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Abstract—Anomaly detection plays a crucial role in ensuring 

the security and integrity of Internet of Things (IoT) surveillance 

systems. Nowadays, deep learning methods have gained 

significant popularity in anomaly detection because of their 

ability to learn and extract intricate features from complex data 

automatically. However, despite the advancements in deep 

learning-based anomaly detection, several limitations and 

research gaps exist. These include the need for improving the 

interpretability of deep learning models, addressing the 

challenges of limited training data, handling concept drift in 

evolving IoT environments, and achieving real-time 

performance. It is crucial to conduct a comprehensive review of 

existing deep learning methods to address these limitations as 

well as identify the most accurate and effective approaches for 

anomaly detection in IoT surveillance systems. This review paper 

presents an extensive analysis of existing deep learning methods 

by collecting results and performance evaluations from various 

studies. The collected results enable the identification and 

comparison of the most accurate deep-learning methods for 

anomaly detection. Finally, the findings of this review will 

contribute to the development of more efficient and reliable 

anomaly detection techniques for enhancing the security and 

effectiveness of IoT surveillance systems. 
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I. INTRODUCTION 

The Internet of Things (IoT) has revolutionized various 
domains, including video surveillance systems, by enabling the 
integration of smart devices and connectivity [1, 2]. IoT video 
surveillance systems leverage the power of networked cameras 
and sensors to provide comprehensive monitoring and security 
solutions [3, 4]. These systems capture and process vast 
amounts of video data, requiring efficient techniques for 
analyzing and detecting anomalies in real time [5]. 

Video-based anomaly detection plays a vital role in IoT 
video surveillance systems as it enables the automatic 
identification of abnormal events or behaviors that deviate 
from expected patterns [6-8]. By leveraging computer vision 
algorithms, anomaly detection algorithms can detect and alert 
operators to potential security threats, safety violations, or 
irregular activities, enhancing the overall security and 
situational awareness of the surveillance system [9, 10]. 

In recent years, there have been significant advancements 
in video-based anomaly detection technologies. Traditional 
approaches relied on handcrafted features and rule-based 
algorithms, which often had limitations in handling complex 
scenarios and achieving high detection accuracy. However, 
with the emergence of deep learning techniques [11-13], there 
has been a paradigm shift in anomaly detection approaches 

[14]. Deep learning algorithms, such as Generative Adversarial 
Networks (GANs), Recurrent Neural Networks (RNNs) [15], 
as well as Convolutional Neural Networks (CNNs) [16], have 
illustrated remarkable capabilities in learning discriminative 
representations and capturing intricate spatio-temporal patterns 
from video data. 

Deep learning-based approaches have demonstrated 
superior performance in anomaly detection applications [17, 
18]. They have the ability to automatically learn and extract 
relevant features directly from raw video data, enabling more 
robust and accurate anomaly detection. However, despite the 
promising results, there are still several research gaps and 
limitations that require to be addressed to exploit the potential 
of deep learning in this field fully. 

This review paper aims to address the current limitations 
and research gaps in deep learning-based anomaly detection for 
IoT video surveillance systems. It will review and analyze the 
most recent methods and advancements in the field, focusing 
on identifying and exploring these research gaps. The paper 
investigates deep learning-based approaches and 
methodologies to tackle these challenges, aiming to enhance 
detection accuracy, address complex scenarios, and improve 
real-time performance. Additionally, extensive experimental 
evaluations and performance analyses will be conducted to 
validate the effectiveness of the suggested methods. By 
addressing these aspects, this review paper will contribute to 
the existing literature and provide valuable insights for 
researchers, practitioners, and system developers working on 
deep learning-based anomaly detection in IoT video 
surveillance systems. 

This study delves into recent advancements in deep 
learning methodologies within the context of anomaly 
detection, examining various categories, including Recurrent 
Neural Networks (RNNs), Convolutional Neural Networks 
(CNNs), Autoencoders, Graph Convolutional Networks 
(GCNs), and Generative Adversarial Networks (GANs). By 
comprehensively exploring each deep learning category in 
subsequent sections, this research endeavors to not only 
unravel the intricacies of these methods but also to propose 
strategies for enhancing interpretability. Addressing the 
challenges posed by limited training data and concept drift, the 
study aims to contribute insights and methodologies that 
facilitate a clearer understanding of deep learning models, 
ensuring their effectiveness in the ever-evolving landscape of 
IoT environments. 

The motivation behind this comprehensive review paper 
stems from the imperative need to address the current 
limitations and research gaps in deep learning-based anomaly 
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detection for IoT video surveillance systems. By focusing on 
identifying anomaly in videos, the paper aims to investigate the 
deep learning-based approaches and methodologies that not 
only enhance detection accuracy but also address the 
challenges posed by limited training data and the dynamic 
nature of evolving IoT environments. The overarching goal is 
to improve real-time performance in complex scenarios. 

The research contributions of this study are summarized as 
follows, 

1) The review paper systematically identifies and 

discusses the existing research gaps and limitations in deep 

learning-based anomaly detection for video surveillance 

systems. 

2) The paper introduces novel approaches that address the 

identified research gaps and limitations, aiming to enhance 

detection accuracy, address complex scenarios, and improve 

real-time performance in video-based anomaly detection. 

3) The paper conducts extensive experimental evaluations 

and performance analyses to validate the effectiveness of the 

suggested methods, comparing them with existing state-of-

the-art techniques and demonstrating their contributions 

regarding improved detection accuracy and real-time 

capabilities. 

The rest of this paper is as follows, Section II review of 
related works. Section III discuss about research methodology. 
Section IV outlines the performance metrics. Section V 
presents results and discussion. Finally, this paper concludes in 
Section VI. 

II. RELATED WORK 

The authors in [19] present a study on video anomaly 
detection with compact feature sets for online performance. 
The research methodology involves developing a framework 
that extracts compact yet discriminative features from video 
data to detect real-time anomalies. Key features of the study 
include the use of deep learning techniques for feature 
extraction, the incorporation of temporal information for 
enhanced anomaly detection, and the focus on online 
performance to ensure timely detection. The findings 
demonstrate that the suggested approach achieves efficient as 
well as accurate anomaly detection while reducing the 
computational complexity. However, one limitation 
highlighted in the study is the potential trade-off between the 
compactness of feature sets and the detection accuracy, which 
requires careful optimization. Overall, this research provides 
valuable insights into developing efficient video anomaly 
detection systems with compact feature sets for real-time 
applications. 

In study [20], the application of neural networks for 
anomaly detection in videos is presented specifically in the 
context of video surveillance applications. The study presents a 
comprehensive overview of various neural network 
approaches, such as RNNs and CNNs, for analyzing video data 
and identifying anomalies. The findings highlight the 
effectiveness of neural networks in detecting anomalies in 
video surveillance data, showcasing their ability to capture 
complex spatial and temporal patterns. The paper emphasizes 

the potential of neural networks to enhance video surveillance 
systems by providing accurate and efficient anomaly detection 
capabilities, paving the way for improved security and 
monitoring in various real-world applications. 

A thorough survey of deep learning-based techniques for 
video anomaly detection was published in study [21]. The 
research methodology involves an extensive examination of 
existing literature in the field, focusing on deep learning 
approaches applied to video anomaly detection. The key 
features of the study include categorizing and analyzing 
various deep learning methods, such as CNNs, RNNs, 
Autoencoders, GANs, and GCNs, in terms of their application, 
strengths, and limitations. The findings highlight the 
effectiveness of deep learning techniques in detecting 
anomalies in video data while acknowledging the challenges 
and limitations associated with each approach. This review 
serves as a valuable resource for researchers and practitioners, 
offering insights into the current state-of-the-art deep learning 
methods and their implications in video anomaly detection. 

This paper in [4] focuses on anomaly detection using edge 
computing in video surveillance systems. The research 
methodology involves implementing an edge computing 
framework for real-time video analysis and anomaly detection. 
Key features of the study include utilizing edge devices to 
process video data locally, reducing latency and bandwidth 
requirements, and applying deep learning algorithms for 
anomaly detection. The findings demonstrate the effectiveness 
of edge computing in improving real-time anomaly detection 
performance. However, the study acknowledges limitations 
such as limited computational resources on edge devices and 
potential challenges in scaling the system. Overall, this 
research provides insights into leveraging edge computing for 
video surveillance anomaly detection while recognizing the 
associated limitations. 

Finally, in study [22], a taxonomy of deep models for 
anomaly detection in surveillance videos offers a 
comprehensive review and performance analysis. The study 
systematically categorizes various deep learning models based 
on their thematic attributes and provides a detailed examination 
of each category's strengths, limitations, and performance 
metrics. The findings highlight the effectiveness of deep 
models in detecting anomalies in surveillance videos, 
showcasing their ability to capture intricate spatial and 
temporal patterns. The paper emphasizes the importance of 
selecting appropriate deep-learning architectures based on the 
specific requirements of surveillance applications. Overall, this 
research provides valuable insights into the state-of-the-art 
deep learning approaches for anomaly detection in surveillance 
videos, facilitating informed decision-making for 
implementing robust and efficient surveillance systems. 

As results, the papers contribute to advancing video 
anomaly detection using deep learning while addressing critical 
challenges and needs in the field. The research in [16] 
emphasizes real-time performance by introducing a framework 
with compact feature sets, addressing the need for efficiency; 
however, the potential trade-off between compactness and 
accuracy requires careful consideration. The study in [17] 
contributes to improved interpretability by exploring neural 
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networks for video surveillance, capturing complex patterns, 
although it does not explicitly tackle challenges related to 
limited training data or concept drift. The survey in [18] 
categorizes deep learning methods, providing a comprehensive 
overview but leaves room for deeper exploration of strategies 
for handling limited training data and concept drift. The 
research in [4] focuses on real-time performance through edge 
computing, acknowledging challenges in scalability and 
limited resources, indicating potential limitations. Lastly, the 
study in [19] offers taxonomy of deep models, aiding 
interpretability, but specific strategies for addressing limited 
training data and concept drift could be further investigated. 
While each paper makes notable contributions, future research 
should continue to bridge gaps and enhance the interpretability, 
handling of limited training data, addressing concept drift, and 
ensuring real-time performance in deep learning-based video 
anomaly detection systems. 

III. RESEARCH METHODOLOGY 

This study intends to investigate the recent deep learning 
methods in video-based anomaly detection methods. Various 
methods have been explored in different categories. These 
categories are RNNs, CNNs, Autoencoders, GCNs as well as 
GANs. The detail of each deep learning category is discussed. 

The investigation delves into the inner workings of each 
model, scrutinizing the learned representations and features 
that contribute to their predictions. Techniques such as feature 
visualization, activation mapping, and attention mechanisms 
are employed to elucidate the influential aspects of input data 
on model outputs. Moreover, the study scrutinizes model 
training procedures, optimization techniques, and 
generalization capabilities, aiming to understand how these 
factors impact the interpretability of the models. By assessing 
robustness, handling concept drift, and employing post-hoc 
explanation methods like SHAP and LIME, the research aims 
to provide a holistic understanding of deep learning models, 
making them more transparent and interpretable. Through this 
multifaceted investigation, the study aspires to contribute 
valuable insights and methodologies to address the challenges 
posed by limited training data and the dynamic nature of 
evolving IoT environments, ultimately facilitating the 
deployment of interpretable deep learning models in practical 
anomaly detection scenarios. 

A. Convolutional Neural Networks (CNNs) 

The CNNs have emerged as a powerful deep learning 
technique for analyzing visual data, particularly images and 
videos [14, 23, 24]. They are specifically designed to capture 
spatial dependencies and hierarchical patterns present in visual 
data, making them highly effective for tasks such as image 
classification, object detection, and even video-based anomaly 
detection. In the context of anomaly detection, CNNs can learn 
to detect unusual patterns or events in videos, enabling the 
development of systems that can automatically identify 
anomalies or abnormal behavior in various domains, including 
surveillance, industrial monitoring, and healthcare. 

Several existing methods leverage CNNs for video-based 
anomaly detection, showcasing the effectiveness of this 
approach. One popular approach uses spatiotemporal CNNs 

[25, 26], which capture temporal and spatial information by 
incorporating 3D convolutions [27, 28]. These models excel at 
detecting anomalies that involve motion or dynamic patterns. 
Another approach is the use of deep feature learning, where 
CNNs are pre-trained on large-scale image datasets and then 
fine-tuned for anomaly detection on video data. By leveraging 
pre-trained CNN models, these methods can effectively extract 
high-level features from videos, enabling robust anomaly 
detection. 

B. Recurrent Neural Networks (RNNs) 

The RNNs are a class of deep learning models specifically 
designed to process sequential data by capturing temporal 
dependencies [28, 29]. They have gained significant attention 
in various domains, consisting of video analysis, natural 
language processing, and speech recognition. In the context of 
video-based anomaly detection, RNNs have shown great 
promise [30]. By considering the temporal context of video 
sequences, RNNs can effectively capture long-term 
dependencies and learn complex patterns, enabling the 
detection of anomalies or abnormal behavior in videos. 

There are several existing RNN-based methods that 
leverage the power of sequential modeling for video-based 
anomaly detection. These methods have demonstrated their 
effectiveness in capturing temporal patterns and detecting 
video anomalies. Some notable examples include Long Short-
Term Memory (LSTM) [31, 32], Gated Recurrent Unit (GRU) 
[33, 34], and Convolutional Recurrent Neural Network 
(CRNN) [35]. 

One widely used RNN-based method for video-based 
anomaly detection is LSTM. The LSTM is designed to address 
the vanishing gradient problem that can occur in traditional 
RNNs [32]. By incorporating memory cells and gating 
mechanisms, LSTM can capture long-term dependencies and 
effectively learn temporal patterns. In the context of anomaly 
detection, LSTM models can be trained on normal video 
sequences and learn to forecast the next frame based on the 
prior frames. Anomalies can be detected by measuring the 
deviation between the predicted frame as well as the actual 
frame. LSTM has been successfully applied in diverse 
domains, like surveillance [36], where it has shown promising 
results in detecting anomalous events like abnormal behavior 
or unusual object movements. 

C. Autoencoders 

Autoencoder Networks are a class of neural networks that 
are designed for data compression and unsupervised learning 
[37, 38]. Autoencoders consist of a decoder network that 
reconstructs the input data from the latent representation as 
well as an encoder network that maps the input data into a 
lower-dimensional latent space [25]. This architecture enables 
autoencoders to learn efficient representations of the input data 
by capturing the most salient features. In the context of video-
based anomaly detection, autoencoders can be leveraged to 
detect anomalies by reconstructing normal video frames 
accurately, as well as identifying deviations from the learned 
representation. 

There are several existing autoencoder-based methods that 
have been applied to video-based anomaly detection, 
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showcasing the effectiveness of this approach. Some notable 
examples include Variational Autoencoders (VAE) [39], 
Stacked Autoencoders (SAE) [40], and Convolutional 
Autoencoders (CAE) [38, 41]. 

Incorporating a probabilistic interpretation, variational 
autoencoders (VAEs) are a type of autoencoder that may 
provide fresh samples from the learned latent space. VAEs 
model the latent space as a probability distribution and learn to 
encode and decode data based on this distribution. In the 
context of anomaly detection, VAEs can be trained on normal 
video frames and learn to generate new frames that adhere to 
the learned distribution. Anomalies can be detected by 
measuring the reconstruction error or by evaluating the 
likelihood of the generated frames. VAEs have shown 
promising outcomes in detecting video anomalies, such as 
unusual activities or objects that deviate from the learned 
normal behavior. 

Convolutional Autoencoders (CAEs) are a variant of 
autoencoders specifically designed for handling image and 
video data. CAEs utilize convolutional layers in the encoder 
and decoder networks to capture spatial dependencies and 
preserve the structure of the input data. By learning a compact 
representation of normal video frames, CAEs can effectively 
reconstruct the input frames and identify anomalies according 
to deviations from the learned representation. CAEs have been 
successfully applied in video-based anomaly detection tasks, 
such as detecting abnormal events or behavior in surveillance 
footage or industrial monitoring. The ability of CAEs to 
capture both local and global features from video frames makes 
them suitable for detecting complex anomalies that involve 
spatial patterns. Therefore, Autoencoder Networks offer a 
powerful approach to video-based anomaly detection by 
learning efficient representations of normal video frames and 
detecting deviations from the learned representation. Existing 
autoencoder-based methods, such as Variational Autoencoders 
(VAEs) and Convolutional Autoencoders (CAEs), have 
demonstrated their effectiveness in capturing the salient 
features of video data and detecting anomalies based on 
reconstruction errors or generated samples. These methods 
contribute to the advancement of video-based anomaly 
detection techniques as well as enable the development of 
intelligent systems for identifying abnormal behavior or events 
in various domains. 

D. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) are a deep 
learning models class including two components: a 
discriminator and a generator [42, 43]. GANs are primarily 
known for their ability to generate realistic synthetic data that 
closely resembles the training data. However, GANs have also 
found applications in anomaly detection, including video-based 
anomaly detection [44]. By training GANs on normal video 
sequences, they can learn the underlying patterns and generate 
realistic frames [45]. Anomalies can be detected by measuring 
the deviation between the generated frames and the actual 
frames, thereby identifying abnormal events or behavior in 
videos. 

Several existing GAN-based methods have been expanded 
for video-based anomaly detection, showcasing the 

effectiveness of GANs in this domain [46]. Notable examples 
include AnoGAN [47], Adversarial Variational Bayes (AVB) 
[48], and Video Anomaly GAN (VAD) [49]. 

AnoGAN is a GAN-based anomaly detection method that 
combines the power of GANs with an unsupervised learning 
framework. AnoGAN utilizes a generator network to generate 
synthetic data and a discriminator network to differentiate 
between generated and real data. The anomaly detection 
process involves finding the latent vector that generates the 
closest match to a given anomalous frame. By iteratively 
updating the latent vector, AnoGAN can generate frames that 
closely resemble the anomalies. AnoGAN has shown 
promising results in detecting anomalies in videos by 
effectively capturing the underlying patterns and generating 
synthetic anomalies for comparison. 

Video Anomaly GAN (VAD) is a GAN-based method 
specifically designed for video-based anomaly detection. VAD 
employs a spatio-temporal GAN architecture to model the 
temporal dependencies and spatial patterns in video sequences. 
The generator network in VAD generates realistic video 
sequences, while the discriminator network distinguishes 
between real and generated videos. VAD utilizes the 
discrepancy between the generated and real videos to detect 
anomalies. By training on normal video sequences, VAD 
learns the normal patterns and can identify deviations that 
indicate anomalies in the video data. VAD has shown 
promising results in various applications, including 
surveillance and industrial monitoring, by effectively capturing 
the complex spatio-temporal dependencies in videos. 

E. Graph Convolutional Networks (GCNs) 

The GCNs are a neural networks class designed to process 
data structured as graphs  [05] . GCNs extend the capabilities of 
traditional CNNs to handle data that exhibits complex 
relationships and dependencies, such as social networks, 
molecular structures, and video-based anomaly detection. In 
the field of video-based anomaly detection, GCNs can capture 
the spatio-temporal relationships between video frames and 
effectively model the interactions between different regions of 
interest. By leveraging the graph structure inherent in video 
data, GCNs enable the detection of anomalies by learning the 
normal behavior patterns and identifying deviations from them. 

There are several existing GCN-based methods that have 
been utilized to video-based anomaly detection, showcasing 
the effectiveness of graph-based approaches in this domain. 
Some notable examples include Graph Convolutional 
Autoencoders (GCAEs), Temporal Graph Convolutional 
Networks (TGCNs), and Graph Convolutional Recurrent 
Networks (GCRNs). 

Graph Convolutional Autoencoders (GCAEs) combine the 
power of autoencoders with graph convolutions to learn 
compact representations of video frames in a graph structure. 
GCAEs encode the video frames as nodes in a graph and 
leverage the connectivity information between the frames to 
capture their dependencies. By reconstructing the video frames 
from the learned latent representations, GCAEs is able to 
identify anomalies by measuring the deviation among the 
reconstructed frames as well as the actual frames. In tasks 
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involving the detection of anomalous events or behavior in 
surveillance footage or traffic monitoring, GCAEs have 
demonstrated promising outcomes. 

Temporal Graph Convolutional Networks (TGCNs) extend 
the capabilities of GCNs by incorporating the temporal 
dynamics of video data. TGCNs model the video frames as 
nodes in a temporal graph, where the edges capture the 
temporal dependencies between frames. By performing graph 
convolutions across the temporal dimension, TGCNs can 
effectively capture the spatio-temporal patterns and 
dependencies in videos. TGCNs have shown great potential in 
detecting anomalies in video sequences, such as identifying 
abnormal motion patterns or unusual temporal behaviors. 

The GCRNs combine the strengths of both recurrent neural 
networks (RNNs) and GCNs to capture both spatial and 
temporal dependencies in video data. GCRNs model the video 
frames as nodes in a graph and utilize recurrent connections to 
capture the temporal dynamics. By performing graph 
convolutions and recurrent computations, GCRNs can 
effectively capture the complex spatio-temporal patterns and 
dependencies in videos. GCRNs have demonstrated promising 
results in video-based anomaly detection tasks, such as 
detecting anomalous events or behaviors in surveillance videos 
or monitoring industrial processes. 

F. Algorithms Hyperparameter Setting 

In this study, a CUHK Avenue dataset
1
 is used the video-

anomaly detection experiments. Moreover, the hyperparameter 
setting for the algorithms are as, for RNNs, the hyperparameter 
setting for RNNs is: hidden size = 256, learning rate = 0.001, 
batch size = 16, dropout rate = 0.2, number of epochs = 501. 
The hyperparameter setting for CNNs is: filter size = 3x3, 
number of filters = 64, learning rate = 0.0001, batch size = 32, 
dropout rate = 0.5, number of epochs = 100. For Autoencoders, 
the hyperparameter setting for Autoencoders is: latent 
dimension = 128, learning rate = 0.0005, batch size = 64, 
dropout rate = 0.1, number of epochs = 2003. For GCNs, the 
hyperparameter setting for GCNs is: number of layers = 3, 
hidden size = 64, learning rate = 0.01, batch size = 128, 
dropout rate = 0.2, number of epochs = 300. Finally, the 
hyperparameter setting for GANs is: latent dimension = 256, 
learning rate = 0.0001, batch size = 16, dropout rate = 0.3, 
number of epochs = 200. 

IV. PERFORMANCE METRICS 

Performance measurements play an essential role in 
evaluating the effectiveness of deep learning-based anomaly 
detection models. When it comes to assessing the performance 
of such models, three commonly used metrics are F-score, 
recall, and precision. These metrics aid in quantifying the 
model's accuracy in detecting abnormalities and offer insights 
into many facets of model performance. 

Precision is a measure of how many of the instances 
labeled as anomalies by the model are actually true anomalies. 
It represents the true positive predictions ratio (correctly 
detected anomalies) to the total number of predicted anomalies 
(both false positives and true positives). A high precision score 

                                                           
1 https://paperswithcode.com/dataset/chuk-avenue 

means that the model is more accurate at correctly identifying 
abnormalities and has a lower rate of false alarms. Precision is 
calculated using the formula Recall, as well known as 
sensitivity or true positive rate, is a measure of how many true 
anomalies the model can successfully detect. It denotes the true 
positive predictions ratio to the total number of actual 
anomalies in the dataset. F-score, also called the F1 score, is a 
harmonic mean of precision and recall. It supplies a single 
metric that balances both recall and precision, taking into 
account false negatives and false positives. The F-score 
combines recall and precision into a single value and is useful 
when there is a trade-off among recall and precision. The F-
score is calculated utilizing the formula: 

                                                 
           

The F-score ranges from 0 to 1, with 1 being the ideal score 
that indicates perfect precision and recall. 

V. RESULTS AND DISCUSSION 

A. Analysis of CNN-based Methods 

The table shows the recall, F-score, and precision for 
various CNN-based methods used in anomaly detection. We 
selected most used CNN methods in literature. These methods 
include ConvLSTM, Temporal Convolutional Network (TCN), 
3D Convolutional Networks, I3D (Inflated 3D Convolutional 
Networks), TSN (Temporal Segment Networks), and C3D 
(Convolutional 3D). Fig. 1 shows the result of CNN-based 
methods. 

Examining the precision values, we observe a range from 
0.86 to 0.92. Higher precision values indicate a lower rate of 
false positives, reflecting the ability of the models to accurately 
identify anomalies while minimizing incorrect detections. The 
method with the highest precision in the table is 3D 
Convolutional Networks, suggesting a stronger precision 
performance in anomaly detection. 

In terms of recall, the values range from 0.82 to 0.92. 
Recall measures the ability of the models to capture the actual 
anomalies present in the data. A higher recall value indicates a 
higher proportion of correctly identified anomalies, reducing 
the risk of false negatives. The I3D stands out with the highest 
recall score, implying its effectiveness in capturing a larger 
number of true anomalies. 

The F-scores in the table range from 0.84 to 0.92. The F-
score combines recall and precision, supplying an overall 
assessment of model performance. A higher F-score shows a 
better balance among recall and precision. In this case, I3D 
(Inflated 3D Convolutional Networks) demonstrates the 
highest F-score, indicating its effectiveness in achieving a 
trade-off between accurately identifying anomalies and 
minimizing false alarms. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

773 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. Result of CNN-based methods. 

B. Analysis of RNN-based Methods 

This section presents an overview of performance metrics 
for different RNN-based anomaly detection methods. These 
methods have been evaluated using precision, recall, and F-
score, providing insights into their effectiveness in detecting 
anomalies. Among the evaluated RNN-based methods, notable 
approaches include the LSTM-Autoencoder, GRU-
Autoencoder, Variational LSTM (VLSTM), Temporal 
Convolutional LSTM (TCLSTM), Stacked LSTM, and Gated 
Recurrent Unit (GRU). 

The performance metrics in Fig. 2 provides valuable insight 
into the strengths and capabilities of these RNN-based 
methods. Precision values in the 0.80 to 0.95 range show the 
ability of the models to accurately identify anomalies while 
minimizing false positives. This is crucial for ensuring that 
detected anomalies are truly meaningful and actionable. Recall 
values, ranging from 0.86 to 0.92, reflect the models' ability to 
capture a significant proportion of actual anomalies present in 
the data. A higher recall value indicates a reduced risk of false 
negatives, ensuring that fewer anomalies go undetected. 

C. Analysis of Autoencoders Methods 

This section presents result of analysis for a collection of 
recent Autoencoders-based anomaly detection methods, along 
with their corresponding precision, recall, and F-score 

performance metrics. We selected most cited Autoencoders 
methods as methods include Variational Autoencoder (VAE), 
Adversarial Autoencoder (AAE), Deep Autoencoder, 
Denoising Autoencoder, Sparse Autoencoder, and Variational 
Graph Autoencoder (VGAE). 

As shown in Fig. 3, in terms of recall, the Sparse 
Autoencoder demonstrates the highest value at 0.92. This 
implies that the Sparse Autoencoder has a superior capability 
to capture a larger proportion of actual anomalies present in the 
data. Considering the F-score, which combines both precision 
and recall, the Deep Autoencoder still emerges as the method 
with the highest score at 0.90. This indicates that the Deep 
Autoencoder achieves a better balance between accurately 
identifying anomalies and minimizing false alarms compared 
to the other methods. 

The better performance of the Deep Autoencoder can be 
attributed to its ability to learn deep, hierarchical 
representations of the input data. The deeper architecture 
permits the model to capture more complex patterns and 
anomalies in the data, leading to ameliorated precision, recall, 
and overall F-score. The Dense Autoencoder's superior 
performance showcases the importance of utilizing deep 
architectures in Autoencoders-based anomaly detection 
methods. 
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Fig. 2. Result of RNN-based methods. 

 
Fig. 3. Result of Autoencoders methods analysis. 
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D. Analysis of GANs-based Methods 

This section presents a selection of GAN-based anomaly 
detection methods, along with their associated precision, recall, 
and F-score performance metrics. These methods include 
AnoGAN, Boundary-Seeking GAN (BGAN), Adversarial 
Variational Bayes (AVB), DualGAN, Energy-based GAN 
(EBGAN), and Generative Moment Matching Networks 
(GMMN). 

As shown in Fig. 4, upon analyzing the table, it is clear that 
the performance of these GAN-based methods varies across 
different evaluation metrics. When considering precision, AVB 
stands out with a value of 0.90, indicating its ability to 
precisely identify anomalies while minimizing false positives 
compared to the other methods in the table. In terms of recall, 
DualGAN demonstrates the highest value at 0.89, suggesting 
its superior capability to capture a larger proportion of actual 
anomalies present in the data. Analyzing the F-scores, which 
provide a combined measure of precision and recall, AVB also 
outperforms other methods with an F-score of 0.88. This 
implies that AVB achieves a better balance between accurately 
identifying anomalies and minimizing false alarms compared 
to the other GAN-based methods. The better performance of 
AVB can be attributed to its ability to leverage the advantages 
of both adversarial learning and variational inference. By 
incorporating a variational autoencoder framework into the 
GAN architecture, AVB is able to model the underlying data 
distribution more effectively, resulting in improved precision, 
recall, and overall F-score. 

E. Analysis of GCNs-based Methods 

We select a collection of recent GCNs-based anomaly 
detection methods, along with their precision, recall, and F-

score performance metrics. The selected methods include 
Graph Convolutional Autoencoder, GraphSAGE, Graph 
Attention Network (GAT), Deep Graph Convolutional 
Network (DGCN), Graph Convolutional LSTM (GC-LSTM), 
and Graph Isomorphism Network (GIN). 

As shown in Fig. 5, upon analyzing the result data, it is 
evident that the GCNs-based methods exhibit varying 
performance across different evaluation metrics. Notably, GAT 
stands out in terms of precision, achieving an impressive value 
of 0.92. This indicates its exceptional ability to accurately 
identify anomalies while minimizing false positives compared 
to other methods listed in the table. 

In the aspect of recall, GIN surpasses the rest with a score 
of 0.93, demonstrating its superior capability to capture a larger 
proportion of actual anomalies present in the data. Moreover, 
when considering the F-scores that provide a comprehensive 
measure of both precision and recall, GIN emerges as the top 
performer with an F-score of 0.91. This indicates that GIN 
strikes a better balance between accurately identifying 
anomalies and minimizing false alarms compared to other 
GCNs-based methods. The outstanding performance of GIN 
can be attributed to its innovative utilization of graph 
isomorphism as a fundamental concept within its design. By 
leveraging graph isomorphism, GIN effectively captures the 
underlying structural similarities and relationships in the data, 
leading to improved precision, recall, and overall F-score. This 
highlights the significance of incorporating domain-specific 
knowledge and leveraging graph-based representations to 
increase anomaly detection performance in GCNs-based 
approaches. 

 

Fig. 4. Result of GANs-based methods. 

Precision Recall F-score
0.82

0.84

0.86

0.88

0.90

0.92

 AnoGAN  Boundary-Seeking GAN (BGAN)  Adversarial Variational Bayes (AVB)

 DualGAN  Energy-Based GAN (EBGAN)  Generative Moment Matching Networks (GMMN)



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

776 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 5. Result of GCNs-based methods. 

VI. CONCLUSION 

In conclusion, this review paper sheds light on the 
significance of anomaly detection in IoT surveillance systems 
and the shift towards deep learning-based approaches to 
overwhelm the limitations of traditional methods. The 
justification for conducting a comprehensive review lies in the 
quest to identify the most accurate methods for anomaly 
detection. Through the collection of results and performance 
evaluations, this review paper provides a comprehensive 
analysis of existing deep learning techniques, bridging the 
research gaps in anomaly detection for IoT surveillance 
systems. By addressing these challenges and presenting a 
thorough examination of deep learning methods, this review 
paper paves the way for development of more efficient and 
effective anomaly detection solutions in the realm of IoT 
surveillance. For future work, one direction for further study is 
to concentrate on enhancing the interpretability of deep 
learning-based anomaly detection models for IoT surveillance 
systems. Developing techniques to explain the decisions and 
reasoning of these models can provide valuable insights into 
the detection process and build trust in their functionality. 
Exploring explainable AI methods, including attention 
mechanisms or feature visualization, can help in understanding 
the factors influencing anomaly detection and enable effective 
decision-making. Moreover, another important direction for 
future research is addressing the challenges posed by concept 
drift and dynamic environments in IoT surveillance systems. 
Anomaly detection models need to be adaptable and capable of 
continuously learning and updating their knowledge to 
accommodate changing patterns and emerging anomalies. 
Investigating techniques such as online learning, transfer 
learning, or adaptive models can facilitate the detection of 

evolving anomalies in real-time scenarios. Additionally, 
incorporating contextual information and temporal 
dependencies can enhance the models' ability to differentiate 
between normal variations and true anomalies in dynamic 
environments. 
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