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Abstract—To overcome challenges associated with deploying 

Convolutional Neural Networks (CNNs) on edge computing 

devices with limited memory and computing resources, we 

propose a mixed-precision CNN calculation method on a Field 

Programmable Gate Array (FPGA). This approach involves a 

collaborative design encompassing both software and hardware 

aspects. Initially, we devised a CNN quantization method tailored 

for the fixed-point operation characteristics of FPGA, addressing 

the computational challenges posed by floating-point parameters. 

We introduce a bit-width strategy search algorithm that assigns 

bit-widths to each layer based on CNN loss variation induced by 

quantization. Through retraining, this strategy mitigates the 

degradation in CNN inference accuracy. For FPGA acceleration 

design, we employ a flow processing architecture with multiple 

Processing Elements (PEs) to support mixed-precision CNNs. 

Our approach incorporates a folding design method to 

implement shared PEs between layers, significantly reducing 

FPGA resource usage. Furthermore, we designed a data reading 

method, incorporating a register set buffer between memory and 

processing elements to alleviate issues related to mismatched data 

reading and computing speeds. Our implementation of the 

mixed-precision ResNet20 model on the Kintex-7 Eco R2 

development board achieves an inference accuracy of 91.68% 

and a computing speed 4.27 times faster than the Central 

Processing Unit (CPU) on the CIFAR-10 dataset, with an 

accuracy drop of only 1.21%. Compared to a unified 16-bit 

FPGA accelerator design method, our proposed approach 

demonstrates an 89-fold increase in computing speed while 

maintaining similar accuracy. 

Keywords—Convolutional Neural Networks (CNNs); edge 

computing technologies; Field Programmable Gate Array (FPGA) 

accelerator; mixed precision quantization; loss variation 

I. INTRODUCTION 

Nowadays, deep learning has brought new development 
opportunities for Internet of Things (IoT). Among them, CNNs 
are widely used in many areas such as face recognition, 
autonomous driving, and unmanned air vehicles for their 
outstanding performance [1]. CNN consists of two stages, 
which are training and inference. Usually, training is a one-
time off-line process, which is based on computing platform 
with large computing resources and high power consumption. 
Inference can be deployed on edge computing devices, in order 
to obtain shorter processing delay and avoid the impact of 
communication situation [2]. 

However, with the development of deep learning, the size 
of CNNs continues to increase to obtain stronger learning 
ability, resulting in larger network computations, more 
parameters, and more complex network structures. At the same 
time, many edge computing platforms have limited storage and 
computing resources, restriction on power consumption and 
latency. Therefore, the use of CNN inference on edge 
computing devices has become an important challenge in the 
field of Artificial Intelligence (AI) research. 

Currently, many FPGA acceleration methods [3] for CNNs 
have been proposed. With FPGA's parallelism and flexible 
configuration, it can be deeply customized for the CNN 
structure through parallel computing methods [7] to provide 
accelerated services for deep learning, achieving higher 
performance and power efficiency. 

Chen et al. [10] proposed the DianNao CNN accelerator, 
which adopted a three-level pipeline architecture consisting of 
multiplication, addition, and sigmoid functions. By reusing the 
weights stored in the on-chip memory, it reduced the need for 
accessing off-chip data, thereby lowering memory access 
power consumption. The CNN accelerator Eyeriss [11] was 
proposed, which employed a row stationary dataflow to 
maximize data reuse in the computation array and minimize 
memory access. The authors of this article reference [12] 
proposed the energy-efficient and reconfigurable hybrid neural 
network processor Thinker. Each computing unit in Thinker 
supports adaptive computation for different data bit-widths 
required by neural networks. The maximum operating 
frequency is 200MHz, and the supported data bit-widths are 8-
bit and 16-bit. 

Additionally, quantization [13] can be used to reduce 
model sizes and hardware resource consumption, such as 
replacing original 32-bit floating-point operations with lower 
precision fixed-point numbers like 8-bit or 16-bit. Jacob et al. 
[15] proposed an integer quantization method, which uniformly 
quantizes both weight and activation to 8-bit. Furthermore, 
there are ultra low-bit quantization methods, such as ternary 
quantization [16] which quantifies weights into {-w, 0, +w}, 
and even binary quantization neural networks [17], which 
quantize weights and activation values to 1 or -1. 

However, using a unified quantization bit-width in ultra 
low-bit-width situations would significantly affect CNN 
performance. A highly effective solution to this problem is 
through mixed precision quantization [20]. It allows each layer 
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of the CNN model to have different quantization bit-widths. 
which can greatly preserve the performance. Lin et al. [21] 
proposed an analytical solution to address the fixed-point 
quantization problem. It seeks an optimal bit-width allocation 
strategy across network layers by optimizing the Signal-to-
Quantization-Noise Ratio (SQNR). Wang et al. [22] designed a 
Hardware Aware Quantization (HAQ) algorithm that 
incorporates inference speed information evaluated by a 
hardware simulator into the training process, which utilized 
reinforcement learning to automatically determine quantization 
strategies. It reduces latency by 1.4-1.95 times and energy 
consumption by 1.9 times. However, the current methods face 
challenges in their applicability to FPGA platforms or in terms 
of high time and space complexity when searching for mixed 
precision strategies. 

In conclusion, if we have an efficient mixed precision 
search algorithm and can apply the strategies obtained by this 
algorithm to FPGA platforms; it will be greatly significant for 
the application of deep learning on AIoT devices. Therefore, 
we propose a method for implementing a mixed precision 
CNN model on FPGA, co-designing from software and 
hardware aspects. The main innovation points are as follow: 

1) A quantization method is proposed that is more suitable 

for FPGA's fixed-point operation characteristics. Combined 

with a mixed precision strategy search algorithm with the 

optimization objective of the lowest bit-width for each layer 

and the constraint of the accuracy of the CNNs achieve mixed 

precision calculation of CNNs. 

2) In terms of FPGA accelerator design, an inter-layer 

storage and multi-PEs reuse mechanism is proposed based on 

the streaming processing architecture. And performing folding 

design between different CNN layers not only retains the 

flexibility of the streaming processing architecture but also 

saves hardware resources and improves the computing 

efficiency of each PE. 

3) A new data reading method is designed using a high 

bit-width data transmission mode to read multiple data in a 

single cycle, efficiently utilizing bandwidth to transfer data. In 

addition, a register set is added as a buffer between the Block 

Random Access Memory (BRAM) and the PE to solve the 

problem of mismatch between reading and computing speed. 

Based on the above, the purpose of this paper is to explore 
an efficient method for searching mixed precision quantization 
strategies and implementing mixed precision computation of 
CNN on the FPGA platform. The goal is to achieve high 
performance CNN computations within limited computational 
and storage resources. 

This paper is structured as follows: Section II elucidates the 
mixed precision quantization method and outlines the strategy 
for bit-width exploration in the context of CNNs. In Section III, 
the FPGA platform accelerator is detailed, encompassing the 
overall architecture, parallel processing elements (PE), and an 
efficient data transfer mechanism. Section IV delves into the 
experimental results of quantization and assesses the 
performance of the mixed precision accelerator. Finally, 

Section V provides a comprehensive conclusion and future 
work for the paper. 

II. MIXED PRECISION QUANTIZATION FOR CNNS 

A. Design of Quantization Method 

Although many existing quantization methods can reduce 
the parameter storage of CNNs through encoding and decoding, 
the quantized parameters are still computed using floating-
point numbers [23]. When implemented to the FPGA platform, 
the fixed-point number used differs in precision from the 
original floating-point number, which leads to calculation error 
and causes drop of inference accuracy. Therefore, a 
quantization method suitable for FPGA has been designed to 
convert the parameters in the CNN model into fixed-point 
numbers, and retrain the quantized model to reduce the 
degradation of its accuracy. The quantization process consists 
of two steps: first, the floating-point number is transformed 
into a fixed-point number, which is left shifting, amplified, 
rounded, and truncated to a n-bit fixed-point integer. Then, the 
fixed-point decimal value is restored to an approximately 
original value through right shifting. 

The process of converting a 32-bit floating-point number X 
to a n-bit integer Xint is shown as follows: 

1( (2 ) )n l

int min maxX clamp round X ,Q ,Q    

Where l is the number of bits in the integer part of X, Qmin=-

2
n-1 ， Qmax=2

n-1
-1 ， round() is the rounding function, and 

clamp() is defined as follows: 

a, x a

clamp( x,a,b ) x, a x b

b, x b




  
 

  

For example, the process of quantizing a decimal with a 
floating-point number of 1.253 to an 8-bit fixed-point number 
(assuming 1 sign bit, 3 bits of integer width, and 4 bits of 
decimal width) can be shown in Fig. 1. 

The floating-point number 1.253 is shifted left by 4 bits 
(multiplied by 2

4
) and then amplified to obtain 20.048. Then, it 

is rounded and clamped to obtain an integer value of 20. 
Finally, the quantized integer value is shifted right by 4 bits 
(divided by 2

4
) to obtain the fixed-point value of 1.25. Hence, 

it is possible to replace 32-bit floating-point numbers with 8-bit 
fixed-point numbers in order to make them more easily 
deployable in FPGA. 

 
Fig. 1. Quantization Process Diagram. 
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Suppose the activation value A and weight parameter W in 
the CNNs are quantized to Aint and Wint respectively, then the 
convolutional process can be transformed into,  

1 2
2 A Wl l n

int intY A*W b A W b
  

     
 

where b represents bia, lA and lW represent the integer bit 
width of activation value A and weight parameter W, 
respectively. 

Through (3), the floating-point number in the convolution 
process can be quantized into n-bit integer. After completing 
the convolution calculation, right shifting can restore the 
approximate value to the original result. Using shifting and 
integer operations instead of floating-point arithmetic can 
reduce the computational resource requirements for floating-
point operations, which is easy to implement in FPGA. 
Moreover, the quantized fixed-point CNN can be retrained, 
greatly reducing the accuracy drop caused by directly 
implementing the CNN model to the FPGA platform. 

B. Quantization Bit-Width Strategy Search Algorithm 

Allocating appropriate quantization bit-widths for each 
layer in a CNN model is an important challenge in 
implementing mixed precision operations. Assuming there are 
20 convolutional layers in a CNN model, each convolutional 
layer can be assigned a bit-width value ranging from 1 to 32. 
There are 32

20
 quantization schemes, and several schemes 

produce different inference accuracy and occupy different 
hardware resources. Therefore, selecting a suitable quantization 
scheme that has high accuracy and is also easy to deploy on 
FPGA requires an efficient strategy search algorithm. A novel 
CNN mixed precision quantization method is proposed by 
using quantization loss variation [25] to adjust the bit-widths of 
each layer, which can avoid this exponential search space. 

1) Calculation of quantization loss variation: The 

quantization loss variation is an important indicator of bit-

width allocation. We found that the loss variation is related to 

both the first and second derivatives (Hessian matrix) 

information of each quantization layer and the quantization 

error. It can be expressed by as shown as follows using Taylor 

expansion: 

1
( ) ( ) ( ) ( )

2

T T

QΔL L W L W g W ΔW ΔW H W ΔW   


g() represents the first derivative of the weight parameter W 
in the full-precision CNNs, H() represents the second 
derivative, L() represents the cross-entropy loss function 
commonly used in CNNs, and WQ represents the weight 
parameter of the quantized CNNs. When studying the loss 
variation brought by second-order information, it is very 
difficult to directly calculate the relevant values of the Hessian 
matrix due to the large amount of weight parameters in CNNs. 
Therefore, the power iteration method can be used to 
approximate the maximum eigenvalue of the Hessian matrix. 
For each quantization layer, perturbations can be added in the 
direction of the corresponding eigenvector of the Hessian 
matrix as the quantization error [25], and then calculates the 
corresponding loss variation. Thus, we add perturbations in 
both gradient direction and Hessian matrix eigenvector 

direction separately in each quantization layer as the 
quantization error ΔW, as shown in (5). 

i i

λ g(W )
ΔW

λ H (W ) V


 

    

The λ can be used to adjust the size of perturbation. 
Hi(W)∙Vi represents the eigenvector corresponding to the 
maximum eigenvalue of the Hessian matrix for the i-th 
quantization layer, which can be calculated by (6) and the 
power iteration method. 

( )T T T
Ti i i i i

i i i i i

i i i i

g V g V g
V g V H V

W W W W

   
   

     

Vi is a random vector with the same dimension as the i-th 
quantization layer. The quantization error ΔW in the gradient 
direction is applied to the selected quantization layer and 
calculate the perturbed CNN loss variation ΔL1. Then, the 
quantization error in the eigenvector direction of the Hessian 
matrix is applied to this quantization layer and the new loss 
variation is recalculated as ΔL2. Finally, the maximum value 
between ΔL1 and ΔL2 is taken as the loss variation caused by 
this quantization layer. 

2) Search method design: To reduce the search space, 

adjacent quantization layers in the CNNs with the same 

structural characteristics (such as kernel size, number of 

channels, and padding method) are merged into quantization 

blocks. The method described in last section is used to 

calculate the loss variation of different quantization blocks. 

High bit-widths are assigned to the quantization blocks that 

cause large loss variations, while low bit-widths are used for 

those that cause small loss variations. Then, the model is 

retrained according to the bit-width allocation strategy. The 

feedback results from the training are fed back to the policy 

search module, and the output policy is adjusted based on the 

feedback until the best bit-width allocation method is found. 

The specific process is shown in below Algorithm 1. 

Algorithm 1: Quantization Bit-Width Policy Search 

Input：Pre_Model, Dataset, Loss, Blocks, Acc_Set  

Output：Bit-Width Policy 

1：Blocks = Sort (Blocks, Loss) 

2：Bit_Width = [16, 15, 14, … 4, 3, 2] 

3：Index = 0 

4：While (Index < length (Bit_width)) do 

5： New_policy = upgrade_policy (Bit_width [Index], Blocks) 

6： Model = Quantize (Pre_Model, New_policy) 

7： for i in range(epoch) do 

8： Acc = Train (Model, Dataset) 

9： if (Acc ≥ Acc_Set) then: 

10： Index = Index + 1 

11： else: 

12：  Restore (Blocks) 

13:  Choice_next_block (Blocks) 

14:   return New_policy 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 12, 2023 

809 | P a g e  

www.ijacsa.thesai.org 

In this algorithm, a full precision pretrained model is used 
as the Pre_Model, and the corresponding Loss variation is used 
as input. The layer in pretrained model is merged into Blocks. 
Dataset is used as model training. Then, based on step 1, the 
quantization blocks are sorted in descending order according to 
the Loss values they produce. For the quantization block with a 
larger Loss value, it is quantized first, and the assigned bit-
width is not less than that of the quantization block with a 
smaller Loss value. The quantization bit-width is set from 2 to 
16 bits according to step 2, and the Index set by step 3 is used 
to select the bit-width value. Initially, every quantization block 
selects 16 bits, as shown in step 5. Next, a new CNN model is 
quantized based on the strategy generated by step 5, and the 
model is iteratively trained for epoch times. The highest 
training result is recorded as Acc, as shown in steps 7 and 8. 
Then, the highest training result is compared with the required 
accuracy Acc_Set in step 9 to make a decision. If the 
requirement is met, the Index value is increased according to 
step 10, and an attempt is made to reduce the bit-width of the 
quantization block. If the requirement is not met, the current 
qutization is restored the last policy, then the next quantization 
block is selected to adjust the bit-width value according to 

steps 12, 13. By following the above steps, the appropriate bit-
width is selected for each quantization block in sequence. 

III. MIXED PRECISION ACCELERATOR DESIGN 

The mixed precision quantization of CNN achieves a 
balance between accuracy and compression rate by selecting 
appropriate bit-widths for the weight and activation parameters 
in each layer [26]. Therefore, in the accelerator, a design 
method is adopted that uses multiple types of Conv modules to 
support different bit-width precision operations. This can avoid 
inefficiency of high-bit-width arithmetic units used by low-bit-
width operations. The structure is shown in Fig. 2. 

In advance, the calculation method of each layer in CNN 
model is written into the finite state machine (FSM) in the form 
of instruction according to the sequence. The input image can 
be stored in an off-chip memory, and during computation, burst 
transmission via the AXI4 bus can be used to read the input 
image from the off-chip memory to the Conv module [27]. The 
entire computing process only needs to read the input image 
from off-chip memory once to reduce the high latency and 
energy consumption caused by off-chip reading and writing 
operations. 

 

Fig. 2. The mixed precision accelerator design structure.
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Then, the FSM sends instruction to control the reading of 
weight parameters from the Weight Read-Only Memory (ROM) 
and sends them to the designated PE for convolution, 
activation, quantization (Round and Clamp). Then the 
calculation results are cached in the RAM specified by the 
instruction, and execute subsequent processing according to the 
next instruction provided by FSM. 

For the intermediate buffer data reading and writing 
operations, their throughput can easily become a bottleneck for 
the entire accelerator performance due to the limitations of the 
BRAM reading and writing interfaces. This can cause a 
problem of mismatch between data calculation speed and 
reading speed. Therefore, a register set is introduced as a data 
buffer. The true dual-port RAM and pipeline are 
simultaneously used, which greatly increase the speed of 
reading data into PE. 

In term of weight parameter storage, the quantized weight 
parameters of each layer in the CNN are stored in the ROM 
array (Weight ROM) built of on-chip RAM resources 
according to the address order. During circuit initialization, the 
parameters are stored in the on-chip memory in a ROM 
initialization method. The read width is set to the sum of all 
weight parameter bit-widths in a single convolution kernel. 
Data slicing allows for extracting specific bits from a signal by 
using indices. So the entire long bit-width data can be split and 
sent sequentially to the Conv module after reading the data. In 
ROM IP core provided by Xilinx, the maximum read width can 
reach 4608 bits, which is sufficient to read the weight 
parameters in a convolutional kernel within one cycle. 

The overall processing adopts a streaming processing 
architecture, and the CNN is folded according to the mixed 
precision quantization results in order to share PEs and 
memory resources among different layers. This not only 
alleviates the problem of large resource consumption of the 
streaming processing architecture, but also allows the saved 
resources to be used in each Conv module to improve 
computation parallelism. Meanwhile, the entire network can 
still be designed with pipeline processing. Each computing 
module can serve as a stage pipeline, forming a large-scale 

pipeline design to reduce computation latency under the 
condition of multiple input data. 

A. PE Design 

The PE structure is shown in Fig. 3. It is composed of the 
Conv module, Relu activation, Round and Clamp module. In 
the same PE, all multipliers are the same type. For example, 
the multipliers in Fig. 3 are all M×N type, where M 
corresponds to the weight bit-width and N corresponds to the 
feature data bit-width. The number of multipliers in each group 
is set according to the convolution kernel size. Assuming the 
convolution kernel size is K×K, then K

2
 multipliers are set as 

one group. The number of groups S is set to the least common 
multiple of input channels of all quantization layers using this 
PE. This can fully utilize all multipliers and improve 
computation efficiency when calling this PE. 

In each convolution module, there are multiple layers of 
adder trees and a multiplexer. The number of adder operations 
can be controlled based on the input channel number of the 
current layer to adapt to different computation modes with 
different input channel numbers. For example, if the 
convolution channel S is set to 64 in the PE and the current 
network layer has 32 input channels, then two output pixels can 
be obtained through a binary adder tree of depth 5. When 
computing a network layer with 64 input channels, one output 
pixel needs to be obtained through a binary adder tree of depth 
6. Therefore, we can reuse the PE for different layers by setting 
a multiplexer to output results at different layers of the adder 
tree. 

In CNN models, to accelerate the convergence speed, 
prevent problems such as gradient explosion, gradient 
vanishing, and overfitting, many networks have Batch 
Normalization (BN) layers [28]. The process of calculating the 
BN layer with convolutional result Y through (7), can be 
represented as: 

2 2
γ ( ) γ ( )bn

Y μ W A b μ
Y β β

   

   
     

  

 
Fig. 3. Structure diagram of the PE unit. 
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Where µ and σ represent the mean and standard deviation 
within a batch, γ represents the scaling parameter, β represents 
the offset parameter, and ε is a very small constant set to 0.001. 
However, the additional computation brought by this layer 
makes it more difficult to implement the CNNs on FPGA 
platforms. Thus, the convolution, batch normalization and 
quantization operation are integrated together to solve this 
problem. Firstly, the process of integrating convolution and BN 
can be represented as follows: 

Y W A b      





 


2

W
W =

+ 
2

( )b - μ
b β



 
  

 

Furthermore, the quantization operation (3) can be merged 
into (8) as follows: 

2 1
2  A Wl l n

int intY W * A +b
    

 

The low bit-width fixed-point weight Wint can be obtained 
directly by using the optimal parameters for the weight W' and 
quantization bit-width n and scale factor lA. All of them can be 
obtained from algorithm 1. By integrating the three operations, 
many complex calculations can be completed during 
quantization training, the trained parameters W'int can be stored 
directly in the on-chip ROM of FPGA during circuit 
initialization. So, this significantly reduces lots of calculations 
on the FPGA. 

In addition, an activation layer is often used after the 
convolution operation to increase the non-linear ability of the 
CNN. To simplify the design, we also integer the activation 
layer into PE. The logic structure of the commonly used ReLU 
activation function is shown in the Fig. 3, which uses a 
comparer and multiplexer. The comparer compares the input 
value with zero, and the result controls the multiplexer to 
output either the input value or 0 as the activation value. 

The convolution operation with M bits weights and N bits 
input feature values will result in M+N bits of convolution 
results. However, in the next layer of the network, the bit-width 
for the computation has already been specified by the 
quantization strategy, and the convolution result needs to be 
quantized to the specified bit-width for the next layer. 
Therefore, we perform Round and Clamp operations on the 
activated convolution result to truncate the length of the data to 
the specified bit-width as the input feature value for the next 
layer. In this way, the intermediate calculation results can also 
be stored in low bit-width BRAM, which saves the storage 
resources. The Round and Clamp operations consist of a 
multiplexer and an adder, which determine whether the first bit 
after the reserved bits of the data is equal to 1. If it is 1, the 
rounding operation will add 1 to the reserved data result. 
Otherwise, it will keep the original value. 

With the above design, calculating one pixel in the output 
feature map requires multiplication unit, adder tree, activation, 
and quantization process. Considering the delay caused by 
these processes, it is difficult to output one result value in each 
cycle. Therefore, we perform pipeline to improve computing 
efficiency, and the specific process is shown in Fig. 4. 

 
Fig. 4. The PE pipeline. 

We assume that each process requires one clock cycle Δt, 
and calculating one output pixel requires m processes. 
According to the above settings, if no pipeline is applied, the 
number of cycles required to calculate all the pixels in the 
output feature map can be expressed as: 

i out outT mH W t 
  

Wout，Hout represent the width and height of the output 

feature map, which can be calculated based on the convolution 
process. 

1

1

i
out

i
out

H K
H

S

W K
W

S

 



  

   

Hi, and Wi are the height and width of the input feature map, 
K is the size of the convolution kernel, and S represents the 
convolution stride. With the pipeline, every clock cycle can 
generate one output pixel value except for the first output pixel 
point calculation process. The total number of calculation 
cycles can be reduced to the result expressed in (12). By 
comparing (10) and (12) , the computing efficiency has got 
improved significantly. 

( 1)i out outT H W t m t     
  

B. Folding Design 

In one layer of the CNNs, there are many identical 
structures of channels, and even in many CNNs, there are 
many layers with the same structure and convolution method. 
When there are many channels in each layer, full parallel 
design according to the layer order in FPGA will inevitably use 
a large amount of calculation and storage resources, which may 
even exceed the existing resources of the FPGA [29]. 
Moreover, in CNNs, data needs to be passed in layer order, and 
it is difficult to parallelize between layers. Therefore, based on 
the above two calculation characteristics, we fold the original 
data flow to reduce the number of PE, and map it to hardware 
using the method of PE reuse. So different network layers can 
share PE while still keep the original computing efficiency. 
The process is shown in Fig. 5. 
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Fig. 5. Streaming folding diagram. 

When different layers share the same PE, a control module 
needs to be introduced because there are differences in weight 
parameters, convolution strides, and other information between 
each layer of the CNN. The control module can dynamically 
switch the computing mode according to the requirements of 
different layers, such as adjusting the address for loading pre-
trained weights, the source of input feature, and the address for 
storing intermediate calculation results. So, we need to pre-
analyze the structural parameters of the selected CNN, compile 
the layer number, the storage address of the pre-trained weight, 
the convolution stride, the BRAM position where the 
intermediate cached result is stored, and other information of 
each layer into one instruction data and write it into FSM. After 
FSM outputs instructions, they are divided into segments. The 
calculation and data flow in FPGA can be uniformly allocated 
through various instruction segments. The length L of each 
segment can be macro-defined according according to (13). 

2i iL log N      

Ni represents the number of species included in the i-th 
segment. If it is assumed to perform calculations on the first 
channel (64 channels in total) of the first layer (20 layers in 
total) of the network, the format of this instruction provided by 
FSM is shown in Fig. 6. 

C. Optimization of Data Reading Methods 

In the design of mainstream accelerators [31], to avoid high 
latency caused by accessing off-chip memory, weight 
parameters and intermediate calculation results are usually 
stored into on-chip BRAM memory in sequential order directly. 
However, when reading data, only one or two data can be read 
per clock according to the corresponding address. After 
quantization to low-bit-width fixed-point numbers, if the data 
is still transmitted according to the previous method, it will 
result in underutilization of bandwidth resources and a 
mismatch between data reading speed and computation speed. 
Therefore, a new data reading method is proposed to 
reorganize low-bit-width data by concatenating multiple low-
bit-width data into one long word. At the same time, true dual-
port RAM and register set are used in combination with data 
reuse to improve reading speed. 

This method for reading data through 3×3 convolution is 
explained as follows: When reading the data, it is necessary to 
first set up a two-dimensional register set as a buffer between 
RAM and Conv module, as shown in Fig. 7. 

 
Fig. 6. The instruction format. 

 
Fig. 7. Buffer structure diagram
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Double-port RAM is a type of memory component that has 
two independent data ports. The write data width of a double-
port RAM is set to twice the read data width, 2N bits. When 
reading the data, two addresses are set as adjacent numbers, so 
that four adjacent data can be read and stored into the first row 
of the two-dimensional register set within one clock cycle. 
Then, in the next clock cycle, four adjacent data are read 
according to the address and stored into the second row of the 
register set. After the register set is full, the data from columns 
1 to 3 can be directly read to achieve 3×3 full parallel 
convolutional calculation. Then, the data from columns 2 to 4 
can be read to complete the second convolution, while reusing 
the second and third columns of data, thus reducing the overall 
data access. Additionally, when FPGA resources are sufficient, 
a larger register set and higher reading data width can be set, 
which not only can realize a higher data reuse ratio, but also 
can achieve a faster pipeline operation. 

IV. EXPERIMENTS AND RESULT 

To verify the effectiveness of the proposed method in this 
paper, the Resnet20 model was selected for validation on the 
CIFAR-10 dataset. The deep learning framework PyTorch was 
used to complete the quantization training experiment and 
mixed precision strategy search process on a server equipped 
with an NVIDIA Tesla T4 GPU. The quantized Resnet20 
model was designed using the Verilog language on a Kintex 7 
Eco R2 development board, and data reports were generated 
through synthesis and implementation with Vivado 2019.2 to 
analyze resource utilization and power consumption. 

A. Resnet20 Quantization Experiment 

The full precision Resnet20 model is iteratively trained on 
the CIFAR-10 dataset for 300 times. The accuracy of the 
training result is 92.89%, which was used as the pretrained 
model for quantization. We set the inference accuracy of the 
quantized model to not be less than 91.5%. The main network 
structure of Resnet20 is shown in Fig. 8, which has three types 
of residual blocks, with the convolution kernel size, channel 
number, and padding mode being the same in each type. 
According to this structural feature, we divided the network 
into five major structural blocks. The first layer is the first 
structural block, layers 2-7 are the second structural block, 
layers 8-14 form the third structural blocks, layers 15-21 form 
the fourth structural block, and the last fully connected layer is 
the fifth structural block. 

Based on the above settings, we search for the quantization 
strategy in Algorithm 1, the final quantization bit-width results 
of the Resnet20 are shown in Fig. 9. 

The activation and weight bit-widths of the first and fifth 
structural blocks are both quantized to 8 bits, the weight bit-
widths of the second and third structural blocks (layers 2-14) 
are quantized to 7 bits, and the weight bit-widths in the fourth 
structural block (layers 15-21) are quantized to 8 bits, with the 
activation bit-width being 7 bits. 

After mixed precision quantization and retraining of 
Resnet20, the inference accuracy is 91.68%, with only a 1.21% 
loss compared to the full precision Resnet20. 

 

Fig. 8. Partial structure diagram of Resnet20. 

 

Fig. 9. Quantization bit width strategy for Resnet20. 
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Table I shows the comparative results of related work. In 
[33], the method of uniformly quantizing to 8 bits was used, 
and the accuracy was 90.7%. But in our paper, by reasonably 
allocating different bit-widths for each quantization layer, the 
accuracy is still 0.98% higher than their method even with 
lower bit-widths. In [34], after quantizing the full precision 
model to 8 bits and directly transplanting it to the FPGA 
platform, the calculation error caused by replacing the original 
floating-point numbers with fixed-point numbers resulted in 
an accuracy loss of 6.92%. By comparing this method, it can 
be seen that our paper greatly reduces the loss of CNN 
accuracy by performing quantization training and selecting a 
more suitable quantization method for the FPGA, making the 
quantized CNN closer to the full precision one. 

B. Accelerator Design Experiment 

1) Analysis of FPGA resource usage: Firstly, we tested the 

resource requirements for different bit-width multipliers in 

this experiment by using the synthesis tool in Vivado 2019.2, 

as shown in Table II. It can be seen that it takes 2 Digital 

Signal Processors (DSPs), 128 Look UpTables (LUTs) and 

299 Flip Flops (FFs) to complete 32-bit floating-point 

multiplication. If DSP is not used, it would require 606 LUTs 

and 805 FFs to construct a 32-bit floating-point multiplier. By 

quantizing the multiplication operation to no higher than 8 

bits, the resource usage can be reduced significantly. For 

example, the 7bits×bits multiplier only needs 45 LUTs and 13 

FFs. The main chip xc7k325tffg676-2 in the development 

board used in this experiment has only 840 DSPs, but it has 

203800 LUTs. Despite the limited number of DSPs available, 

additional multipliers are still required to achieve high parallel 

computations. So both DSPs and LUTs are needed to be used 

in combination to perform convolution operations in this 

paper. 

Table III displays the Multiply-Accumulate operations 
(MACs) and resource usage and for each PE. According to the 
quantization results of Section IV.A in the first block, 
calculations are performed using 8bits8bits multipliers, 
therefore, PE 1 is equipped with 432 DSPs of the 8bits×8bits 
type, allowing for concurrent processing of 48 sets of 3×3 
convolutions. The 7bits×6bits multipliers can be used for the 
calculations in both the 2nd and 3rd structure blocks according 
to the quantization results. So, these two structure blocks (the 
2nd to 14th quantization layers) are designed to be folded and 
share a single PE (PE 2) with 1152 multipliers, which can 
compute up to 128 parallel convolutions of 3×3. The PE 3 used 
in the fourth structure block can use 8bits×7bits multipliers, so 
the 15th to 21th quantization layers are folded and also 
designed with 1152 multipliers. In PE 2 and PE 3, all the 
multipliers are implemented using LUTs to compensate for the 
limited on-chip DSP resources. In the 22nd layer, which is a 
fully connected layer, the computation process is carried out in 
PE 4. With its structure consisting of 64 inputs and 10 outputs, 
it is designed with 10 DSPs capable of simultaneously 
performing 10 parallel Multiply-Accumulate operations. 

TABLE I.  QUANTIZATION EXPERIMENT RESULTS OF RESNET20. 

Quantization Method 
Weight  

Bit-Widths 

Weight Integer  

Bit-Widths 

Activation  

Bit-Widths 

Activation Integer  

Bit-Widths 
Accuracy (%) 

Baseline 32 / 32 / 92.89 

[33] 8 / 8 / 90.7 

[34] 8 / 8 / 84.81 (91.73) 

Ours 7/8 2 6/7/8 4 91.68 

TABLE II.  COMPARISON OF RESOURCE USAGE FOR DIFFERENT MULTIPLIERS 

Multiplier Type (m-bit × n-bit) LUTs FFs DSPs Power (W) 

32×32 (float) 128 299 2 0.184 

32×32 (float) 606 805 0 0.191 

16×16 (fixed) 280 32 0 0.192 

8×8 (fixed) 71 16 0 0.173 

8×8 (fixed) 0 0 1 0.173 

8×7 (fixed) 63 15 0 0.172 

7×6 (fixed) 45 13 0 0.17 

TABLE III.  RESOURCE USAGE FOR PE UNITS 

Quantized 

layer number 
Convolution kernel size MACs 

PE 

number 

Multiplier type 

(m bits×n bits) 
LUTs DSPs FFs BRAMs 

1 16×3×3×3 884736 1 8×8 7040 432 11008 8 

2-7 16×16×3×3 28311552 2 7×6 67768 0 40392 48 

8-14 32×16×3×3/32×32×3×3 28311552 2 7×6 67768 0 40392 48 

15-21 32×64×3×3/64×64×3×3 28311552 3 8×7 89528 0 49144 96 

22 64×10(fully connected layer) 1280 4 8×8 325 10 166 0 
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TABLE IV.  RESOURCE CONSUMPTION FOR RESNET20 

Resnet20 Resource usage Available  Utilization (%) 

LUT 186257 203800 91.39 

FF 148385 407600 36.4% 

DSP 442 445 52.6 

BRAM(36Kb) 152 840 34.2 

The resource requirements for the entire Resnet20 are 
shown in Table IV, where the DSP resource utilization rate is 
52.6% and LUT resource utilization rate is 91.39%. DSP 
resources are used for the first quantized layer and the last 
fully connected layer, while both shared accelerators are 
constructed entirely using LUTs with low bit-width 
multipliers to minimize resource usage. Storage areas can be 
recycled, thereby saving a large amount of BRAM resources. 

2) Analysis of the buffer reading and writing: In the 

Resnet20, all convolution kernel sizes are 3×3, so only one 

data reading and writing method needs to be designed. This 

paper sets the register set size to 6×8, and each set can hold 48 

data to provide the data required for 24 convolutions. Using 

the method described in Section 3.3 to read and write data, 

four data can be written into the register set per cycle, so it 

will take 12 cycles to fill the entire register set. 

To achieve efficient computation, pipeline is added to the 
writing and reading operations. The specific process is shown 
in Fig. 10. When reading data from rows 4-6, new data is 
written into rows 1-3, and the data in rows 4-6 can be used to 
complete reading and calculation in 6 cycles. During these 6 
cycles, the data in rows 1-3 can be updated by writing new 
data into them. Similarly, when reading data from rows 1-3, 
new data is written into rows 4-6. This can achieve the ability 
to read 9 data required for a 3×3 convolution every cycle. 

3) FPGA accelerator performance analysis: In order to 
validate the advantage of FPGA accelerator, we evaluated the 
computational efficiency of three different platforms: CPU 
(Intel Core i5-12400), GPU (NVIDIA RTX 2070 SUPER), 
and FPGA. Table V shows the results of Resnet20 model 
inference time and energy consumption on CIFAR-10 dataset 
using three different platforms. Since the CPU and GPU 
platforms perform better with large batch sizes, we set the 
batch size to multiple values to obtain their highest 
performance. The inference time per image was obtained by 
dividing the total time by the batch size. 

The experimental results show that, the computing speed is 
4.27 times faster than that of the CPU after quantization, layer 
fusion, and parallel computation using FPGA, and the required 
power only needs 5% of the CPU's power consumption. 
Moreover, because we design a large number of parallel PEs 
while also deeply customizing the CNN structure, our work 
achieves similar computational speed under a power 
consumption of only 6.2% of the GPU platform. Since our 
design retains the characteristics of the streaming processing 
architecture, it can still adopt pipeline design when applied to 
the computation of multiple sets of input images, and each PE 
can serve as a stage pipeline, which can further improve the 
overall computational performance. 

TABLE V.  COMPARISON WITH OTHER EXPERIMENTAL PLATFORMS 

Platform 
Frequency 

(MHz) 

Latency 

(ms) 

Power 

consumption (W) 

Speedup 

ratio 

CPU 2500 2.01 65 1 

GPU 1605 0.54 215 3.72 

FPGA 100 0.47 13.31 4.27 

 

 

Fig. 10. Reading and writing data pipeline diagram. 
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Table VI shows the comparative results of other related 
work. In [35], the FFT method is used to reduce a certain 
amount of computational complexity, but still uses 16 bits 
long-data for computation. Due to the high computational 
complexity brought by long-bit-width data operations, in the 
case of limited DSP resources, it limits the computational 
parallelism. But multiple types of PEs are used in our paper 
which is suitable for different types of low-bit-width data 
operations to avoid low computational efficiency of a single 
long-bit-width PE structure. Therefore, compared with this 
method, our paper shortens the time by 89.3 times and reduces 
power consumption by 21.8 times. In addition, our paper 
reasonably allocates bit-widths for each layer of the CNN to 
improve its accuracy by 0.43%. In [36], they deploy a binary 
Resnet20 using an Application Specific Integrated Circuit 
(ASIC), and all network parameters are quantized to 1 bit. 

This method reduces computational complexity to the 
minimum via ultra low bit-widths, achieves higher frequency 
of operations and lower power consumption as shown in Table 
VI. However, this ultra low bit-width quantization method 
also produces a large precision error, which greatly affects the 
performance of the CNN. But the mixed precision 
quantization method and retraining the quantized model in our 
paper achieve a higher accuracy rate of 9.88% than that. In 
terms of computational speed, by efficiently utilizing the 
development board resources and increasing the parallelism of 
convolution calculation through multiplication circuits built 
with LUTs, it has achieved lower computational latency. In 
[37], the Winograd algorithm is used to reduce the 
computational load, but 16-bit data operation limits the overall 
performance, the mix precision low bit-width CNN in our 
work is more effective. 

TABLE VI.  PERFORMANCE COMPARISON 

Work 
Experiment 

Platform 

Frequency 

(MHz) 

Bit-Width 

(bits) 
Latency (ms) 

Throughput 

(GOP/S) 

Energy 

(mJ) 
Accuracy 

[35] Zynq 7020 154 16 42 / 137 91.25 

[36] ASIC 65nm 1000 1 0.98 / 3.8 81.8 

[37] ZynqZ7035 150 16 / 43.5 / / 

our Kintex 7 100 6-8MP 0.47 179 6.26 91.68 
 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a high-performance CNN design 
method tailored for edge computing. Employing quantization 
methods and a strategy search algorithm in the software 
algorithm mitigated the significant accuracy loss associated 
with quantizing CNN models. In the FPGA accelerator design, 
we implemented a reuse structure based on a streaming 
processing architecture. This involved designing different 
Processing Elements (PEs) according to the characteristics of 
the CNN model structure and quantization bit-width. Notably, 
different network layers could share the same PE, optimizing 
resource utilization. For efficient data transmission, we adopted 
a strategy of packing quantized low-bit-width data into long 
words. This approach fully leveraged high-bandwidth data 
transfer, utilizing a register set as a buffer and employing a data 
reuse method to achieve synchronous data reading and 
computing. The validation of our method using Resnet20 on 
the CIFAR-10 dataset demonstrated its effectiveness. 
Comparative analysis with other computational platforms and 
related works revealed that our CNN accelerator outperformed 
a unified 16-bit FPGA accelerator design, achieving an 89-fold 
increase in computing speed with lower power consumption. 
Specifically, our CNN accelerator exhibited a computing speed 
3.72 times faster than the GPU (RTX 2070 SUPER), while 
consuming only 6.2% of its power. In conclusion, our research 
presents a novel approach to high-performance CNN design for 
edge computing, showcasing substantial improvements in 
computing speed and power efficiency compared to existing 
methods. As part of future work, we plan to explore further 
optimizations and scalability of our approach, addressing 
potential challenges and extending its applicability to broader 
CNN architectures and datasets. 
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