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Abstract—In the agricultural sector, the precise detection of 

fruits plays a pivotal role in optimizing harvesting procedures, 

minimizing waste, and ensuring the delivery of high-quality 

produce. Deep learning methods have consistently exhibited 

superior accuracy compared to alternative techniques, making 

them a focal point in fruit detection research. However, the 

ongoing challenge lies in meeting the stringent accuracy 

requirements essential for real-world applications in agriculture. 

Addressing this critical concern, this study proposes an 

innovative solution utilizing the Yolov8 architecture for fruit 

detection. The methodology involves the meticulous creation of a 

custom dataset tailored to capture the diverse characteristics of 

agricultural fruits, followed by rigorous training, validation, and 

testing processes. Through extensive experimentation and 

performance evaluations, the findings underscore the exceptional 

accuracy achieved by the Yolov8-based model. This methodology 

not only surpasses existing benchmarks but also establishes a 

robust foundation for transforming fruit detection practices in 

agriculture. By effectively addressing the challenges associated 

with accuracy rates, this approach opens new avenues for 

optimized harvesting, waste reduction, and enhanced efficiency 

in agricultural practices, contributing significantly to the 

evolution of precision farming technologies. 
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I. INTRODUCTION 

Fruit detection in agriculture is a vital aspect of modern 
farming practices [1], [2]. The ability to accurately and 
efficiently identify and assess the ripeness of fruits plays a 
pivotal role in optimizing agricultural operations, enhancing 
crop yield, and ensuring the quality of produce [2]. In recent 
years, the development and utilization of fruit detection 
technologies have garnered significant attention due to their 
potential to revolutionize the agricultural industry [3]. The 
sample of the fruits is depicted in Fig. 1. 

The importance of fruit detection in agriculture cannot be 
overstated. Timely and precise fruit detection aids farmers in 
optimizing harvesting schedules, reducing waste, and 
maximizing crop yields. Additionally, it facilitates early 
detection of diseases and pests, enabling timely intervention 
and preventing the spread of infestations, ultimately improving 
the overall health of fruit-bearing plants [4], [5]. 

While traditional methods of fruit detection have been 
employed for decades, recent advancements in technology 

have opened new avenues for enhancing accuracy and 
efficiency. This research paper explores the latest 
developments and innovations in fruit detection methods, 
particularly focusing on the application of deep learning 
techniques [2], [6]. 

Existing technologies have made significant strides in fruit 
detection [4], [7], but deep learning-based approaches have 
gained prominence among researchers [8], [9]. This shift is 
primarily attributed to the remarkable capabilities of deep 
neural networks in handling complex image data. In the 
subsequent sections [10], [11], it will delve into the current 
limitations and challenges associated with deep learning-based 
fruit detection methods, highlighting the need for further 
research and innovation. 

One of the primary motivations for this study is to address 
the existing limitations and research challenges associated with 
deep learning-based fruit detection, especially in meeting the 
high accuracy requirements demanded by the agricultural 
industry. Achieving precision and reliability in fruit detection 
is crucial for optimizing harvesting processes and ensuring the 
quality of the produce. Therefore, it is imperative to explore 
novel solutions to tackle these challenges and meet the rigorous 
standards set by the agricultural sector. 

This study proposes a deep learning method utilizing 
Convolutional Neural Networks (CNNs) to address the 
demanding requirements of fruit detection in agriculture. It 
adopts a custom dataset and employs rigorous training, 
validation, and testing processes to develop a robust and 
efficient model. This approach is founded on the belief that 
deep learning can provide the accuracy and reliability needed 
for effective fruit detection in agricultural settings. 

This research paper presents three key contributions. First, 
it generates a custom dataset tailored specifically for fruit 
detection challenges, providing a valuable resource for future 
research in this domain. Second, it proposes an efficient deep-
learning method that not only detects fruits but also addresses 
disease detection within the same framework, further 
enhancing the utility of the model. Third, extensive 
experiments and performance evaluations are conducted to 
validate the effectiveness of our method, providing empirical 
evidence of its potential to revolutionize fruit detection 
practices in agriculture. 
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Fig. 1. Sample of fruit images. 

II. RELEVANT STUDIES 

Machine learning and deep learning methods have made 
substantial contributions to the progress of agricultural sectors, 
specifically in the fields of disease prediction, classification, 
and the recognition of fruit types and diseases. These 
approaches provide a reliable, cost-effective, and swift means 
of identifying and diagnosing fruit ailments in a non-invasive 
manner. Numerous scientists have devoted their expertise to 
the study of fruit detection. Eminent researchers who have 
made significant strides in this domain encompass: 

The paper in [12] presented the Lightweight SM-YOLOv5 
algorithm for tomato fruit detection in plant factories. The 
method employs a modified YOLOv5 architecture optimized 
for resource-efficient tomato detection. It achieves high 
accuracy while remaining computationally lightweight. 
However, a notable limitation is its specialization for tomato 
detection, which may limit its applicability to other fruits or 
plant types. Additionally, the paper lacks extensive 
experimentation and validation on various datasets and real-
world conditions. Nonetheless, the Lightweight SM-YOLOv5 
offers a promising approach for efficient tomato fruit detection 
within plant factory environments. 

The authors in [13] focused on pineapple fruit detection and 
localization in natural environments using binocular stereo 
vision and an improved YOLOv3 model. The method 
combines depth information from stereo vision with the 
YOLOv3 model for accurate pineapple detection. However, it 
is limited in its applicability primarily to pineapple detection 
and may not generalize well to other fruits or scenarios. 
Additionally, the paper lacks extensive validation of a wide 
variety of natural environments and conditions. Nevertheless, 
the approach represents a promising advancement for 
pineapple fruit detection in natural settings, showcasing the 
potential of combining computer vision and deep learning 
techniques. 

The paper in [14] introduces a cherry fruit detection 
algorithm using an enhanced YOLO-v4 model. The method 
leverages the YOLO-v4 architecture to achieve accurate cherry 
detection in images. However, its primary limitation is its 
specificity to cherry fruit detection, potentially lacking 
versatility for other fruit types. The paper could benefit from a 
broader evaluation across different cherry varieties and 
environmental conditions. Nonetheless, the use of the 
improved YOLO-v4 model shows promise for enhancing 
cherry fruit detection precision, offering valuable insights into 
fruit detection techniques within the agricultural domain. 

These authors in [15] introduced a dragon fruit-picking 
detection method that combines YOLOv7 and PSP-Ellipse. 
YOLOv7 is employed for object detection, while PSP-Ellipse 
enhances the accuracy of dragon fruit recognition. However, 
the limitation lies in its specialization for dragon fruit 
detection, potentially limiting its applicability to other fruits or 
objects. Further validation in diverse environmental conditions 
and fruit varieties would strengthen the method's robustness 
and utility in agricultural settings. Nonetheless, this approach 
demonstrates the potential to improve dragon fruit picking 
efficiency through advanced object detection techniques. 

This paper in [16] focused on fruit maturity stage detection 
and yield estimation in wild blueberries through the use of 
deep learning Convolutional Neural Networks (CNNs). The 
method employs CNNs to analyze images of wild blueberry 
plants, determining fruit maturity and estimating yield. A 
limitation of the study is that it may require substantial labeled 
data for training, which can be resource-intensive. 
Additionally, the model's generalization to different 
environments and wild blueberry varieties may require further 
investigation. Nevertheless, the approach demonstrates the 
potential for improving wild blueberry farming practices 
through deep learning-based fruit assessment and yield 
estimation. 
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The authors in [17] presented a method for detecting 
tomato plant phenotyping traits using YOLOv5-based single-
stage detectors. This approach utilizes YOLOv5 to identify and 
characterize various traits of tomato plants, facilitating 
phenotypic analysis. However, the limitation lies in the model's 
potential sensitivity to variations in environmental conditions, 
which may affect detection accuracy. Additionally, broader 
validation across diverse tomato varieties and growth stages 
could enhance the method's generalization. Nevertheless, this 
technique showcases promise in automating plant phenotyping 
tasks, offering valuable insights for agricultural research and 
crop improvement. The mentioned papers primarily focus on 
different aspects of fruit detection and utilize various deep-
learning models for this purpose. The [12]  concentrates on 
tomato fruit detection in controlled environments, emphasizing 
the need for efficiency. On the other hand, [13] extends the 
scope to outdoor settings and employs a stereo vision-based 
YOLOv3 model. 

Similarly, research in [14] narrows its focus to cherry fruit 
detection and utilizes the YOLOv4 model. In contrast, research 
in [15] explores dragon fruit detection using YOLOv7 and 
elliptical detection techniques. The study in [16] extends the 
application to the maturity stage and yield estimation in wild 
blueberries, leveraging convolutional neural networks. Lastly, 
[17] adopts YOLOv5 to identify tomato plant phenotypic traits. 

The current literature on fruit detection using deep learning 
models has made notable strides in achieving high accuracy for 
specific fruit types in controlled and natural environments. 
However, a significant gap exists in the lack of algorithms that 
are both accurate and computationally efficient across a diverse 
range of fruits and environmental conditions. While individual 
studies, such as the Lightweight SM-YOLOv5 for tomatoes, 
binocular stereo vision for pineapples, YOLOv4 for cherries, 
and YOLOv7 for dragon fruit, demonstrate advancements 
within their respective domains, their specificity to a single 
fruit type hampers their widespread applicability. Additionally, 
the resource-intensive nature of labeled data for training and 
limited generalization to various fruit varieties and 
environmental conditions pose challenges. There is a critical 
need for future research to prioritize the development of 
algorithms that not only enhance accuracy but also minimize 
computation costs, enabling real-time processing and practical 
applications in diverse agricultural settings. Addressing this 
gap will significantly advance fruit detection techniques in 
agriculture. 

III. MATERIALS AND METHOD 

A. Data Collection 

This study leveraged a dataset sourced from Roboflow 
resources [18] to facilitate the fruit detection research. The 
dataset comprises a diverse collection of fruit images, which 
served as the foundation for training and evaluating the model. 

The dataset encompasses a diverse collection of fruit 
images, introducing a rich spectrum of variations in terms of 
size, shape, color, and environmental conditions. This 
deliberate inclusion of diverse instances is crucial for proving 
the scalability of our proposed model. Scalability, in the 

context of the study, refers to the model's ability to generalize 
effectively across a broad range of scenarios and conditions. 
By incorporating a wide variety of fruits and their respective 
attributes, the dataset from Roboflow ensures that the model is 
exposed to a comprehensive representation of real-world 
conditions. 

Class balance in a dataset refers to the distribution of 
samples across different classes or categories. In the context of 
the dataset, class balance assesses whether the number of 
images for each class is relatively even or if there is a 
significant imbalance. A balanced dataset ideally has roughly 
the same number of samples for each class. Looking at the list 
of classes in the dataset, it appears that there is a varying 
degree of class balance. Some classes like "apple," "banana," 
"carrot," "cucumber," "okra," "potato," "sweet-potato," 
"tomato," and "un-usable" represent specific food items and 
may have a more balanced distribution if there are a similar 
number of images for each. However, classes like "Fresh 
Oranges," "Papaya Fresh," "Rotten," "Rotten Oranges," "bad," 
"fresh-20%," "fresh-70%," "fresh-90%," and "good" seem to 
describe the condition or quality of the food items. It's 
important to consider class balance when training machine 
learning models because an imbalance can lead to biased 
predictions, where the model may perform well on the majority 
class but poorly on minority classes. Fig. 2 shows the class 
balance of the dataset. 

B. Model Training using YOLOv8-based Single Stage 

Detector 

YOLOv8 is indeed a single-stage object detection model. 
Single-stage detectors (see Fig. 3), in the information of object 
detection in computer vision, are designed to perform object 
localization and classification in a single pass through the 
neural network without the need for a separate region proposal 
step. The YOLOv8 achieves this as a single-stage detector: 

1) Grid-based detection: YOLOv8 divides the input image 

into a grid, where each grid cell is responsible for predicting 

objects within its boundaries. The model then predicts 

bounding boxes (rectangular regions) for objects within each 

grid cell. This grid-based approach simplifies the object 

detection process. 

2) Multi-scale detection: YOLOv8 uses multiple detection 

scales to capture objects of different sizes in the same pass. 

This allows the model to efficiently handle a variety of object 

scales within the input image. 

3) High-speed inference: Being a single-stage detector, 

YOLOv8 is known for its real-time or near real-time inference 

capabilities, making it suitable for applications that require 

fast and accurate object detection, such as autonomous 

vehicles, surveillance, and robotics. In summary, YOLOv8 is 

a single-stage object detector that excels in rapid and accurate 

object detection tasks by directly predicting object bounding 

boxes and classifications in a single forward pass through the 

neural network. This efficiency is a key reason for its 

popularity in various computer vision applications. 
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Fig. 2. The class balance of the dataset. 

 
Fig. 3. Object detector anatomy. 

C. Model Evaluation Techniques 

In the framework of evaluating the performance of a 
YOLOv8 model for fruit detection, several key metrics are 
commonly used: F1 score, precision, recall, and mAP (mean 
Average Precision). These metrics provide valuable insights 
into the model's ability to detect and classify fruit objects in 
images accurately. Precision measures the accuracy of the 
model's positive predictions and the ability to identify fruits 

correctly. To compute precision, the number of true positive 
predictions (correctly identified fruits) divide by the total 
number of positive predictions (true positives plus false 
positives). High precision indicates that when the model 
predicts a fruit, it is usually accurate. 

Precision = TP / (TP + FP) 
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Recall assesses the model's capability to find all the actual 
positive instances, i.e., fruits in this case. It calculates the ratio 
of true positive predictions to the total number of actual 
positive instances. High recall implies that the model can 
successfully detect most of the fruits present. 

Recall = TP / (TP + FN) 

The F1 score is the harmonic mean of precision and recall. 
It provides a balanced evaluation of both false positives and 
false negatives. The F1 score is particularly useful when it 
considers both precision and recall simultaneously. A high F1 
score suggests a model with good overall performance. 

F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 

mAP @0.5 is a comprehensive metric widely used in object 
detection tasks, including fruit detection. It quantifies the 
precision-recall trade-off across different confidence thresholds 
for object detection. mAP calculates the area under the 
precision-recall curve, providing a holistic assessment of the 
model's performance at varying confidence levels. Higher mAP 
indicates better overall detection accuracy. Calculate precision, 
recall, and F1 score to assess the model's accuracy and ability 
to balance true positives, false positives, and false negatives. 
These metrics collectively provide valuable insights into how 

well the YOLOv8 model is performing in fruit detection and 
help in making informed decisions for model refinement and 
optimization. 

IV. RESULTS 

A. Model Evaluation for YOLOv8s 

Precision, recall, precision-confidence, and F1 score curves 
are vital for evaluating the efficiency of a YOLOv8s model in 
fruit detection. Precision measures the accuracy of positive 
predictions, recall gauges the model's ability to capture actual 
instances, precision-confidence reflects the trade-off between 
confidence thresholds and precision, and the F1 score balances 
precision and recall. In the context of 18 fruit classes, 
achieving nearly 100 precision signifies high accuracy in 
classifying fruits, a recall of 0.94 indicates effective 
identification of most instances, and a precision-confidence of 
0.76 suggests controllable precision based on confidence 
thresholds. The F1 score of 0.72 demonstrates a balanced 
performance. These values collectively imply that the model is 
efficient in recognizing fruit classes, making it a promising tool 
for fruit detection tasks, but real-world testing is crucial to 
validate its practical applicability. The curves of YOLOv8s are 
depicted in Fig. 4. 

 

 

Fig. 4. The curves  of YOLOv8s. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

88 | P a g e  

www.ijacsa.thesai.org 

B. Model Evaluation for YOLOv8n 

In the background of 18 fruit classes, achieving nearly 99 
precision signifies high accuracy in classifying fruits, a recall 
of 0.95 indicates effective identification of most instances, and 
a precision-confidence of 0.73 suggests controllable precision 
based on confidence thresholds. Although the F1 score of 0.69 
indicates a slightly lower balance between precision and recall, 
these values collectively indicate that the model is quite 
effective in recognizing fruit classes, making it a promising 
tool for fruit detection tasks. Real-world testing and fine-tuning 
may further enhance its performance for practical applications. 
Fig. 5 shows the curves of YOLOv8n. 

C. Model Evaluation for YOLOv8l 

Achieving nearly 100 precision indicates highly accurate 
classification of fruits, a recall of 0.96 demonstrates effective 
identification of most fruit instances, and a precision-
confidence of 0.76 suggests controllable precision, considering 
confidence levels. The F1 score of 0.72 showcases a reasonable 
trade-off between precision and recall. These values 
collectively affirm that the model is highly efficient in 
recognizing the 18 fruit classes, making it a robust and reliable 
tool for fruit detection tasks, though further evaluation in real-
world scenarios is advisable to confirm its practical 
effectiveness. The curves of YOLO8vl are depicted in Fig. 6. 

 

 

Fig. 5. The curves of YOLOv8n. 
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Fig. 6. The curves of YOLO8vl. 

D. Model Evaluation for YOLOv8x 

Achieving nearly 100 precision signifies highly accurate 
classification of fruits, a recall of 0.95 indicates effective 
recognition of the majority of fruit instances and a precision-
confidence of 0.72 implies controllable precision at different 

confidence levels. The F1 score of 0.76 demonstrates a good 
overall balance between precision and recall. These values 
collectively suggest that the YOLOv8vx model is effective in 
recognizing the 18 fruit classes, making it a robust and reliable 
tool for fruit detection tasks with the potential for real-world 
applications. The curves of YOLOv8x are depicted in Fig. 7. 

 

 
Fig. 7. The curves of YOLOv8x. 
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V. RESULTS AND DISCUSSION 

In the comprehensive series of experiments, rigorously 
assessed multiple YOLOv8 models to identify the most 
accurate and effective one for the specific task. The study 
collected performance metrics across all classes, including 
precision, recall rate, mean Average Precision (mAP) at an IoU 
threshold of 0.5, and F1 score, aiming to achieve the utmost 
accuracy and effectiveness in the model selection. 

As discussed earlier, extensive literature supports the 
effectiveness of YOLO-based models in achieving high 
accuracy while maintaining real-time processing capabilities, 
making them particularly suitable for various applications. The 
simplicity and efficiency of the YOLO architecture have 
positioned it as a benchmark in the field of object detection. 

In this study, the choice of Yolov8 as the foundation for the 
proposed method is justified by the extensive experiments 
conducted and the comprehensive comparison of various 
versions of Yolov8-based models. By presenting a detailed 
evaluation and comparison of different model configurations, 
this study aims to showcase the superiority of Yolov8 in the 
context of fruit detection. The experimental results contribute 
empirical evidence to the existing literature, reinforcing the 
claim that Yolov8 stands out as an effective and reliable object 

detection algorithm, especially when applied to the specific 
challenges posed by fruit detection in agriculture. 

Upon analyzing the results, it is evident that the YOLOv8s, 
YOLOv8l, and YOLOv8x models consistently outperform the 
YOLOv8n model across various metrics. Notably, all three of 
these models achieved a perfect precision score of 100%, 
indicating their exceptional ability to make correct positive 
predictions. Furthermore, the YOLOv8l and YOLOv8x models 
demonstrated superior recall rates of 0.96% and 0.95%, 
respectively, highlighting their capacity to identify most of the 
actual positive instances. Additionally, these models 
maintained a robust mAP@0.5 rate of 0.76% and an 
impressive F1 score of 0.72%, signifying a balanced trade-off 
between precision and recall. 

Considering the balance between precision and recall, the 
YOLOv8l and YOLOv8x models emerge as the top performers 
in the evaluations. Their remarkable precision, recall, and F1 
score collectively demonstrate their superiority in accurately 
detecting and classifying objects, making them the preferred 
choices for the task. Based on these extensive experiments, it 
has successfully achieved an accurate and effective model 
tailored to the specific requirements. The comparison table 
between all versions of YOLO8 is depicted in Table I. 

TABLE I.  THE COMPARISON TABLE BETWEEN ALL VERSIONS OF YOLO8 

Model version F1 Score precision Recall mAP @0.5 

YOLOv8s 0.72 100 0.94 0.76 

YOLOv8n 0.69 99 0.95 0.73 

YOLOv8l 0.72 100 0.96 0.76 

YOLOv8x 0.72 100 0.95 0.76 
 

VI. CONCLUSION 

Fruit detection holds paramount significance in the 
agricultural sector, aiding in the optimization of harvesting 
schedules, minimizing waste, and ensuring crop quality. 
Numerous methods have been explored in the literature to 
address this critical task. Among these, deep learning-based 
approaches have emerged as frontrunners, consistently 
delivering accurate results. However, a prevailing research 
challenge in deep learning-based fruit detection pertains to 
meeting the stringent accuracy rate requirements necessitated 
by agricultural applications. This study proposed a deep 
learning model based on the YOLOv8 architecture to address 
this challenge. Leveraging a custom dataset, it meticulously 
conducts model training, validation, and testing. The 
experimental results and performance evaluations demonstrate 
the efficacy of our proposed method, showcasing its ability to 
achieve high levels of accuracy, thus promising substantial 
advancements in fruit detection within the agricultural domain. 
Two notable limitations in the realm of fruit detection are 
computational resource intensity and model generalization. 
Firstly, deep learning-based fruit detection models often 
require substantial computational resources for training and 
inference, which may not be readily available in resource-
constrained agricultural environments. Secondly, achieving 
model generalization across different fruit varieties, lighting 
conditions, and backgrounds remains a challenge, as models 

trained on one dataset may struggle to adapt to diverse real-
world scenarios. In light of these limitations, future research 
could focus on addressing these challenges. Firstly, the 
development of more computationally efficient deep learning 
architectures tailored for fruit detection could help alleviate 
resource constraints. Secondly, exploring techniques such as 
domain adaptation and transfer learning to enhance model 
generalization across varying conditions and fruit types could 
lead to more robust and versatile fruit detection systems. These 
efforts could significantly enhance the applicability and 
effectiveness of fruit detection technology in agriculture. 
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