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Abstract—In the ever-evolving landscape of cybersecurity, the 

detection of malicious activities within cloud environments 

remains a critical challenge. This research aims to compare the 

effectiveness of two ensemble algorithms, the weighted ensemble 

algorithm and the majority voting algorithm, in the context of 

intrusion detection within an OpenStack cloud environment. To 

conduct this study, a dataset was generated using a network of 10 

virtual machines, simulating the complex dynamics of a real 

cloud infrastructure. Various attack scenarios were simulated, 

and system metrics including CPU usage, memory utilization, 

and network traffic were monitored and logged. The weighted 

ensemble algorithm combines the predictions of multiple 

individual models with varying weights, while the majority 

voting algorithm aggregates predictions from multiple models. 

Through a rigorous experimental setup, these algorithms were 

applied to the generated dataset, and their performance was 

evaluated using standard metrics such as accuracy, precision, 

recall, and F1-score. These findings provide valuable insights into 

the strengths and weaknesses of ensemble algorithms for 

intrusion detection in cloud environments. It highlights the 

importance of selecting appropriate algorithms based on specific 

security requirements and threat profiles. Different attack 

scenarios may require different algorithmic approaches to 

achieve optimal results. Overall, this study contributes to the 

understanding of ensemble techniques in cloud security and 

offers a foundation for further research in optimizing intrusion 

detection strategies within dynamic and complex cloud 

environments. By identifying the strengths and weaknesses of 

different ensemble algorithms, cybersecurity professionals can 

make informed decisions in selecting the most suitable approach 

to enhance the security of cloud environments. 
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security; openstack; weighted ensemble; majority voting 

I. INTRODUCTION 

The advancement of computing has ushered in 
transformative technologies, with cloud environments being at 
the forefront. These digital ecosystems offer unparalleled 
convenience, scalability, and connectivity, fundamentally 
reshaping the storage and processing of data. However, along 
with these advantages comes the pressing challenge of 
securing data within interconnected cloud systems. These 
systems, while efficient, create pathways for a diverse range 
of cyber threats that require robust and adaptable intrusion 
detection mechanisms. In the pursuit of fortifying cloud 
security, traditional intrusion detection approaches have 
played a crucial role [1], [3]. Nevertheless, these 

methodologies face limitations as attackers continuously 
evolve their tactics. Rule-based systems prescribe inflexible 
attack patterns, signature detection relies on pre-identified 
attack signatures, and anomaly detection, while effective 
against new attacks, often yields high false positive rates. To 
overcome these limitations, the integration of ensemble 
techniques into intrusion detection systems (IDS) has emerged 
as a promising strategy. Ensembles amalgamate the insights of 
multiple models to enhance accuracy and robustness, enabling 
systems to adapt to evolving attack strategies. Within the 
realm of ensembles, two methods stand out prominently: the 
weighted ensemble and the majority voting algorithms. 

This research embarks on a comprehensive exploration of 
these two algorithms within the dynamic framework of 
OpenStack cloud environments. OpenStack, renowned as an 
open-source cloud platform, provides an intricate architecture 
and susceptibility to real-world cyber threats, making it an 
ideal evaluation ground for ensemble techniques. At the heart 
of our investigation lies the question of which ensemble 
algorithm, between the weighted ensemble and majority 
voting, demonstrates superior performance in the field of 
intrusion detection within OpenStack environments. To 
address this question, our methodology involves meticulously 
simulating a wide range of attack scenarios within the 
OpenStack ecosystem. By creating a synthetic environment 
consisting of virtual machines that mimic the complexities of 
cloud ecosystems, we subject our algorithms to various cyber-
attacks. This deliberate diversification encompasses different 
tactics and vectors, resulting in a comprehensive evaluation of 
the algorithms' resilience and adaptability. Furthermore, 
during these simulations, we diligently record and analyze 
intricate system metrics. This detailed dataset sheds light on 
how the algorithms behave under dynamic attack conditions, 
enhancing our understanding of their effectiveness and 
response. In essence, the main contribution of this research 
lies in the empirical evaluation of the weighted ensemble and 
majority voting algorithms. Through rigorous experimentation 
and thorough analysis of the results, we uncover valuable 
insights into their operational dynamics, strengths, and 
limitations. Additionally, our findings have practical 
implications for the real-world deployment of these algorithms 
within intrusion detection systems. Fig. 1 gives an overall 
research workflow. 
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Fig. 1. Workflow. 

This research paper unfolds in several sequential sections 
following the introduction. The Related Work section delves 
into existing intrusion detection systems, thereby establishing 
the groundwork for ensemble techniques. Following this, the 
Data Collection section provides an in-depth account of the 
creation of a synthetic dataset, designed to simulate a wide 
range of cyber-attacks within an OpenStack environment. 
Subsequently, in the Classification Algorithms section, ten 
different supervised learning models are introduced, serving as 
the foundation for subsequent evaluations of ensemble 
techniques. The obtained results yield a comprehensive 
performance analysis, comparing various metrics such as 
accuracy, precision, recall, and F1 score and further 
implications of those results are discussed. Finally, the 
Conclusion synthesizes the findings, highlighting the strengths 
of the research and proposing potential avenues for future 
investigations.  

II. RELATED WORK 

The continuous pursuit of enhancing intrusion detection 
systems has propelled researchers to explore a diverse range 
of methodologies. Traditional approaches encompass rule-
based systems, signature detection, and anomaly detection. 
Rule-based systems prescribe static attack patterns, yet 
struggle to accommodate the dynamic nature of evolving 
attack strategies. 

Signature detection relies on predefined attack signatures, 
rendering it ineffective against novel attacks that evade 
established patterns [1], [4]. Wie et al. and W. Hu et al. used 
the AdaBoost Classifier for a Network IDS [5], [6]. A. Rai et 
al. designed optimized IDS using deep neural networks and 
the GradientBoost Classifier [7]. 

Ensemble methods leverage the collective insights of 
multiple models to enhance accuracy and resilience, enabling 
systems to adapt to emerging attack tactics. Notably, the 
weighted ensemble and majority voting algorithms have 
emerged as formidable contenders within the realm of 
ensemble-based intrusion detection. The weighted ensemble 
algorithm hinges on the principle of model weighting, 
dynamically assigning importance to individual model 
predictions [8]. This adaptability empowers the algorithm to 
excel across diverse attack scenarios, optimally adjusting the 
influence of each model based on its performance 
characteristics. 

Conversely, the majority voting algorithm capitalizes on 
the synthesis of predictions from multiple models [9]. By 

establishing a consensus among models, this approach fosters 
robustness, mitigating the impact of errors arising from 
individual models. Several studies have explored the 
applications of ensemble techniques for intrusion detection 
[8], [2] [10], [9], [11], [12]. 

There has also been significant research on the 
applications of these classifiers on multi-tenant systems [8], 
[9]. While these previous studies have enriched the discourse 
on ensemble-based intrusion detection, the comparative 
assessment of the weighted ensemble and majority voting 
algorithms remains a relatively unexplored area, particularly 
within the dynamic context of OpenStack cloud environments 
[4]. It is within this realm that our research finds its 
foundation, systematically evaluating the performance of these 
algorithms in a relevant cloud security landscape. Previous 
studies have shed light on the potential of ensemble 
techniques. However, these studies often lack a 
comprehensive analysis of the strengths and weaknesses of the 
algorithms. The specific limitations of each method, 
particularly within the OpenStack environment, have not been 
thoroughly addressed. To bridge this gap, our research 
undertakes an extensive comparative analysis of the weighted 
ensemble and majority voting algorithms. By subjecting these 
algorithms to attack scenarios within OpenStack cloud 
environments, we aim to discern their nuanced responses and 
understand their operational dynamics in the face of complex 
threats. Through this exploration, our study strives to offer 
practical insights into the adaptability and effectiveness of 
these algorithms, enabling informed decision-making for 
intrusion detection in multi-tenant distributed systems. 

III. DATA COLLECTION 

The research methodology encompasses a seamless 
continuum from data collection to model training. System 
metrics are meticulously collected from a simulated 
OpenStack cloud, replicating real-world dynamics during 
attacks. The raw data undergoes thorough preprocessing, 
including cleaning and feature engineering, transforming the 
metrics into meaningful attributes for insightful analysis. The 
refined dataset is used to train weighted ensemble and 
majority voting models. The models undergo iterative 
adjustments and fine-tuning to optimize their intrusion 
detection capabilities. This integrated process establishes a 
robust evaluation framework for ensemble algorithms within 
the intricate context of OpenStack cloud scenarios. 

A. Dataset Generation 

In our pursuit of conducting a comprehensive evaluation, 
we systematically undertook the task of creating a virtual 
cloud environment utilizing the OpenStack framework. This 
task utilized the computational resources of two laptops, one 
with 8GB of RAM and the other with a substantial 32GB. 
Within this setup, we deployed ten strategically distributed 
virtual machines (VMs) across the laptops, each serving as a 
control node or a compute node. These roles mirrored the 
dynamics of a real-world cloud ecosystem and facilitated a 
highly realistic evaluation [13]. To further enhance the realism 
of our evaluation, we simulated cyber-attacks on this virtual 
cloud environment, with a focus on the control node, a vital 
component of the cloud infrastructure. The attacks 
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encompassed a wide range of threats, including Cross-Site 
Request Forgery (CSRF), XML External Entity (XXE) 
Injection, Brute Force, Cross-Site Scripting (XSS), Open 
Redirect, Directory Traversal, SQL Injection, Command 
Injection, and Remote Code Execution. Each attack category 
had the potential to impact various critical parameters within 
the cloud environment. Each attack category had distinct 
implications for the cloud environment, leading to specific 
performance metrics. Each attack category had the potential to 
influence these system performance metrics, resulting in 
nuanced impacts on the operational landscape of the cloud 
environment. 

1) CSRF could compromise data integrity and disrupt user 

interactions, potentially affecting transaction success rates and 

request latencies [14]. 

2) XEE could impact system behaviour and data 

confidentiality, potentially influencing system response times 

and memory utilization [15]. 

3) Brute Force attacks on authentication mechanisms 

could have system-wide consequences, impacting 

authentication failure rates and overall system availability. 

4) XSS could undermine user interactions and data 

integrity, posing threats to user session durations and 

engagement metrics. 

5) Open Redirect vulnerabilities could impact user 

navigation experiences, potentially affecting click-through 

rates and user satisfaction levels. 

6) Directory Traversal exploits could influence file access 

rates and disk I/O operations. 

7) SQL Injection could jeopardize data confidentiality and 

system availability, influencing query execution times and 

database throughput. 

8) Command Injection could manipulate system 

commands, potentially affecting CPU usage and system 

response times. 

9) Remote Code Execution posed severe risks to system 

integrity and availability, potentially impacting memory usage 

and network traffic rates. 

The execution of these attacks was randomized to ensure a 
diverse range of threat scenarios. To capture the dynamics of 
the cloud environment during attacks, we utilized the Netdata 
REST API service to collect real-time system metrics. These 
metrics were meticulously organised into a structured CSV 
format for subsequent analysis. The extent of our evaluation is 
evident in the execution of a total of 10,000 attack instances, 
showcasing the rigorous and dedicated nature of our study. 
This comprehensive exploration serves as a robust foundation 
for analyzing the performance of ensemble algorithms in real-
world scenarios. 

The distribution of attack and non-attack instances is 
clearly shown in Table I. 

The dataset utilized in this study comprises a diverse range 
of system metrics and attributes collected from a simulated 
OpenStack cloud environment. With a total of 63 distinct 
parameters, each column represents a specific system 
parameter or feature [16]. These parameters encompass 

various measurements related to CPU utilization, memory 
consumption, disk activity, network behaviour, process 
behaviour, firewall activity, and more. Each row in the dataset 
corresponds to a specific time instance during simulated attack 
scenarios. A value of 1 or 0 is assigned to categorise the 
instances, where 1 denotes an attack instance and 0 represents 
a non-attack instance. For attack instances, an additional 
column specifies the type of attack executed, providing 
valuable insights into the nature of each attack scenario. 

TABLE I. DATASET DISTRIBUTION 

Attack Instances 10000 

Non-attack instances 90000 

Total instances 100000 

B. Oversampling and Undersampling 

The ratio of attack to non-attack instances is 1:9 causing 
the dataset to be slightly imbalanced. To improve the 
performance of classification algorithms, we employed two 
essential techniques: Synthetic Minority Over-sampling 
Technique (SMOTE) and Random Under-sampling. SMOTE 
generates synthetic instances for the minority class by 
interpolating existing instances, effectively balancing class 
proportions [17]. This technique mitigates the risk of the 
model favouring the majority class due to its higher 
representation. Conversely, Random Under-sampling reduces 
the majority of class instances randomly, aligning class 
distributions [18]. By employing SMOTE and Random Under-
sampling, we aimed to strike a harmonious balance between 
class representations, enabling the models to train on a more 
equitable dataset. 

IV. CLASSIFICATION ALGORITHMS 

The dataset is split into training and testing data in a ratio 
of 1:4. 10 different supervised learning algorithms are trained 
on this data comprising 17998 non-attack instances and 2002 
attack instances. 

A. Supervised Classification Algorithms 

1) Logistic regression: Logistic Regression is a linear 

classifier that estimates instance probabilities by identifying 

an optimal hyperplane separating different class data points. It 

is particularly essential when assuming a linear relationship 

between input features and the outcome. 

2) Support Vector Machine (SVM): Support Vector 

Machine aims to find the hyperplane that maximizes the 

margin between data points of different classes, thereby 

enhancing the separation between classes. SVM is particularly 

effective in handling complex datasets and can handle non-

linear decision boundaries through kernel transformations. 

3) k-Nearest Neighbours (KNN): KNN is a powerful 

instance-based classification algorithm that focuses on the 

local neighbourhood of data points. It assigns a class label to a 

new instance based on the majority class of its k closest 

neighbours. This algorithm is beneficial for capturing the local 

characteristics of data, making it effective for tasks with 

irregular data distributions and localized patterns. 
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4) Random forest: Random Forest is a versatile ensemble 

learning technique that addresses overfitting and improves 

predictive performance. It constructs multiple decision trees 

during training and combines their outputs to make 

predictions. By doing so, it mitigates the risk of overfitting 

associated with individual decision trees and provides robust 

results across a variety of datasets. 

5) Gradient boosting: Gradient Boosting is a powerful 

ensemble algorithm that constructs a strong predictive model 

by iteratively improving upon the errors of previous iterations. 

It sequentially builds a series of weak learners, often decision 

trees, and places emphasis on instances that were misclassified 

earlier. This approach is particularly advantageous for 

capturing complex relationships and delivering high predictive 

accuracy. 

6) Adaptive Boosting (AdaBoost): AdaBoost is a boosting 

algorithm that iteratively trains weak learners and combines 

them into a robust ensemble model. What makes AdaBoost 

instrumental is its ability to adapt to difficult instances by 

assigning higher weights to misclassified instances in the 

previous iteration. This adaptability enhances the model's 

performance and is particularly beneficial when dealing with 

imbalanced class distributions [5]. 

7) Naive bayes: Naive Bayes is a probabilistic 

classification algorithm that makes an instrumental 

simplifying assumption: feature independence given the class. 

Despite this assumption, it's highly efficient, making it 

suitable for large datasets. Naive Bayes excels in text 

classification and tasks where the independence assumption 

approximately holds, showcasing its instrumental role in such 

contexts. 

8) Decision tree: Decision Trees are simple yet effective 

models that recursively partition data based on feature 

attributes. They're instrumental in understanding the hierarchy 

of decisions within a model. However, they're prone to 

overfitting, which can be mitigated through ensemble methods 

like Random Forest or Gradient Boosting, making them an 

essential foundational element in machine learning. 

9) Multi-Layer Perceptron (MLP): Multi-Layer 

Perceptron is an instrumental neural network architecture 

composed of multiple layers of interconnected neurons. Its 

ability to capture complex patterns in data makes it highly 

versatile across various domains. However, its instrumental 

application requires thoughtful architecture design and 

hyperparameter tuning to prevent overfitting and ensure 

effective learning [19]. 

10) XGBoost: XGBoost is an advanced gradient boosting 

library instrumental for improved model performance. It 

incorporates regularization techniques, optimized tree pruning, 

and effective handling of missing data [20]. XGBoost's 

instrumental role lies in its capability to provide robust results 

with minimal overfitting, making it a go-to choice for 

boosting-based ensemble methods. 

All classification algorithms have been trained on the same 
data with default parameters. The data has been scaled using 

the standard scaler. The decision function shape for the SVM 
algorithm is One-vs-Rest by default and max iterations for 
Logistic Regression have been set to 1000 to account for the 
size of the dataset. Now let us explore the two ensemble-based 
classification algorithms in consideration for this comparative 
analysis. 

B. Ensemble-based Classification Algorithms 

1) Weighted ensemble classifier: A weighted ensemble 

classifier is a machine learning technique that combines the 

predictions of multiple base classifiers, each with its own 

assigned weight (see Fig. 2). The weights reflect the strengths 

and weaknesses of each base classifier, and they determine the 

contribution of each classifier's prediction to the final 

ensemble prediction. By giving more weight to the predictions 

of more accurate or reliable classifiers, and less weight to 

those of less accurate ones, the weighted ensemble aims to 

improve the overall performance of the ensemble. The weights 

of the classifiers were decided using cross-validation f1 scores 

and came out to be in the range of 0.0872 for KNN to 0.1049 

for AdaBoost. 

 

Fig. 2. Weighted ensemble classifier. 

2) Majority voting ensemble classifier: The Majority 

Voting ensemble method is a powerful technique used to 

enhance the accuracy and robustness of machine learning 

models [9]. It involves combining the predictions of multiple 

individual models to make a final prediction. In Majority 

Voting, each model's prediction is considered a "vote" for a 

specific class label. The class label that receives the most 

votes becomes the ensemble's final prediction. This method 

leverages the wisdom of the crowd by aggregating the 

predictions of multiple models, which can lead to more 

accurate and reliable results. Fig. 3 diagrammatically shows its 

working. One of the key advantages of Majority Voting is its 

ability to reduce variance and errors. Even if some individual 

models make incorrect predictions, the ensemble can still 

provide accurate results if the majority of the models are 

correct. In cases where there is a tie in the votes, various 

strategies can be employed to handle it. 

 

Fig. 3. Majority voting classifier. 
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V. RESULTS AND DISCUSSION 

In this section, we will conduct a detailed examination of 
the Weighted Ensemble and Majority Voting algorithms, 
specifically in the context of identifying potential attacks 
within OpenStack cloud configurations and being able to 
extend them to broader multi-tenant environments in the 
future. We will evaluate the effectiveness of these algorithms 
using various metrics such as accuracy, F1 score, precision, 
recall, and confusion matrices. By analyzing these metrics, we 
aim to gain insights into how well these algorithms distinguish 
between attack and non-attack instances in an OpenStack 
cloud environment. Furthermore, this section also discusses 
the reasoning behind choosing Majority Voting and Weighted 
Ensemble as the two algorithms in this comparison. 

A. Performance Metrics 

1) Confusion matrix: A confusion matrix provides a 

detailed breakdown of a model's predictions by comparing 

them against actual class labels. It includes four metrics: true 

positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN). True positives represent the instances 

that were correctly predicted as positive by the model, while 

true negatives represent the instances that were correctly 

predicted as negative. False positives are instances incorrectly 

predicted as positive, and false negatives are those incorrectly 

predicted as negative. From these metrics, other evaluation 

metrics can be derived. 

2) Accuracy: Accuracy is the ratio of correctly predicted 

instances to the total instances in a dataset, offering an overall 

performance assessment across all classes, particularly 

effective for balanced datasets. Nevertheless, in imbalanced 

class scenarios, accuracy might be skewed by the majority 

class. In such cases, metrics like precision, recall, and F1 score 

offer deeper insights into performance, particularly for 

identifying attacks in intricate multi-tenant setups. 

          
          

                
  (1) 

3) Precision: Precision evaluates the proportion of true 

positive predictions out of all positive predictions made by the 

model (see Eq. (2)). It is an important metric when the cost of 

false positives is high, as it indicates how trustworthy the 

positive predictions are. A high precision value indicates a low 

rate of false alarms. 

            
  

         
  (2) 

4) Recall: Recall calculates the proportion of true positive 

predictions from all actual positive instances in the dataset. It 

is valuable when the cost of false negatives is high, as it 

measures how effectively the model captures all actual 

positives. A high recall value indicates that the model is good 

at identifying positives. However, a high recall value may 

come at the cost of more false positives. 

         
  

         
     (3) 

5) F1 Score: The F1 score is a balanced metric that takes 

into account both precision and recall. It is particularly 

valuable when the dataset is imbalanced and there is a need to 

consider false positives and false negatives. The F1 score is 

calculated as the harmonic mean of precision and recall, 

helping to strike a balance between them and providing a more 

comprehensive assessment of a model's performance. 

              
                    

                     
 (4) 

B. Performance 

The performance results obtained from the Weighted 
Ensemble and Majority Voting classifiers based on the above 
performance five metrics are given in Table II. 

The Weighted Ensemble Classifier holds a slight 
performance edge over the Majority Voting Classifier in 
accuracy, recall, and F1 score. Although the latter has higher 
precision, the difference between the two precision values is 
not as significant as that of the two recall values. It is also 
noteworthy that the Majority Voting Classifier incurred an 
extra 1161-second runtime compared to the Weighted 
Ensemble. Consequently, the Weighted Ensemble Classifier 
emerges as the more efficient and effective choice overall. 

Table III and Table IV show the confusion matrices of 
both classifiers for a more in-depth review of the results. 

TABLE II. RESULTS 

Algorithms 
Performance Metrics 

Accuracy Precision Recall F1 Score 

Weighted 

Ensemble 
0.9942 0.9876 0.9535 0.9703 

Majority 

Voting 
0.9926 0.9920 0.9336 0.9619 

TABLE III. CONFUSION MATRIX FOR WEIGHTED ENSEMBLE 

Weighted 

Ensemble 

Actual 

20000 logs Non-attack Attack 

Prediction 
Non-attack 17974 24 

Attack 93 1909 

TABLE IV. CONFUSION MATRIX FOR MAJORITY VOTING 

Majority Voting 
Actual 

20000 logs Non-attack Attack 

Prediction 
Non-attack 17983 15 

Attack 133 1869 

TABLE V. F1 SCORES AFTER OVERSAMPLING 

Algorithm with oversampling F1 Score 

Weighted Ensemble 0.9711 

Majority Voting 0.9702 
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From these matrices, one can see that the two algorithms 
performed very similarly. The Weighted Ensemble could 
classify more attack instances correctly whereas the Majority 
Voting Classifier could classify more non-attack instances 
correctly. The Weighted Ensemble does have one 
disadvantage which is that it requires the calculation of 
weights as an extra step before the classification process. 
Furthermore, we have also extracted performance results after 
using SMOTE and RandomUndersampler on the data to get a 
balanced dataset [17], [18]. 

Table V clearly shows that oversampling reduced the 
performance gap between the two algorithms but the 
Weighted Ensemble still has slightly higher performance. Add 
to this, the fact that the Weighted Ensemble did not require the 
extra pre-processing step of Oversampling and 
Undersampling. 

C. Discussion 

Now, we delve into the evaluation of classification 
algorithms, and their comparison with Weighted Ensemble 
and Majority Voting with a particular emphasis on the 
stability of predictions. To simulate scenarios involving 
unseen data, random test-train dataset splits are utilized. A key 
metric used to assess the consistency of algorithmic 
performance is the standard deviation of F1 scores for each 
split. 

Notably, the KNN algorithm stands out as it exhibits the 
lowest standard deviation (see Fig. 4), demonstrating a 
remarkable level of consistency across diverse dataset splits. 
However, its performance pales in comparison to other 
algorithms as shown in Fig. 5. From Fig. 4 it is evident that 
both the Weighted Ensemble and Majority Voting techniques 
prove to be the strongest contenders, displaying low standard 
deviations and highlighting their stability. One could argue 
that the Random Forest algorithm displays similar levels of 
stability but Fig. 5 clearly shows the lower F1 score as 
compared to Majority Voting and Weighted Ensemble. 

This discussion provides valuable insights into the realm 
of intrusion detection algorithms. These algorithms carry the 
dual responsibility of accurately classifying threats while 
avoiding the pitfall of overfitting specific threat types. 

 

Fig. 4. Standard deviation of f1 scores of algorithms. 

 

Fig. 5. Comparison of f1 scores of algorithms. 

VI. CONCLUSION 

Thus, we comprehensively compared the Weighted 
Ensemble and Majority Voting algorithms for intrusion 
detection in OpenStack cloud environments. Our analysis 
aimed to assess their ability to identify attacks and non-attacks 
and their real-world applicability. Through extensive 
evaluation, both algorithms demonstrated strong performance 
in distinguishing between attack and non-attack instances, 
highlighting their effectiveness as ensemble-based intrusion 
detection methods. While the Weighted Ensemble algorithm 
showcased a slight edge in terms of accuracy, recall, and F1 
score, it is important to note that both algorithms demonstrated 
comparable performance. Additionally, the runtime analysis 
revealed that the Weighted Ensemble algorithm exhibited 
faster processing times compared to the Majority Voting 
algorithm, highlighting its potential efficiency advantage 
during real-time intrusion detection scenarios. However, it is 
essential to consider that real-time performance is influenced 
by various dynamic factors specific to the operational 
environment. Although one outperforms the other, both these 
algorithms display high performance along with stability 
which underscores their resilience in addressing challenges 
posed by unseen security threats. 

Our study contributes to the ongoing discourse on 
enhancing cybersecurity within multi-tenant cloud 
environments. The findings underscore the role of ensemble 
techniques as valuable tools for bolstering intrusion detection 
capabilities. As the landscape of cyber threats evolves, future 
research could explore further optimizations and extensions to 
ensemble algorithms, aiming to refine their performance in 
real-world cloud environments. In conclusion, our 
investigation advances the understanding of ensemble-based 
intrusion detection, facilitating more informed decisions for 
ensuring the security and resilience of cloud infrastructures. 
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