorithms display high performance along with stability
which underscores their resilience in addressing challenges
posed by unseen security threats.

Our study contributes to the ongoing discourse on
enhancing cybersecurity within multi-tenant cloud
environments. The findings underscore the role of ensemble
techniques as valuable tools for bolstering intrusion detection
capabilities. As the landscape of cyber threats evolves, future
research could explore further optimizations and extensions to
ensemble algorithms, aiming to refine their performance in
real-world cloud environments. In conclusion, our
investigation advances the understanding of ensemble-based
intrusion detection, facilitating more informed decisions for
ensuring the security and resilience of cloud infrastructures.

REFERENCES

[1] A. Valdes, K. Skinner, Adaptive, ―Model-Based Monitoring for Cyber
Attack Detection‖, International Workshop on Recent Advances in
Intrusion Detection, Berlin, Heidelberg, 2000.

[2] J. J. Shirley and M. Priya, "A Comprehensive Survey on Ensemble
Machine Learning Approaches for Detection of Intrusion in IoT
Networks," 2023 International Conference on Innovations in
Engineering and Technology (ICIET), Muvattupuzha, India, 2023, pp. 1-
10, doi: 10.1109/ICIET57285.2023.10220795.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

747 | P a g e

www.ijacsa.thesai.org

[3] M. Yassin, H. Ould-Slimane, C. Talhi and H. Boucheneb, "Multi-tenant
intrusion detection framework as a service for SaaS," in IEEE
Transactions on Services Computing, doi: 10.1109/TSC.2021.3077852.

[4] B. I. Santoso, M. R. S. Idrus and I. P. Gunawan, "Designing Network
Intrusion and Detection System using signature-based method for
protecting OpenStack private cloud," 2016 6th International Annual
Engineering Seminar (InAES), Yogyakarta, Indonesia, 2016, pp. 61-66,
doi: 10.1109/INAES.2016.7821908.

[5] Wei Hu and Weiming Hu, "Network-based intrusion detection using
Adaboost algorithm," The 2005 IEEE/WIC/ACM International
Conference on Web Intelligence (WI'05), Compiegne, France, 2005, pp.
712-717, doi: 10.1109/WI.2005.107.

[6] W. Hu, W. Hu and S. Maybank, "AdaBoost-Based Algorithm for
Network Intrusion Detection," in IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 38, no. 2, pp. 577-583, April
2008, doi: 10.1109/TSMCB.2007.914695.

[7] A. Rai, "Optimizing a New Intrusion Detection System Using Ensemble
Methods and Deep Neural Network," 2020 4th International Conference
on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli,
India, 2020, pp. 527-532, doi: 10.1109/ICOEI48184.2020.9143028.

[8] P. Patil and R. Ingle, "Meta-ensemble based classifier approach for
attack detection in multi-tenant distributed systems," 2020 International
Conference for Emerging Technology (INCET), Belgaum, India, 2020,
pp. 1-6, doi: 10.1109/INCET49848.2020.9154077.

[9] Pravin Patil*, Dr. Geetanjali Kale. (2022). Stacked Anomaly Detector
Guided Side Channel Attacks Detection in Multi Tenant Distributed
Systems. Scandinavian Journal of Information Systems, 34(2), 17–26.

[10] E. Roponena and I. Polaka, "Classifier Selection for an Ensemble of
Network Traffic Analysis Machine Learning Models," 2022 63rd
International Scientific Conference on Information Technology and
Management Science of Riga Technical University (ITMS), Riga,
Latvia, 2022, pp. 1-6, doi: 10.1109/ITMS56974.2022.9937116.

[11] E. Roponena and I. Polaka, "Classifier Selection for an Ensemble of
Network Traffic Analysis Machine Learning Models," 2022 63rd
International Scientific Conference on Information Technology and
Management Science of Riga Technical University (ITMS), Riga,
Latvia, 2022, pp. 1-6, doi: 10.1109/ITMS56974.2022.9937116.

[12] V. Timčenko and S. Gajin, "Ensemble classifiers for supervised anomaly
based network intrusion detection," 2017 13th IEEE International
Conference on Intelligent Computer Communication and Processing
(ICCP), Cluj-Napoca, Romania, 2017, pp. 13-19, doi:
10.1109/ICCP.2017.8116977.

[13] Z. Chen, W. Dong, H. Li, P. Zhang, X. Chen and J. Cao, "Collaborative
network security in multi-tenant data center for cloud computing," in
Tsinghua Science and Technology, vol. 19, no. 1, pp. 82-94, Feb. 2014,
doi: 10.1109/TST.2014.6733211.

[14] W. H. Rankothge and S. M. N. Randeniya, "Identification and
Mitigation Tool For Cross-Site Request Forgery (CSRF)," 2020 IEEE
8th R10 Humanitarian Technology Conference (R10-HTC), Kuching,
Malaysia, 2020, pp. 1-5, doi: 10.1109/R10-HTC49770.2020.9357029.

[15] R. Shahid, S. N. K. Marwat, A. Al-Fuqaha and G. B. Brahim, "A Study
of XXE Attacks Prevention Using XML Parser Configuration," 2022
14th International Conference on Computational Intelligence and
Communication Networks (CICN), Al-Khobar, Saudi Arabia, 2022, pp.
830-835, doi: 10.1109/CICN56167.2022.10008276.

[16] B. W. Masduki and K. Ramli, "Improving intrusion detection system
detection accuracy and reducing learning time by combining selected
features selection and parameters optimization," 2016 6th IEEE
International Conference on Control System, Computing and
Engineering (ICCSCE), Penang, Malaysia, 2016, pp. 397-402, doi:
10.1109/ICCSCE.2016.7893606.

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, ‖ SMOTE:
Synthetic Minority Over-sampling Technique‖, arXiv:1106.1813 [cs.AI]

[18] R. Mohammed, J. Rawashdeh and M. Abdullah, "Machine Learning
with Oversampling and Undersampling Techniques: Overview Study
and Experimental Results," 2020 11th International Conference on
Information and Communication Systems (ICICS), Irbid, Jordan, 2020,
pp. 243-248, doi: 10.1109/ICICS49469.2020.239556.

[19] J. Esmaily, R. Moradinezhad and J. Ghasemi, "Intrusion detection
system based on Multi-Layer Perceptron Neural Networks and Decision
Tree," 2015 7th Conference on Information and Knowledge Technology
(IKT), Urmia, Iran, 2015, pp. 1-5, doi: 10.1109/IKT.2015.7288736.

[20] Tianqi Chen, Carlos Guestrin, ‖XGBoost: A Scalable Tree Boosting
System‖, Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Pages 785-794.

