
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

806 | P a g e

www.ijacsa.thesai.org

Research on Efficient CNN Acceleration Through

Mixed Precision Quantization: A Comprehensive

Methodology

Yizhi He
1
, Wenlong Liu

2
, Muhammad Tahir

3
, Zhao Li

4*
, Shaoshuang Zhang

5
, Hussain Bux Amur

6

School of Computer Science and Technology, Shandong University of Technology, Zibo 255049 China
1, 2, 4, 5

Department of Computer Science, Mohammad Ali Jinnah University, Block 6, P.E.C.H.S, Karachi, 75400, Pakistan
3, 6

Abstract—To overcome challenges associated with deploying

Convolutional Neural Networks (CNNs) on edge computing

devices with limited memory and computing resources, we

propose a mixed-precision CNN calculation method on a Field

Programmable Gate Array (FPGA). This approach involves a

collaborative design encompassing both software and hardware

aspects. Initially, we devised a CNN quantization method tailored

for the fixed-point operation characteristics of FPGA, addressing

the computational challenges posed by floating-point parameters.

We introduce a bit-width strategy search algorithm that assigns

bit-widths to each layer based on CNN loss variation induced by

quantization. Through retraining, this strategy mitigates the

degradation in CNN inference accuracy. For FPGA acceleration

design, we employ a flow processing architecture with multiple

Processing Elements (PEs) to support mixed-precision CNNs.

Our approach incorporates a folding design method to

implement shared PEs between layers, significantly reducing

FPGA resource usage. Furthermore, we designed a data reading

method, incorporating a register set buffer between memory and

processing elements to alleviate issues related to mismatched data

reading and computing speeds. Our implementation of the

mixed-precision ResNet20 model on the Kintex-7 Eco R2

development board achieves an inference accuracy of 91.68%

and a computing speed 4.27 times faster than the Central

Processing Unit (CPU) on the CIFAR-10 dataset, with an

accuracy drop of only 1.21%. Compared to a unified 16-bit

FPGA accelerator design method, our proposed approach

demonstrates an 89-fold increase in computing speed while

maintaining similar accuracy.

Keywords—Convolutional Neural Networks (CNNs); edge

computing technologies; Field Programmable Gate Array (FPGA)

accelerator; mixed precision quantization; loss variation

I. INTRODUCTION

Nowadays, deep learning has brought new development
opportunities for Internet of Things (IoT). Among them, CNNs
are widely used in many areas such as face recognition,
autonomous driving, and unmanned air vehicles for their
outstanding performance [1]. CNN consists of two stages,
which are training and inference. Usually, training is a one-
time off-line process, which is based on computing platform
with large computing resources and high power consumption.
Inference can be deployed on edge computing devices, in order
to obtain shorter processing delay and avoid the impact of
communication situation [2].

However, with the development of deep learning, the size
of CNNs continues to increase to obtain stronger learning
ability, resulting in larger network computations, more
parameters, and more complex network structures. At the same
time, many edge computing platforms have limited storage and
computing resources, restriction on power consumption and
latency. Therefore, the use of CNN inference on edge
computing devices has become an important challenge in the
field of Artificial Intelligence (AI) research.

Currently, many FPGA acceleration methods [3] for CNNs
have been proposed. With FPGA's parallelism and flexible
configuration, it can be deeply customized for the CNN
structure through parallel computing methods [7] to provide
accelerated services for deep learning, achieving higher
performance and power efficiency.

Chen et al. [10] proposed the DianNao CNN accelerator,
which adopted a three-level pipeline architecture consisting of
multiplication, addition, and sigmoid functions. By reusing the
weights stored in the on-chip memory, it reduced the need for
accessing off-chip data, thereby lowering memory access
power consumption. The CNN accelerator Eyeriss [11] was
proposed, which employed a row stationary dataflow to
maximize data reuse in the computation array and minimize
memory access. The authors of this article reference [12]
proposed the energy-efficient and reconfigurable hybrid neural
network processor Thinker. Each computing unit in Thinker
supports adaptive computation for different data bit-widths
required by neural networks. The maximum operating
frequency is 200MHz, and the supported data bit-widths are 8-
bit and 16-bit.

Additionally, quantization [13] can be used to reduce
model sizes and hardware resource consumption, such as
replacing original 32-bit floating-point operations with lower
precision fixed-point numbers like 8-bit or 16-bit. Jacob et al.
[15] proposed an integer quantization method, which uniformly
quantizes both weight and activation to 8-bit. Furthermore,
there are ultra low-bit quantization methods, such as ternary
quantization [16] which quantifies weights into {-w, 0, +w},
and even binary quantization neural networks [17], which
quantize weights and activation values to 1 or -1.

However, using a unified quantization bit-width in ultra
low-bit-width situations would significantly affect CNN
performance. A highly effective solution to this problem is
through mixed precision quantization [20]. It allows each layer

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

807 | P a g e

www.ijacsa.thesai.org

of the CNN model to have different quantization bit-widths.
which can greatly preserve the performance. Lin et al. [21]
proposed an analytical solution to address the fixed-point
quantization problem. It seeks an optimal bit-width allocation
strategy across network layers by optimizing the Signal-to-
Quantization-Noise Ratio (SQNR). Wang et al. [22] designed a
Hardware Aware Quantization (HAQ) algorithm that
incorporates inference speed information evaluated by a
hardware simulator into the training process, which utilized
reinforcement learning to automatically determine quantization
strategies. It reduces latency by 1.4-1.95 times and energy
consumption by 1.9 times. However, the current methods face
challenges in their applicability to FPGA platforms or in terms
of high time and space complexity when searching for mixed
precision strategies.

In conclusion, if we have an efficient mixed precision
search algorithm and can apply the strategies obtained by this
algorithm to FPGA platforms; it will be greatly significant for
the application of deep learning on AIoT devices. Therefore,
we propose a method for implementing a mixed precision
CNN model on FPGA, co-designing from software and
hardware aspects. The main innovation points are as follow:

1) A quantization method is proposed that is more suitable

for FPGA's fixed-point operation characteristics. Combined

with a mixed precision strategy search algorithm with the

optimization objective of the lowest bit-width for each layer

and the constraint of the accuracy of the CNNs achieve mixed

precision calculation of CNNs.

2) In terms of FPGA accelerator design, an inter-layer

storage and multi-PEs reuse mechanism is proposed based on

the streaming processing architecture. And performing folding

design between different CNN layers not only retains the

flexibility of the streaming processing architecture but also

saves hardware resources and improves the computing

efficiency of each PE.

3) A new data reading method is designed using a high

bit-width data transmission mode to read multiple data in a

single cycle, efficiently utilizing bandwidth to transfer data. In

addition, a register set is added as a buffer between the Block

Random Access Memory (BRAM) and the PE to solve the

problem of mismatch between reading and computing speed.

Based on the above, the purpose of this paper is to explore
an efficient method for searching mixed precision quantization
strategies and implementing mixed precision computation of
CNN on the FPGA platform. The goal is to achieve high
performance CNN computations within limited computational
and storage resources.

This paper is structured as follows: Section II elucidates the
mixed precision quantization method and outlines the strategy
for bit-width exploration in the context of CNNs. In Section III,
the FPGA platform accelerator is detailed, encompassing the
overall architecture, parallel processing elements (PE), and an
efficient data transfer mechanism. Section IV delves into the
experimental results of quantization and assesses the
performance of the mixed precision accelerator. Finally,

Section V provides a comprehensive conclusion and future
work for the paper.

II. MIXED PRECISION QUANTIZATION FOR CNNS

A. Design of Quantization Method

Although many existing quantization methods can reduce
the parameter storage of CNNs through encoding and decoding,
the quantized parameters are still computed using floating-
point numbers [23]. When implemented to the FPGA platform,
the fixed-point number used differs in precision from the
original floating-point number, which leads to calculation error
and causes drop of inference accuracy. Therefore, a
quantization method suitable for FPGA has been designed to
convert the parameters in the CNN model into fixed-point
numbers, and retrain the quantized model to reduce the
degradation of its accuracy. The quantization process consists
of two steps: first, the floating-point number is transformed
into a fixed-point number, which is left shifting, amplified,
rounded, and truncated to a n-bit fixed-point integer. Then, the
fixed-point decimal value is restored to an approximately
original value through right shifting.

The process of converting a 32-bit floating-point number X
to a n-bit integer Xint is shown as follows:

1((2))n l

int min maxX clamp round X ,Q ,Q    

Where l is the number of bits in the integer part of X, Qmin=-

2
n-1 ， Qmax=2

n-1
-1 ， round() is the rounding function, and

clamp() is defined as follows:

a, x a

clamp(x,a,b) x, a x b

b, x b




  
 

  

For example, the process of quantizing a decimal with a
floating-point number of 1.253 to an 8-bit fixed-point number
(assuming 1 sign bit, 3 bits of integer width, and 4 bits of
decimal width) can be shown in Fig. 1.

The floating-point number 1.253 is shifted left by 4 bits
(multiplied by 2

4
) and then amplified to obtain 20.048. Then, it

is rounded and clamped to obtain an integer value of 20.
Finally, the quantized integer value is shifted right by 4 bits
(divided by 2

4
) to obtain the fixed-point value of 1.25. Hence,

it is possible to replace 32-bit floating-point numbers with 8-bit
fixed-point numbers in order to make them more easily
deployable in FPGA.

Fig. 1. Quantization Process Diagram.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

808 | P a g e

www.ijacsa.thesai.org

Suppose the activation value A and weight parameter W in
the CNNs are quantized to Aint and Wint respectively, then the
convolutional process can be transformed into,

1 2
2 A Wl l n

int intY A*W b A W b
  

     
 

where b represents bia, lA and lW represent the integer bit
width of activation value A and weight parameter W,
respectively.

Through (3), the floating-point number in the convolution
process can be quantized into n-bit integer. After completing
the convolution calculation, right shifting can restore the
approximate value to the original result. Using shifting and
integer operations instead of floating-point arithmetic can
reduce the computational resource requirements for floating-
point operations, which is easy to implement in FPGA.
Moreover, the quantized fixed-point CNN can be retrained,
greatly reducing the accuracy drop caused by directly
implementing the CNN model to the FPGA platform.

B. Quantization Bit-Width Strategy Search Algorithm

Allocating appropriate quantization bit-widths for each
layer in a CNN model is an important challenge in
implementing mixed precision operations. Assuming there are
20 convolutional layers in a CNN model, each convolutional
layer can be assigned a bit-width value ranging from 1 to 32.
There are 32

20
 quantization schemes, and several schemes

produce different inference accuracy and occupy different
hardware resources. Therefore, selecting a suitable quantization
scheme that has high accuracy and is also easy to deploy on
FPGA requires an efficient strategy search algorithm. A novel
CNN mixed precision quantization method is proposed by
using quantization loss variation [25] to adjust the bit-widths of
each layer, which can avoid this exponential search space.

1) Calculation of quantization loss variation: The

quantization loss variation is an important indicator of bit-

width allocation. We found that the loss variation is related to

both the first and second derivatives (Hessian matrix)

information of each quantization layer and the quantization

error. It can be expressed by as shown as follows using Taylor

expansion:

1
() () () ()

2

T T

QΔL L W L W g W ΔW ΔW H W ΔW   


g() represents the first derivative of the weight parameter W
in the full-precision CNNs, H() represents the second
derivative, L() represents the cross-entropy loss function
commonly used in CNNs, and WQ represents the weight
parameter of the quantized CNNs. When studying the loss
variation brought by second-order information, it is very
difficult to directly calculate the relevant values of the Hessian
matrix due to the large amount of weight parameters in CNNs.
Therefore, the power iteration method can be used to
approximate the maximum eigenvalue of the Hessian matrix.
For each quantization layer, perturbations can be added in the
direction of the corresponding eigenvector of the Hessian
matrix as the quantization error [25], and then calculates the
corresponding loss variation. Thus, we add perturbations in
both gradient direction and Hessian matrix eigenvector

direction separately in each quantization layer as the
quantization error ΔW, as shown in (5).

i i

λ g(W)
ΔW

λ H (W) V


 

    

The λ can be used to adjust the size of perturbation.
Hi(W)∙Vi represents the eigenvector corresponding to the
maximum eigenvalue of the Hessian matrix for the i-th
quantization layer, which can be calculated by (6) and the
power iteration method.

()T T T
Ti i i i i

i i i i i

i i i i

g V g V g
V g V H V

W W W W

   
   

     

Vi is a random vector with the same dimension as the i-th
quantization layer. The quantization error ΔW in the gradient
direction is applied to the selected quantization layer and
calculate the perturbed CNN loss variation ΔL1. Then, the
quantization error in the eigenvector direction of the Hessian
matrix is applied to this quantization layer and the new loss
variation is recalculated as ΔL2. Finally, the maximum value
between ΔL1 and ΔL2 is taken as the loss variation caused by
this quantization layer.

2) Search method design: To reduce the search space,

adjacent quantization layers in the CNNs with the same

structural characteristics (such as kernel size, number of

channels, and padding method) are merged into quantization

blocks. The method described in last section is used to

calculate the loss variation of different quantization blocks.

High bit-widths are assigned to the quantization blocks that

cause large loss variations, while low bit-widths are used for

those that cause small loss variations. Then, the model is

retrained according to the bit-width allocation strategy. The

feedback results from the training are fed back to the policy

search module, and the output policy is adjusted based on the

feedback until the best bit-width allocation method is found.

The specific process is shown in below Algorithm 1.

Algorithm 1: Quantization Bit-Width Policy Search

Input：Pre_Model, Dataset, Loss, Blocks, Acc_Set

Output：Bit-Width Policy

1：Blocks = Sort (Blocks, Loss)

2：Bit_Width = [16, 15, 14, … 4, 3, 2]

3：Index = 0

4：While (Index < length (Bit_width)) do

5： New_policy = upgrade_policy (Bit_width [Index], Blocks)

6： Model = Quantize (Pre_Model, New_policy)

7： for i in range(epoch) do

8： Acc = Train (Model, Dataset)

9： if (Acc ≥ Acc_Set) then:

10： Index = Index + 1

11： else:

12： Restore (Blocks)

13: Choice_next_block (Blocks)

14: return New_policy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

809 | P a g e

www.ijacsa.thesai.org

In this algorithm, a full precision pretrained model is used
as the Pre_Model, and the corresponding Loss variation is used
as input. The layer in pretrained model is merged into Blocks.
Dataset is used as model training. Then, based on step 1, the
quantization blocks are sorted in descending order according to
the Loss values they produce. For the quantization block with a
larger Loss value, it is quantized first, and the assigned bit-
width is not less than that of the quantization block with a
smaller Loss value. The quantization bit-width is set from 2 to
16 bits according to step 2, and the Index set by step 3 is used
to select the bit-width value. Initially, every quantization block
selects 16 bits, as shown in step 5. Next, a new CNN model is
quantized based on the strategy generated by step 5, and the
model is iteratively trained for epoch times. The highest
training result is recorded as Acc, as shown in steps 7 and 8.
Then, the highest training result is compared with the required
accuracy Acc_Set in step 9 to make a decision. If the
requirement is met, the Index value is increased according to
step 10, and an attempt is made to reduce the bit-width of the
quantization block. If the requirement is not met, the current
qutization is restored the last policy, then the next quantization
block is selected to adjust the bit-width value according to

steps 12, 13. By following the above steps, the appropriate bit-
width is selected for each quantization block in sequence.

III. MIXED PRECISION ACCELERATOR DESIGN

The mixed precision quantization of CNN achieves a
balance between accuracy and compression rate by selecting
appropriate bit-widths for the weight and activation parameters
in each layer [26]. Therefore, in the accelerator, a design
method is adopted that uses multiple types of Conv modules to
support different bit-width precision operations. This can avoid
inefficiency of high-bit-width arithmetic units used by low-bit-
width operations. The structure is shown in Fig. 2.

In advance, the calculation method of each layer in CNN
model is written into the finite state machine (FSM) in the form
of instruction according to the sequence. The input image can
be stored in an off-chip memory, and during computation, burst
transmission via the AXI4 bus can be used to read the input
image from the off-chip memory to the Conv module [27]. The
entire computing process only needs to read the input image
from off-chip memory once to reduce the high latency and
energy consumption caused by off-chip reading and writing
operations.

Fig. 2. The mixed precision accelerator design structure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

810 | P a g e

www.ijacsa.thesai.org

Then, the FSM sends instruction to control the reading of
weight parameters from the Weight Read-Only Memory (ROM)
and sends them to the designated PE for convolution,
activation, quantization (Round and Clamp). Then the
calculation results are cached in the RAM specified by the
instruction, and execute subsequent processing according to the
next instruction provided by FSM.

For the intermediate buffer data reading and writing
operations, their throughput can easily become a bottleneck for
the entire accelerator performance due to the limitations of the
BRAM reading and writing interfaces. This can cause a
problem of mismatch between data calculation speed and
reading speed. Therefore, a register set is introduced as a data
buffer. The true dual-port RAM and pipeline are
simultaneously used, which greatly increase the speed of
reading data into PE.

In term of weight parameter storage, the quantized weight
parameters of each layer in the CNN are stored in the ROM
array (Weight ROM) built of on-chip RAM resources
according to the address order. During circuit initialization, the
parameters are stored in the on-chip memory in a ROM
initialization method. The read width is set to the sum of all
weight parameter bit-widths in a single convolution kernel.
Data slicing allows for extracting specific bits from a signal by
using indices. So the entire long bit-width data can be split and
sent sequentially to the Conv module after reading the data. In
ROM IP core provided by Xilinx, the maximum read width can
reach 4608 bits, which is sufficient to read the weight
parameters in a convolutional kernel within one cycle.

The overall processing adopts a streaming processing
architecture, and the CNN is folded according to the mixed
precision quantization results in order to share PEs and
memory resources among different layers. This not only
alleviates the problem of large resource consumption of the
streaming processing architecture, but also allows the saved
resources to be used in each Conv module to improve
computation parallelism. Meanwhile, the entire network can
still be designed with pipeline processing. Each computing
module can serve as a stage pipeline, forming a large-scale

pipeline design to reduce computation latency under the
condition of multiple input data.

A. PE Design

The PE structure is shown in Fig. 3. It is composed of the
Conv module, Relu activation, Round and Clamp module. In
the same PE, all multipliers are the same type. For example,
the multipliers in Fig. 3 are all M×N type, where M
corresponds to the weight bit-width and N corresponds to the
feature data bit-width. The number of multipliers in each group
is set according to the convolution kernel size. Assuming the
convolution kernel size is K×K, then K

2
 multipliers are set as

one group. The number of groups S is set to the least common
multiple of input channels of all quantization layers using this
PE. This can fully utilize all multipliers and improve
computation efficiency when calling this PE.

In each convolution module, there are multiple layers of
adder trees and a multiplexer. The number of adder operations
can be controlled based on the input channel number of the
current layer to adapt to different computation modes with
different input channel numbers. For example, if the
convolution channel S is set to 64 in the PE and the current
network layer has 32 input channels, then two output pixels can
be obtained through a binary adder tree of depth 5. When
computing a network layer with 64 input channels, one output
pixel needs to be obtained through a binary adder tree of depth
6. Therefore, we can reuse the PE for different layers by setting
a multiplexer to output results at different layers of the adder
tree.

In CNN models, to accelerate the convergence speed,
prevent problems such as gradient explosion, gradient
vanishing, and overfitting, many networks have Batch
Normalization (BN) layers [28]. The process of calculating the
BN layer with convolutional result Y through (7), can be
represented as:

2 2
γ () γ ()bn

Y μ W A b μ
Y β β

   

   
     

  

Fig. 3. Structure diagram of the PE unit.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

811 | P a g e

www.ijacsa.thesai.org

Where µ and σ represent the mean and standard deviation
within a batch, γ represents the scaling parameter, β represents
the offset parameter, and ε is a very small constant set to 0.001.
However, the additional computation brought by this layer
makes it more difficult to implement the CNNs on FPGA
platforms. Thus, the convolution, batch normalization and
quantization operation are integrated together to solve this
problem. Firstly, the process of integrating convolution and BN
can be represented as follows:

Y W A b      





 


2

W
W =

+ 
2

()b - μ
b β



 
  

 

Furthermore, the quantization operation (3) can be merged
into (8) as follows:

2 1
2 A Wl l n

int intY W * A +b
    

 

The low bit-width fixed-point weight Wint can be obtained
directly by using the optimal parameters for the weight W' and
quantization bit-width n and scale factor lA. All of them can be
obtained from algorithm 1. By integrating the three operations,
many complex calculations can be completed during
quantization training, the trained parameters W'int can be stored
directly in the on-chip ROM of FPGA during circuit
initialization. So, this significantly reduces lots of calculations
on the FPGA.

In addition, an activation layer is often used after the
convolution operation to increase the non-linear ability of the
CNN. To simplify the design, we also integer the activation
layer into PE. The logic structure of the commonly used ReLU
activation function is shown in the Fig. 3, which uses a
comparer and multiplexer. The comparer compares the input
value with zero, and the result controls the multiplexer to
output either the input value or 0 as the activation value.

The convolution operation with M bits weights and N bits
input feature values will result in M+N bits of convolution
results. However, in the next layer of the network, the bit-width
for the computation has already been specified by the
quantization strategy, and the convolution result needs to be
quantized to the specified bit-width for the next layer.
Therefore, we perform Round and Clamp operations on the
activated convolution result to truncate the length of the data to
the specified bit-width as the input feature value for the next
layer. In this way, the intermediate calculation results can also
be stored in low bit-width BRAM, which saves the storage
resources. The Round and Clamp operations consist of a
multiplexer and an adder, which determine whether the first bit
after the reserved bits of the data is equal to 1. If it is 1, the
rounding operation will add 1 to the reserved data result.
Otherwise, it will keep the original value.

With the above design, calculating one pixel in the output
feature map requires multiplication unit, adder tree, activation,
and quantization process. Considering the delay caused by
these processes, it is difficult to output one result value in each
cycle. Therefore, we perform pipeline to improve computing
efficiency, and the specific process is shown in Fig. 4.

Fig. 4. The PE pipeline.

We assume that each process requires one clock cycle Δt,
and calculating one output pixel requires m processes.
According to the above settings, if no pipeline is applied, the
number of cycles required to calculate all the pixels in the
output feature map can be expressed as:

i out outT mH W t 
  

Wout，Hout represent the width and height of the output

feature map, which can be calculated based on the convolution
process.

1

1

i
out

i
out

H K
H

S

W K
W

S

 



  

   

Hi, and Wi are the height and width of the input feature map,
K is the size of the convolution kernel, and S represents the
convolution stride. With the pipeline, every clock cycle can
generate one output pixel value except for the first output pixel
point calculation process. The total number of calculation
cycles can be reduced to the result expressed in (12). By
comparing (10) and (12) , the computing efficiency has got
improved significantly.

(1)i out outT H W t m t     
  

B. Folding Design

In one layer of the CNNs, there are many identical
structures of channels, and even in many CNNs, there are
many layers with the same structure and convolution method.
When there are many channels in each layer, full parallel
design according to the layer order in FPGA will inevitably use
a large amount of calculation and storage resources, which may
even exceed the existing resources of the FPGA [29].
Moreover, in CNNs, data needs to be passed in layer order, and
it is difficult to parallelize between layers. Therefore, based on
the above two calculation characteristics, we fold the original
data flow to reduce the number of PE, and map it to hardware
using the method of PE reuse. So different network layers can
share PE while still keep the original computing efficiency.
The process is shown in Fig. 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

812 | P a g e

www.ijacsa.thesai.org

Fig. 5. Streaming folding diagram.

When different layers share the same PE, a control module
needs to be introduced because there are differences in weight
parameters, convolution strides, and other information between
each layer of the CNN. The control module can dynamically
switch the computing mode according to the requirements of
different layers, such as adjusting the address for loading pre-
trained weights, the source of input feature, and the address for
storing intermediate calculation results. So, we need to pre-
analyze the structural parameters of the selected CNN, compile
the layer number, the storage address of the pre-trained weight,
the convolution stride, the BRAM position where the
intermediate cached result is stored, and other information of
each layer into one instruction data and write it into FSM. After
FSM outputs instructions, they are divided into segments. The
calculation and data flow in FPGA can be uniformly allocated
through various instruction segments. The length L of each
segment can be macro-defined according according to (13).

2i iL log N      

Ni represents the number of species included in the i-th
segment. If it is assumed to perform calculations on the first
channel (64 channels in total) of the first layer (20 layers in
total) of the network, the format of this instruction provided by
FSM is shown in Fig. 6.

C. Optimization of Data Reading Methods

In the design of mainstream accelerators [31], to avoid high
latency caused by accessing off-chip memory, weight
parameters and intermediate calculation results are usually
stored into on-chip BRAM memory in sequential order directly.
However, when reading data, only one or two data can be read
per clock according to the corresponding address. After
quantization to low-bit-width fixed-point numbers, if the data
is still transmitted according to the previous method, it will
result in underutilization of bandwidth resources and a
mismatch between data reading speed and computation speed.
Therefore, a new data reading method is proposed to
reorganize low-bit-width data by concatenating multiple low-
bit-width data into one long word. At the same time, true dual-
port RAM and register set are used in combination with data
reuse to improve reading speed.

This method for reading data through 3×3 convolution is
explained as follows: When reading the data, it is necessary to
first set up a two-dimensional register set as a buffer between
RAM and Conv module, as shown in Fig. 7.

Fig. 6. The instruction format.

Fig. 7. Buffer structure diagram

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

813 | P a g e

www.ijacsa.thesai.org

Double-port RAM is a type of memory component that has
two independent data ports. The write data width of a double-
port RAM is set to twice the read data width, 2N bits. When
reading the data, two addresses are set as adjacent numbers, so
that four adjacent data can be read and stored into the first row
of the two-dimensional register set within one clock cycle.
Then, in the next clock cycle, four adjacent data are read
according to the address and stored into the second row of the
register set. After the register set is full, the data from columns
1 to 3 can be directly read to achieve 3×3 full parallel
convolutional calculation. Then, the data from columns 2 to 4
can be read to complete the second convolution, while reusing
the second and third columns of data, thus reducing the overall
data access. Additionally, when FPGA resources are sufficient,
a larger register set and higher reading data width can be set,
which not only can realize a higher data reuse ratio, but also
can achieve a faster pipeline operation.

IV. EXPERIMENTS AND RESULT

To verify the effectiveness of the proposed method in this
paper, the Resnet20 model was selected for validation on the
CIFAR-10 dataset. The deep learning framework PyTorch was
used to complete the quantization training experiment and
mixed precision strategy search process on a server equipped
with an NVIDIA Tesla T4 GPU. The quantized Resnet20
model was designed using the Verilog language on a Kintex 7
Eco R2 development board, and data reports were generated
through synthesis and implementation with Vivado 2019.2 to
analyze resource utilization and power consumption.

A. Resnet20 Quantization Experiment

The full precision Resnet20 model is iteratively trained on
the CIFAR-10 dataset for 300 times. The accuracy of the
training result is 92.89%, which was used as the pretrained
model for quantization. We set the inference accuracy of the
quantized model to not be less than 91.5%. The main network
structure of Resnet20 is shown in Fig. 8, which has three types
of residual blocks, with the convolution kernel size, channel
number, and padding mode being the same in each type.
According to this structural feature, we divided the network
into five major structural blocks. The first layer is the first
structural block, layers 2-7 are the second structural block,
layers 8-14 form the third structural blocks, layers 15-21 form
the fourth structural block, and the last fully connected layer is
the fifth structural block.

Based on the above settings, we search for the quantization
strategy in Algorithm 1, the final quantization bit-width results
of the Resnet20 are shown in Fig. 9.

The activation and weight bit-widths of the first and fifth
structural blocks are both quantized to 8 bits, the weight bit-
widths of the second and third structural blocks (layers 2-14)
are quantized to 7 bits, and the weight bit-widths in the fourth
structural block (layers 15-21) are quantized to 8 bits, with the
activation bit-width being 7 bits.

After mixed precision quantization and retraining of
Resnet20, the inference accuracy is 91.68%, with only a 1.21%
loss compared to the full precision Resnet20.

Fig. 8. Partial structure diagram of Resnet20.

Fig. 9. Quantization bit width strategy for Resnet20.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

814 | P a g e

www.ijacsa.thesai.org

Table I shows the comparative results of related work. In
[33], the method of uniformly quantizing to 8 bits was used,
and the accuracy was 90.7%. But in our paper, by reasonably
allocating different bit-widths for each quantization layer, the
accuracy is still 0.98% higher than their method even with
lower bit-widths. In [34], after quantizing the full precision
model to 8 bits and directly transplanting it to the FPGA
platform, the calculation error caused by replacing the original
floating-point numbers with fixed-point numbers resulted in
an accuracy loss of 6.92%. By comparing this method, it can
be seen that our paper greatly reduces the loss of CNN
accuracy by performing quantization training and selecting a
more suitable quantization method for the FPGA, making the
quantized CNN closer to the full precision one.

B. Accelerator Design Experiment

1) Analysis of FPGA resource usage: Firstly, we tested the

resource requirements for different bit-width multipliers in

this experiment by using the synthesis tool in Vivado 2019.2,

as shown in Table II. It can be seen that it takes 2 Digital

Signal Processors (DSPs), 128 Look UpTables (LUTs) and

299 Flip Flops (FFs) to complete 32-bit floating-point

multiplication. If DSP is not used, it would require 606 LUTs

and 805 FFs to construct a 32-bit floating-point multiplier. By

quantizing the multiplication operation to no higher than 8

bits, the resource usage can be reduced significantly. For

example, the 7bits×bits multiplier only needs 45 LUTs and 13

FFs. The main chip xc7k325tffg676-2 in the development

board used in this experiment has only 840 DSPs, but it has

203800 LUTs. Despite the limited number of DSPs available,

additional multipliers are still required to achieve high parallel

computations. So both DSPs and LUTs are needed to be used

in combination to perform convolution operations in this

paper.

Table III displays the Multiply-Accumulate operations
(MACs) and resource usage and for each PE. According to the
quantization results of Section IV.A in the first block,
calculations are performed using 8bits8bits multipliers,
therefore, PE 1 is equipped with 432 DSPs of the 8bits×8bits
type, allowing for concurrent processing of 48 sets of 3×3
convolutions. The 7bits×6bits multipliers can be used for the
calculations in both the 2nd and 3rd structure blocks according
to the quantization results. So, these two structure blocks (the
2nd to 14th quantization layers) are designed to be folded and
share a single PE (PE 2) with 1152 multipliers, which can
compute up to 128 parallel convolutions of 3×3. The PE 3 used
in the fourth structure block can use 8bits×7bits multipliers, so
the 15th to 21th quantization layers are folded and also
designed with 1152 multipliers. In PE 2 and PE 3, all the
multipliers are implemented using LUTs to compensate for the
limited on-chip DSP resources. In the 22nd layer, which is a
fully connected layer, the computation process is carried out in
PE 4. With its structure consisting of 64 inputs and 10 outputs,
it is designed with 10 DSPs capable of simultaneously
performing 10 parallel Multiply-Accumulate operations.

TABLE I. QUANTIZATION EXPERIMENT RESULTS OF RESNET20.

Quantization Method
Weight

Bit-Widths

Weight Integer

Bit-Widths

Activation

Bit-Widths

Activation Integer

Bit-Widths
Accuracy (%)

Baseline 32 / 32 / 92.89

[33] 8 / 8 / 90.7

[34] 8 / 8 / 84.81 (91.73)

Ours 7/8 2 6/7/8 4 91.68

TABLE II. COMPARISON OF RESOURCE USAGE FOR DIFFERENT MULTIPLIERS

Multiplier Type (m-bit × n-bit) LUTs FFs DSPs Power (W)

32×32 (float) 128 299 2 0.184

32×32 (float) 606 805 0 0.191

16×16 (fixed) 280 32 0 0.192

8×8 (fixed) 71 16 0 0.173

8×8 (fixed) 0 0 1 0.173

8×7 (fixed) 63 15 0 0.172

7×6 (fixed) 45 13 0 0.17

TABLE III. RESOURCE USAGE FOR PE UNITS

Quantized

layer number
Convolution kernel size MACs

PE

number

Multiplier type

(m bits×n bits)
LUTs DSPs FFs BRAMs

1 16×3×3×3 884736 1 8×8 7040 432 11008 8

2-7 16×16×3×3 28311552 2 7×6 67768 0 40392 48

8-14 32×16×3×3/32×32×3×3 28311552 2 7×6 67768 0 40392 48

15-21 32×64×3×3/64×64×3×3 28311552 3 8×7 89528 0 49144 96

22 64×10(fully connected layer) 1280 4 8×8 325 10 166 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

815 | P a g e

www.ijacsa.thesai.org

TABLE IV. RESOURCE CONSUMPTION FOR RESNET20

Resnet20 Resource usage Available Utilization (%)

LUT 186257 203800 91.39

FF 148385 407600 36.4%

DSP 442 445 52.6

BRAM(36Kb) 152 840 34.2

The resource requirements for the entire Resnet20 are
shown in Table IV, where the DSP resource utilization rate is
52.6% and LUT resource utilization rate is 91.39%. DSP
resources are used for the first quantized layer and the last
fully connected layer, while both shared accelerators are
constructed entirely using LUTs with low bit-width
multipliers to minimize resource usage. Storage areas can be
recycled, thereby saving a large amount of BRAM resources.

2) Analysis of the buffer reading and writing: In the

Resnet20, all convolution kernel sizes are 3×3, so only one

data reading and writing method needs to be designed. This

paper sets the register set size to 6×8, and each set can hold 48

data to provide the data required for 24 convolutions. Using

the method described in Section 3.3 to read and write data,

four data can be written into the register set per cycle, so it

will take 12 cycles to fill the entire register set.

To achieve efficient computation, pipeline is added to the
writing and reading operations. The specific process is shown
in Fig. 10. When reading data from rows 4-6, new data is
written into rows 1-3, and the data in rows 4-6 can be used to
complete reading and calculation in 6 cycles. During these 6
cycles, the data in rows 1-3 can be updated by writing new
data into them. Similarly, when reading data from rows 1-3,
new data is written into rows 4-6. This can achieve the ability
to read 9 data required for a 3×3 convolution every cycle.

3) FPGA accelerator performance analysis: In order to
validate the advantage of FPGA accelerator, we evaluated the
computational efficiency of three different platforms: CPU
(Intel Core i5-12400), GPU (NVIDIA RTX 2070 SUPER),
and FPGA. Table V shows the results of Resnet20 model
inference time and energy consumption on CIFAR-10 dataset
using three different platforms. Since the CPU and GPU
platforms perform better with large batch sizes, we set the
batch size to multiple values to obtain their highest
performance. The inference time per image was obtained by
dividing the total time by the batch size.

The experimental results show that, the computing speed is
4.27 times faster than that of the CPU after quantization, layer
fusion, and parallel computation using FPGA, and the required
power only needs 5% of the CPU's power consumption.
Moreover, because we design a large number of parallel PEs
while also deeply customizing the CNN structure, our work
achieves similar computational speed under a power
consumption of only 6.2% of the GPU platform. Since our
design retains the characteristics of the streaming processing
architecture, it can still adopt pipeline design when applied to
the computation of multiple sets of input images, and each PE
can serve as a stage pipeline, which can further improve the
overall computational performance.

TABLE V. COMPARISON WITH OTHER EXPERIMENTAL PLATFORMS

Platform
Frequency

(MHz)

Latency

(ms)

Power

consumption (W)

Speedup

ratio

CPU 2500 2.01 65 1

GPU 1605 0.54 215 3.72

FPGA 100 0.47 13.31 4.27

Fig. 10. Reading and writing data pipeline diagram.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

816 | P a g e

www.ijacsa.thesai.org

Table VI shows the comparative results of other related
work. In [35], the FFT method is used to reduce a certain
amount of computational complexity, but still uses 16 bits
long-data for computation. Due to the high computational
complexity brought by long-bit-width data operations, in the
case of limited DSP resources, it limits the computational
parallelism. But multiple types of PEs are used in our paper
which is suitable for different types of low-bit-width data
operations to avoid low computational efficiency of a single
long-bit-width PE structure. Therefore, compared with this
method, our paper shortens the time by 89.3 times and reduces
power consumption by 21.8 times. In addition, our paper
reasonably allocates bit-widths for each layer of the CNN to
improve its accuracy by 0.43%. In [36], they deploy a binary
Resnet20 using an Application Specific Integrated Circuit
(ASIC), and all network parameters are quantized to 1 bit.

This method reduces computational complexity to the
minimum via ultra low bit-widths, achieves higher frequency
of operations and lower power consumption as shown in Table
VI. However, this ultra low bit-width quantization method
also produces a large precision error, which greatly affects the
performance of the CNN. But the mixed precision
quantization method and retraining the quantized model in our
paper achieve a higher accuracy rate of 9.88% than that. In
terms of computational speed, by efficiently utilizing the
development board resources and increasing the parallelism of
convolution calculation through multiplication circuits built
with LUTs, it has achieved lower computational latency. In
[37], the Winograd algorithm is used to reduce the
computational load, but 16-bit data operation limits the overall
performance, the mix precision low bit-width CNN in our
work is more effective.

TABLE VI. PERFORMANCE COMPARISON

Work
Experiment

Platform

Frequency

(MHz)

Bit-Width

(bits)
Latency (ms)

Throughput

(GOP/S)

Energy

(mJ)
Accuracy

[35] Zynq 7020 154 16 42 / 137 91.25

[36] ASIC 65nm 1000 1 0.98 / 3.8 81.8

[37] ZynqZ7035 150 16 / 43.5 / /

our Kintex 7 100 6-8MP 0.47 179 6.26 91.68

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a high-performance CNN design
method tailored for edge computing. Employing quantization
methods and a strategy search algorithm in the software
algorithm mitigated the significant accuracy loss associated
with quantizing CNN models. In the FPGA accelerator design,
we implemented a reuse structure based on a streaming
processing architecture. This involved designing different
Processing Elements (PEs) according to the characteristics of
the CNN model structure and quantization bit-width. Notably,
different network layers could share the same PE, optimizing
resource utilization. For efficient data transmission, we adopted
a strategy of packing quantized low-bit-width data into long
words. This approach fully leveraged high-bandwidth data
transfer, utilizing a register set as a buffer and employing a data
reuse method to achieve synchronous data reading and
computing. The validation of our method using Resnet20 on
the CIFAR-10 dataset demonstrated its effectiveness.
Comparative analysis with other computational platforms and
related works revealed that our CNN accelerator outperformed
a unified 16-bit FPGA accelerator design, achieving an 89-fold
increase in computing speed with lower power consumption.
Specifically, our CNN accelerator exhibited a computing speed
3.72 times faster than the GPU (RTX 2070 SUPER), while
consuming only 6.2% of its power. In conclusion, our research
presents a novel approach to high-performance CNN design for
edge computing, showcasing substantial improvements in
computing speed and power efficiency compared to existing
methods. As part of future work, we plan to explore further
optimizations and scalability of our approach, addressing
potential challenges and extending its applicability to broader
CNN architectures and datasets.

ACKNOWLEDGMENT

This research was funded by the National key R&D
Program of China (2022YFE0107300).

REFERENCES

[1] Q. Jian, P.Y.Zhang and X. J. Wu. “FPGA implementation method for a
configurable CNN Co-accelerator,” Journal of Electronics, vol. 47, no. 7,
pp. 1525-1531, 2019.

[2] X. Peng. , J. Yu, B. Yao. L. Liu, Y. Peng. “A Review of FPGA-Based
Custom Computing Architecture for Convolutional Neural Network
Inference,” Chinese Journal of Electronics, vol. 30, no. 1, pp. 1-17, 2021.

[3] K. Guo. “Angel-Eye: A Complete Design Flow for Mapping CNN Onto
Embedded FPGA,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 1, pp. 35-47, 2018.

[4] Y. Yu, C. Wu, T. Zhao, K Wang, and L. He, “OPU: An FPGA-based
overlay processor for convolutional neural networks,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28,
no. 1, pp. 35–47, 2020.

[5] Y. Wu, L. Kai, Y. Liu, et al． “Progress and trend of deep learning
FPGA accelerator,” Chinese Journal of Computers, vol. 42, no. 11, pp.
2461-2480, 2019.

[6] A. Shawahna, Sait. S. M, El-Maleh. A． “FPGA-based accelerators of
deep learning networks for learning and classification: a review,” IEEE
Access, vol. 7, pp. 7823-7859, 2018.

[7] Z. J. Lin, X. W. Gao, X. P Chen, et al. “Design of high parallel CNN
accelerator based on FPGA for AIoT,” The Journal of China
Universities of Posts and Telecommunications, vol. 29, no. 05, pp. 1-9,
2022.

[8] Q. Dou, Y. Deng, R. Deng, et al. “Laius: an energy-efficient FPGA
CNN accelerator with the support of a fixed-point training framework,”
International Journal of Computational Science and Engineering, vol. 21,
no. 3, pp. 418-428, 2020.

[9] Y. Ma, Y. Cao, S. Vrudhula, J.S. Seo, “Optimizing Loop Operation and
Dataflow in FPGA Acceleration of Deep Convolutional Neural
Networks,” In Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 45–54, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 12, 2023

817 | P a g e

www.ijacsa.thesai.org

[10] T. Chen, Z. Du, N. Sun, “DianNao: A Small-Footprint High-Throughput
Accelerator for Ubiquitous Machine-Learning,” SIGARCH Computer
Architecture News, vol. 42, no. 1, pp. 269-284, 2014.

[11] Y. Chen, T. Krishna, J. S. Emer, V. Sze. “Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, 2017.

[12] S. Yin, P. Ouyang, S. Tang. “A High Energy Efficient Reconfigurable
Hybrid Neural Network Processor for Deep Learning Applications,”
IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 968-982, 2018.

[13] X. Ruan, W. Hu, Y. Liu. “Dynamic sparsity and model feature learning
enhanced training for convolutional neural network-pruning,”
SCIENTIA SINICA Technologica, vol. 52, no. 5, pp. 667-681, 2022.

[14] J.Wang. “Lightweight and real-time object detection model on edge
devices with model quantization,” Journal of Physics: Conference Series,
vol. 1748, no. 3, pp.1-10, 2021.

[15] B. Jacob, S. Kligys, B. Chen, et al. “Quantization and Training of Neural
Networks for Efficient Integer-arithmetic-only Inference” Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2704-2713, 2018.

[16] J. Achterhold, J. M. Koehler, A. Schmeink, et al. “Variational Network
Quantization,” International Conference on Learning Representations,,
pp. 1-18, 2018.

[17] M. Rastegari, V. Ordonez, J. Redmon, et al. “Xnor-net: Imagenet
Classification Using Binary Convolutional Neural Networks,” European
Conference on Computer Vision, Springer, Cham, pp. 525-542, 2016.

[18] Z. Liu, B. Wu, W. Luo, et al. “Bi-real Net: Enhancing the Performance
of 1-bit Cnns with Improved Represent-ational Capability and Advanced
Training Algorithm,” Proceedings of the European Conference on
Computer Vision(ECCV), pp. 722-737,2018.

[19] Z. Liu, Z. Shen, M. Savvides, et al. “Reactnet:Towards precise binary
neural network with generalized activation functions,” European
conference on computer vision, Springer, Cham, pp. 143-159, 2020.

[20] E. Soufleri and K. Roy, “Network Compression via Mixed Precision
Quantization Using a Multi-Layer Perceptron for the Bit-Width
Allocation,” IEEE Access, vol. 9, pp. 135059-135068, 2021.

[21] D. Lin, S. Talathi, S. Annapureddy, “Fixed point quantization of deep
convolutional networks,” International conference on machine learning,
pp. 2849-2858, 2016.

[22] K. Wang, Z. Liu Z, Y. Lin, et al. “Haq: Hardware-aware Automated
Quantization with Mixed Precision,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8612-
8620, 2019.

[23] R. Q. Wang, et al. “Deep Neural Network Compression for Plant
Disease Recognition,” Symmetry, vol. 13, no. 10, pp.1-17, 2021.

[24] P. J. He, Z. Wu, S. Zhang, et al. “Deep network quantization via error
compensation,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 9, pp. 4960-4970, 2022.

[25] Z. Dong, Z. Yao, A. Gholami, et al. “Hawq: Hessian Aware
Quantization of Neural Networks with Mixed-precision,” Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 293-
302 ,2019.

[26] Z. Dong, Z. Yao, D. Arfeen, et al. “Hawq-v2: Hessian Aware Trace-
weighted Quantization of Neural Networks,” Advances in Neural
Information Processing Systems, vol. 33, pp. 18518-18529, 2020.

[27] Y. Yu, C. Wu, T. Zhao, K. Wang and L. He, “OPU: An FPGA-Based
Overlay Processor for Convolutional Neural Networks,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28,
no. 1, pp. 35-47, 2022.

[28] J. Wang, S. Li, Z. An,et al. “Batch-normalized deep neural networks for
achieving fast intelligent fault diagnosis of machines,” Neurocomputing,
2018, vol. 329, pp. 53-65.

[29] G. Li, “Block Convolution: Toward Memory-Efficient Inference of
Large-Scale CNNs on FPGA,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 5, no. 41, pp.1436-1447,
2022.

[30] M. Cho, Y. Kim. “FPGA-Based Convolutional Neural Network
Accelerator with Resource-Optimized Approximate Multiply-
Accumulate Unit,” Electronics, vol. 10, no. 22, pp. 1-16, 2021.

[31] M. Sait. “Optimization of FPGA-based CNN accelerators using
metaheuristics,” The Journal of Supercomputing, vol. 79, no. 4, pp.
4493-4533, 2023.

[32] P. Tommaso, R. Emilio, D. Gianmarco, et al. “A Multi-Cache System
for On-Chip Memory Optimization in FPGA-Based CNN Accelerators,”
Electronics, vol. 10, no. 20, pp. 1-18, 2021.

[33] Gao Z, Zhang H, Yao Y, et al. “Soft error tolerant convolutional neural
networks on fpgas with ensemble learning,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 3, pp. 291-302,
2022.

[34] J Hu, Ying. G, Q. Tian, et al. “Hardware implementation of neural
network accelerator based on RISC-V,” Electronics & Packaging, vol.
23, no. 2, pp. 1-6, 2023.

[35] Abtahi T , Shea C , Kulkarni A , et al. “Accelerating Convolutional
Neural Network With FFT on Embedded Hardware,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, pp. 1-24, 2018.

[36] Hosseini M, Mohsenin T, et, al. “Binary Precision Neural Network
Manycore Accelerator,” ACM Journal on Emerging Technologies in
Computing Systems(JETC), pp . 1-27, 2021.

[37] Y. Yu, P. Zhang, H. Gong, et al. “Lightweight Network Hardware
Acceleration Design for edge computing,” Computer Science, vol. 50,
no. S2, pp. 832-838, 2023.

