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Abstract—Cross-Project Defect Prediction (CPDP) based on
domain adaptation aims to achieve defect prediction tasks in
an unlabeled target software project by borrowing the de-
fect knowledge extracted from well-annotated source software
projects. Most existing CPDP approaches enhance transferabil-
ity between projects but struggle with misalignments due to
limited exploration of class-specific features and inability to
preserve original local relationships in transformed features. In
order to tackle these challenges, The article introduces a novel
Cross-Project Defect Prediction (CPDP) approach called Local
Preserving and Distribution Alignment (LPDA). This approach
addresses the challenge of misalignments in CPDP due to limited
exploration of discriminative feature representations and the
failure to preserve original local relationship consistency. LPDA
combines transferability and discriminability for CPDP tasks.
It uses locality-preserving projection to maintain module con-
sistency and distribution alignment, which includes transferable
and discriminant distribution alignment. The former narrows
the distributions of both source and target projects, while the
latter increases the discrepancy between different classes across
projects. The effectiveness of LPDA was tested through 118 cross-
project prediction tasks involving 22 software projects from four
distinct repositories. The results showed that LPDA outperforms
baseline CPDP methods by efficiently learning representations
that integrate transferability and discriminability while preserv-
ing local geometry to optimize distances within and between
categories.

Keywords—Cross project defect prediction; discriminative dis-
tribution alignment; local preserving; domain adaption

I. INTRODUCTION

As software grows in size and complexity, defects in-
evitably arise, compromising quality and security [1], [2].
Ensuring software quality is therefore crucial before its release
[3]. Software Defect Prediction (SDP) is a key technique to
improve reliability by identifying potential defects in software
modules, allowing for better allocation of testing resources.
This technique uses historical data, like past source code and
defect reports, to build models that can predict defects in
new modules. Common methods for creating these models
include neural networks [4], Naive Bayes [5], and support
vector machines [6]. When prediction models are based on
data from the same project, it’s known as Within Project
Defect Prediction (WPDP) [7], [8]. However, not all companies
maintain historical defect data, and for those scenarios, Cross

Project Defect Prediction (CPDP) uses data from external
projects to build prediction models [9], [10].

CPDP aims to achieve defect prediction tasks in an unla-
beled target project by learning the defect knowledge obtained
from a source software project [11], [12]. However, Defect
prediction for a target project is challenging due to differences
from the source project, such as coding languages and devel-
oper expertise, which prevent direct knowledge transfer [13].
Domain adaptation is used to bridge the gap between projects,
allowing defect knowledge to be transferred by adjusting
features or instances in CPDP methods [14]. Various transfer
learning algorithms from the literature [15], [16], [17], [18]
are used to narrow marginal and/or conditional distribution
difference between two projects. The CPDP approaches based
on instance level select or reweight appropriate instances to
decline the unfortunate impact from irrelevant cross-project
data. For example, Ma et al. [19] proposed the Transfer
Naive Bayes (TNB), introducing data gravitation that reweights
instances of the source project. Moreover, software defect
data often exhibits class-imbalance, with a significantly larger
number of non-defective instances compared to defective in-
stances. Class-imbalance has been broadly investigated both
in WPDP [20], [21] and CPDP [22], [23], [24]. The impact
of imbalanced datasets on the ranking of the approaches
is also assessed [25], which addresses both class-imbalance
and distribution mismatching. Tong et al. [11] introduced
KSETE (Kernel Spectral Embedding Transfer Ensemble) to
tackle class-imbalance in both homogeneous cross-project and
heterogeneous cross-project scenarios.

Existing CPDP methods effectively reduce the gap be-
tween source and target projects, yet they overlook class
distinction and disrupt local instance relationships. This can
blur the decision boundary and misplace instances in the
feature space, making accurate predictions difficult. Integrating
locality-preserving techniques with domain adaptation could
improve performance by maintaining the original data struc-
ture. Locality preserving projection is a typical approach based
on manifold learning [26] that allows for learning a favourable
feature space where the local consistency in the raw feature
space can be effectively retained. The perfect performance
will be obtained by integrating locality preserving projection
and domain adaptation [27], [28], [29], but Locality-preserving
objectives have not received thorough exploration within the
CPDP domain.
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To overcome the aforementioned limitations, this article
introduces a new CPDP method called Local Preserving and
Distribution Alignment (LPDA), which focuses on maintaining
class distinctions and local data relationships. It aligns distribu-
tions globally and locally while keeping instances of the same
class close and separating different classes. Additionally, new
representations are generated in a low-dimensional subspace
where instances instances from the same class remain closely,
while instances from different classes are positioned farther
apart. Extensive CPDP tasks on 22 open-source projects from
four software repositories validate the effectiveness of the
proposed approaches. The evaluation metrics used included
F-measure, Balance, MCC, and AUC. The Wilcoxon signed
rank test and Scott-Knott ESD test were adopted to statistical
significance test. The contributions of this article can be
summarised as follows:

1) Our proposed CPDP method, unlike previous ones,
enhances transferability by reducing distribution dis-
crepancies and also focuses on discriminability be-
tween different classes in the projects..

2) In CPDP, using locality-preserving projection main-
tains local consistency within classes, keeping similar
instances closer and distinctly separating different
categories.

3) The extensive experiments on 22 software projects
from four software repositories demonstrate that the
proposed LPDA approach is superior to several state-
of-the-art CPDP approaches in terms of four perfor-
mance indicators.

The article is organized as follows. Section II reviews
prior works on CPDP and subspace alignment-based domain
adaptation. Section III introduces the technical specification of
our LPDA approach. Section IV covers the experiment con-
figuration, encompassing aspects like open datasets, statistical
tests, evaluation criteria, and research questions. In Section
V, Extensive experiments along with analysis under CPDP
scenarios are presented in detail.

II. RELATED WORK

In this section, we will provide a concise overview of previ-
ous research in the domains of cross-project defect prediction
and domain adaptation based on feature alignment.

A. Cross Project Defect Prediction

CPDP aims to seek instances with a high likelihood of de-
fects in an unlabeled target software project using a predictive
model trained on other well-labeled software projects[30]. In
earlier research, Zimmermann et al. [31] investigated different
factors that might influence the cross-project prediction per-
formance for the first time. They have found that a few tasks
(only 3.4% of the cross-project tasks) could achieve adequate
prediction results and CPDP tasks between the projects are not
symmetrical. The current CPDP approaches can be broadly
categorized into two groups: homogeneous cross-project and
heterogeneous cross-project, based on the similarity of soft-
ware metrics (features) [11], [32]. In the context of homoge-
neous cross-project, the source and target projects share the
same feature space, whereas in heterogeneous cross-project,
the features of source and target projects differ. The CPDP

approach employed in this paper falls under the category of
homogeneous cross-project.

According to the theory of knowledge transfer, the cur-
rent CPDP approaches can be mainly divided into instance
transferring and feature transferring. The CPDP approaches
based on instance transferring seek to select or reweight
relevant instances from the source project data, which can
be advantageous for the target task. The CPDP approaches
based on feature transferring pay attention to learning shared
feature representations for the two projects so as to narrow
the distribution discrepancy between them. The former either
chooses or adjusts the training data to mitigate the influence
of detrimental information. The latter ensures that the source
and the target projects exhibit a comparable distribution within
the newly created feature subspace.

To the best of our knowledge, Turhan et al. [33] presented
the CPDP approach that focus on instance transferring named
Nearest Neighbor filter (NN-filter). They used KNN to gather
close instances together to construct a similar training dataset.

In greater detail, for every instance of target project, NN-
filter method picks the ten nearest instances from the source
project and subsequently incorporates them into the training
dataset. Building upon the NN-filter, Peters et al. [34] pre-
sented the Peter-filter approach, which selected instances using
the k-means clustering algorithm. Using different clustering
algorithms to select instances, Kanwata et al. [35] and Bhat
et al. [36] presented two different CPDP approaches. Lately,
Hosseini et al. [37] presented a search-based genetic instance
selection approach, using genetic algorithm to select training
data. These CPDP approaches based on instance selecting led
to the source project wasting some data or a few available in-
stances. To solve these problems, Ma et al. [19] proposed TNB,
using the concept of data gravity, the transfer weights from the
source projects is computed. These weights could strengthen
the instances with significant correlations and weaken the
impact of ineffective instances.

Drawn from transfers component analysis (TCA) [38], a
classical transferring learning algorithm, Nam et al. [17] pro-
posed the TCA+. This method adds normalization rules to pro-
cess source and target data before distribution alignment. Liu
et al. [39] detected that the prediction performance of TCA+
is erratic. Thus, they proposed two-phase transfer learning
(TPTL) approach to m the issue of instability. TCA+ and TPTL
only narrow the disparity in marginal distribution between the
source and target projects. Simultaneously considering both
the marginal and conditional distributions, Qiu et al.[15] and
Xu et al. [18] proposed joint distribution matching (JDM) and
balanced distribution adaptation (BDA), respectively.

Since deep learning has become capable of automatically
extracting semantic features from ASTs of software program,
many researchers have used it in the research SDP. Wang et
al. [40] claimed that only used traditional software metrics
were far from enough and represented the relationship be-
tween semantic features and software programs by abstract
syntax tree (AST). Then they applied a deep belief network
(DBN) to obtain software code semantic features from ASTs.
Subsequently, Li et al. [41] constructed a extracting feature
approach based on CNN to extract semantic features, and
then integrated this features and traditional software metrics to
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address the absence of semantic information. However, these
shallow learning and deep learning CPDP approaches consider
only the transferability between source and target projects but
ignore discriminability between classes.

B. Feature Alignment-based Domain Adaptation

Feature alignment-based domain adaptation approaches
aim to learn a low-dimensional feature subspace where the
disparity in distribution between the source and target data is
explicitly narrowed. As a pioneer, Pan et al. [38] proposed
to map both source and target data into a shared feature
subspace via TCA, which aligns the marginal distributions
between the source and target domains while maximizing the
data variance in adaptation process. However, focusing only
on aligning marginal distributions is insufficient for better
learning purposes. Therefore, Long et al. [42] proposed to
align both marginal and conditional distributions between two
domains via joint distribution analysis (JDA). Similarly, Wang
et al. [43] proposed a balanced domain adaptation (BDA),
which simultaneously aligns the marginal and conditional
distribution discrepancy and exploits a balance factor to adjust
their importance degrees. JDA and BDA employ the classifier
trained on source domain data to generate pseudo labels for
the unlabeled target domain. After that, many variants will
emerge. For example, Wang et al. [44] further proposed mani-
fold embedded distribution alignment (MEDA) to dynamically
adjust the relative importance of these two distributions. Zhao
et al. [45] proposed discriminative joint probability MMD
(DJP-MMD), which not only minimizes the divergence in
joint distribution between two domains, but also maximizes
the divergence in joint probability distribution between distinct
classes in different domains to learn discriminative feature
representation.

III. RESEARCH METHODOLOGY

In this section, we will present the LPDA approach for
CPDP in more details. After describing the descriptions of
notations used in this article.

A. Notations

Ds = {xs
i , y

s
i }

ns

i=1 and Dt =
{
xt
j

}nt

j=1
respectively rep-

resent the source project and the target project under the
assumptions that both marginal distributions and conditional
distributions of source and target projects are inequality(
P (xs) ̸= P (xt) and Q (ys | xs) ̸= Q (yt | xt) ). Let
Xs ∈ Rd×ns (Xt ∈ Rd×nt ) is the source project data matrix
(target project data matrix) containing ns(nt) instance with
d-dimension. Xc denotes a set of instances with label c.
xs
i ∈ Xs and xt

j ∈ Xt are the i− th, j − th instances in the
source project and target project, respectively. The proposed
CPDP approach aims to learn a transformation matrix A to
transform the instances from the original feature space into
a low-dimensional subspace where the distributions can be
aligned and the important properties of the original data can be
preserved. Mmar and Mcon denote the distribution matching
of marginal and the conditional distributions, respectively.

B. Overall Framework of LPDA

The previous CPDP approaches, such as JDM [15], TCA+
[17], TPTL [39] and BDA [18], learn global feature rep-
resentation to narrow the distribution gap between different
projects for the purpose of higher transferability, but disregard
the discriminability between different classes. Additionally,
these CPDP approaches cannot well preserve original local
relationship consistency instances of shared the same label
after transforming the features. To address these problems, this
article proposes a novel CPDP approaches called Locality Pre-
serving and Distribution Alignment (LPDA). Peculiarly, LPDA
tries to fulfill three complementary objectives as follows. (1)

1) It aims at the characteristics of cross-project sig-
nificant variations and draws from the idea of do-
main adaptation to reduce the global inter-project
difference and the local intra-class discrepancy for
to increaser transferability.

2) For discriminability between defective and non-
defective classes, LPDA leverages class-wise MMD
to enlarge the distance of different classes.

3) LPDA introduces the reward graph and penalty graph
to maximize preserve the geometric structure of
project instances.

The overall objective function of LPDA is follows:

L
A

= argmin
A

Mt (Xs,Xt,A)︸ ︷︷ ︸
transferability

−µMd (Xs,Xt,A)︸ ︷︷ ︸
discriminability

+η G (Xs,Xt,A)︸ ︷︷ ︸
geometric structure

+λ Ω(A)︸ ︷︷ ︸
regularization

.
(1)

In Eq. (1), Mt is distribution difference in both marginal
and conditional distributions across two project. Md implies
the distribution difference of different class between different
projects. G represents the term of manifold regularization. Ω is
the term structural risk. In addition µ, η and λ are the trade-off
parameters.

C. Transferability in LPDA

Drawing on previous literatures [15], [18], we adopt max-
imum mean discrepancy (MMD) [38] to measure both the
marginal distributions and conditional distribution distances
between source and target projects. The marginal distributions
distance can be achieved as follows:

Mmar (Xs,Xt) =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

ϕ(x
s
i ) −

1

nt

nt∑
j=1

ϕ(x
t
j)

∥∥∥∥∥∥
2

H

= tr(A
⊤
KM0K

⊤
A),

(2)

where, X = [Xs,Xt]. M0 is the marginal distribution MMD
matrix and it is computed as

(M0)ij =


1
n2
s
, if xj ,xi ∈ Xs,

1
n2
s
, if xj ,xi ∈ Xt,

−1
nsnt

, otherwise.
(3)

Pseudo-labels in the target project are annotated by a
classifier trained on the source project to represent conditional
distribution. The conditional distributions distance can be

www.ijacsa.thesai.org 894 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 12, 2023

achieved as follows:

Mcon (Xs,Xt) =

C∑
c=1

∥∥∥∥∥∥ 1

ns,c

ns,c∑
i=1

ϕ(xs,c
i )− 1

nt,c

nt,c∑
j=1

ϕ(xt,c
j )

∥∥∥∥∥∥
2

H

= tr(A⊤K

C∑
c=1

McK
⊤A),

(4)
where, ns,c and ns,t refer to the numbers of the c class
instances of source and target projects, respectively. Mc is
the conditional distribution MMD matrix with the label c, and
it is computed as

(Mc)ij =



1
n2
s,c

, if xi,xj ∈ Xc
s,

1
n2
t,c

, if xi,xj ∈ Xc
t ,

−1
ns,cnt,c

, if
{

xi ∈ Xc
s,xj ∈ Xc

t ,
xi ∈ Xc

t ,xj ∈ Xc
s,

0, otherwise.

(5)

Here, Mmar plus Mcon is rewritten as the follows:

Mt (Xs,Xt,A) = Mmar +Mcon = tr(A⊤X

C∑
c=0

McX
⊤A).

(6)

This section considers the transferability between different
projects from both marginal and conditional distributions per-
spectives. However, only considering the transferability might
not be sufficient for better prediction performance.

D. Discriminability in LPDA

In this section, we explore the discriminability between
defective and no-defective classes by leveraging class-wise
MMD to augment the distribution distance between different
class, which can be achieved as follows:

Md (Xs,Xt,A) =

C∑
c=1

∑
ĉ̸=c

∥∥∥∥∥∥ 1

ns,c

ns,c∑
i=1

ϕ(xs,c
i )− 1

nt,ĉ

nt,ĉ∑
j=1

ϕ(xt,ĉ
j )

∥∥∥∥∥∥
2

H

.
(7)

In order to facilitate the calculation, we introduce a one-hot
coding label matrix to calculate the class-wise MMD based
on the literature [45]. In particular, the source project and
target project one-hot coding label matrices are written as
Ys = [cs,1, ..., cs,ns

] and Ŷt = [cs,1, ..., cs,ns
]. Two matrices

are defined as follows

Us =
1

ns
[Ys(:, 1) • (C − 1), . . . ,Ys(:, C) • (C − 1)] ,

Ut =
1

nt

[
Ŷt(:, 1 : C)ĉ ̸=1, . . . , Ŷt(:, 1 : C)ĉ ̸=C

]
,

where, Ys and Ŷt denote the c − th column of Ys and Ŷt,
respectively. Ys(:, c)•(C−1) denotes that Ys(:, c) is repeated
C − 1 times. The Eq. (7) can be further expressed to matrix
form as the follows:

Md (Xs,Xt,A) = tr(A⊤XUX⊤A), (8)

where,

U =

[
UsU

⊤
s −UsU

⊤
t

−UtU
⊤
s UtU

⊤
t

]
. (9)

In this article, Mt and Ms are integrated and defined as
discriminant distribution distance as

D(Xs,Xt) = Mt (Xs,Xt,A)− µMd (Xs,Kt,A) =

tr

(
A⊤X

(
C∑

c=0

Mc − µU

)
X⊤A

)
.

(10)

Discriminant distribution alignment strategy is used to
enhance perdition performance by Eq. (10) can to improve
the transferability and discriminability.

E. Local Structure Preserving

From a geometric perspective, if two instances in intra-
class are close in the intrinsic geometry of the data distribution,
then their transforming should also be close [46]. However,
the transformed features cannot well preserve original local
relationship consistency. For example, the distance between
two instances in intra-class but from the different projects
may be expanded after feature transformation, resulting in this
distance being longer than the distance between two instances
in different classes but from the same projects. In an attempt
to solve these problems, we ensure that instances in intra-class
stay close after feature transformation and keep instances in
inter-class far from each other. To preserve the local structure
in the transforming subspace, we have defined two embedding
graphs (reward graph penalty graph)as expressed as below.

Reward Graph: xc
i is connected with xc

j , where xc
j is one

of the k nearest neighbors of xc
i , xc

i ∈ Xc and xc
j ∈ Xc.

Penalty Graph: xc
i is connected with xĉ

j , where xĉ
j is one of

the k nearest neighbors of xc
i , xc

i ∈ Xc and xĉ
j /∈ Xc (c ̸= ĉ).

The connection edges between the nodes of the two graph
are assigned weights

Wij =

{
exp

(
−∥xi−xj∥2

2

)
, if xi and xj are conencted

0, otherwise.

We denote the pre-defined reward and penalty weight matrices
as Wr and Wp, respectively. The intra-class and inter-class
scatter matrices are respectively defined as follows (Sb denotes
the inter-class scatter matrix, and Sw denotes the intra-class
scatter matrix):

Sw =
1

2

nc∑
i=1

nc∑
j=1

W r
ij

∥∥xc
i − xc

j

∥∥2 = tr(A⊤XLrX⊤A), (11)

Sb =
1

2

nc∑
i=1

n−nc∑
j=1

W p
ij

∥∥∥xc
i − xĉ

j

∥∥∥2 = tr(A⊤XLpX⊤A),

(12)
where, Lr and Lp respectively represent the reward Laplacian
graph and the penalty Laplacian graph. (Lr = Dr − Wr,
Lp = Dp − Wp). Dr and Dp are diagonal matrices whose
each diagonal entry is Dr

ii =
∑

j W
r
ij and Dp

ii =
∑

j W
p
ij ,

respectively. The geometric structure regularization can be
expressed as follows:

G (Xs,Xt,A) = Sw−Sb = tr(A⊤X(Lr−Lp)X⊤A). (13)
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F. Subspace Learning
Finally, the objective function in Eq. (1) can be reformu-

lated byto maximize preserve the geometric structure of project
instances.

L
A,Φ

=min tr

(
A

⊤
X

(
C∑

c=0

Mc − µU + η(L
r − L

p
)

)
X

⊤
A

)
+ λ∥A∥2

F ,

(14)

s. t. A
⊤
XHX

⊤
A = I,

where, H = I − 1
n1 is the centering matrix to avoid trivial

solutions, and I ∈ Rn×n is the identity matrix. According to
the constrained optimization, deriving the Lagrange function
finds solution of problem Eq. (14). The Lagrange function is:

L
A,Φ

= min tr

(
A⊤

(
X

(
C∑

c=0

Mc − µU+ η(Lr − Lp)

)
X⊤ + λI

)
A

)
+ tr

((
I−A⊤XHX⊤A

)
Φ
)
, (15)

where, Φ = diag(ϕ1, ..., ϕd) is a diagonal matrix with
the Lagrange multipliers. By setting the derivative of Eq.
(15) ∂L

∂A = 0, the optimization can be solved as a eigen-
decomposition problem displayed as follows:(
X

(
C∑

c=0

Mc − µU+ η(Lr − Lp)

)
X⊤ + λI

)
A = XHX⊤AΦ.

(16)

By taking the first d0 smallest eigenvectors, the optimal
solution of transformation matrix A is obtained. We can
acquire the new representation Zs = A⊤Xs and Zt = A⊤Xt.
In summary, Algorithm 1 presents the pseudo code of the
proposed LPDA approach.

Algorithm 1 Locality Preserving and Distribution Alignment
(LPDA)
Input: Labeled source project: Ds = {Xs,Ys}; Unlabeled

target project: Dt = {Xt}; Subspace dimension d0;
The number of iterations T ; Number of nearest neigh-
bors k; The trade-off hyper-parameters µ, η and λ.

Initialize pseudo labels Ŷt of target project by using the
classification model trained the source project.
Let X = [Xs,Xt];
for z=1:T do

Construct MDD matrices M0 and Mc by Eq. (3) and Eq.
(5);
Construct discriminability matrix U by Eq. (9);
Construct the reward Laplacian graph Lr and penalty
Laplacian graph: Lp;
Solve Eq. (16) and take the d0 smallest eigenvectors to
construct A;
Obtain the source feature presentations Zs = A⊤Xs;
Obtain the source feature presentations Zt = A⊤Xt;
Train a classifier f(·) by using the source features pre-
sentations Zs and labels Ys;
Update the target pseudo labels Ŷt by using the classifier
f(·).

Output: The transformation matrix A.

G. Computational Complexity

In this subsection, we present an analysis to time com-
plexity of the proposed approach in Algorithm 1. The compu-
tational cost of solving eigen-decomposition problem is O(T×

TABLE I. ESSENTIAL INFORMATION OF THE SOFTWARE PROJECTS
APPLIED IN THIS ARTICLE

Dataset Project # of
metrics

# of total
instances

% rate
defective

Promise

ant-1.7 20 745 22.28
ivyv-2.0 20 352 11.36
jedit-4.1 20 312 25.32
log4j-1.0 20 135 25.19

lucene-2.2 20 247 58.30
pio-2.0 20 314 11.78

synapse-1.1 20 222 27.03
tomcat 20 858 8.97

xerces-1.4 20 588 74.32

NASA

CM1 37 327 12.84
MW1 37 253 10.67
PC1 37 705 8.65
PC3 37 1077 12.44
PC4 37 1287 13.75

AEEEM

EQ 61 324 39.81
JDT 61 997 20.66
LC 61 691 9.26
ML 61 1862 13.16
PDE 61 1497 13.96

ReLink
Apache 26 194 50.52

Safe 26 56 39.29
ZXing 26 399 29.57

d0×d2), of constructing the MMD matrices, Laplacian graphs
and the two discriminability matrix is O(T ×C ×n2), and of
all other steps is O(T×d ×n). Thus, the overall computational
complexity is O(T × d0× d2+3×T ×C×n2+T × d ×n).

IV. EXPERIMENTAL SETUP

A. Benchmark Datasets

To assess the put forward method, a total of 22 publicly
software projects from four different software repositories, in-
cluding AEEEM [47], NASA [48], Relink [49] and PROMISE
are applied in our experiments. Table I offers comprehensive
information about these projects.

AEEEM includes five software project [47]. Software
module (instance) granularity is classified in AEEEM. Each
instance includes 61 metrics (features), among them five
entropy-of-change metrics, 17 code metrics, five previous-
defect metrics, 17 entropy-of-code metrics and 17 churn-of-
code metrics.

NASA is the most popular software defect data in previous
studies. Each project signifies a software system, encompass-
ing static code metrics along with associated defect labels.
The static code metrics encompass attributes like McCabe,
Halstead, lines of code, among others, and are valuable for
predicting software quality and defects. The static code metrics
encompass McCabe complexity, Halstead intricacy, code line
count, and similar factors. These measurements offer valuable
insights into software quality and predicting defects. In the
research, we selected five projects that shared common feature
spaces and merged them to create 20 cross-project predictive
tasks. Promise is collected by Jureczko and Madeyski [50]
and , comprises 20 class-level metrics, including CK metrics
and QMOOD metrics. In the article, we selected 10 open
projects and then used these projects to combine 90 cross-
project prediction tasks.

ReLink is denoted by Wu et al. containing three open
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projects (i.e Apache, Safe and ZXing) They can be combined
into cross-project prediction six tasks.

B. Performance Indicators

In this article, applying the four performance indicators,
including F-measure, Balance, MCC and AUC evaluate our
method and comparison methods. A software defect task
typically yields one of four typical output results:

True Positive (TP): Correctly predicted defective instances.

True Negative (TN): Correctly predicted non-defective in-
stances.

False Positive (FP): Incorrectly predicted defective in-
stances.

False Negative (FN): Incorrectly predicted non-defective
instances.

PD (aka. recall or sensitivity) determines the defective
instances correctly predicted. The higher PD, the lower the cost
generated by type II mis-classifications. PF(aka. false positive
rate) is the ratio of non-defective instances that are incorrectly
predicted.Precision is the ratio of correctly predicted instances
that are defective They are denoted as the follows.

PD = Recall =
TP

TP + FN
;

PF =
FP

TN+ FP
;

Precision =
TP

TP + FP
.

F-measure is a harmonic mean of Precision and Recall,
which is denoted as

F-measure =
(1 + θ2)× Recall × Precision

Recall + θ2 × Precision
.

where, θerves as a bias parameter that determines the relative
significance of Recall and Precision. There are three F-measure
variants, i.e., F1 (θ = 1) treats precision and recall equally,
F0.5 (θ = 0.5) prefers precision, and F2 (θ = 2) prefers recall.
There are two types of error in defect prediction. The first type
of misclassification is the prediction of non-defect instances
as defect instances. The second type of misclassification is
when a defect instance is predicted to be a non-defect instance.
The cost of the latter error is higher than that of the former
error. Defect prediction mainly concerns finding as many
defective instances as possible, which is consistent with the
evaluation of performance measurement bias to recall. Thus,
defect prediction more emphasize that Recall is more important
than Precision(θ is set as 2).

Balance is the normalized Euclidean distance from the
ideal point (1,0) to the actual point (PD, PF) in the ROC
curve[51], [52], which is denoted as

Balance = 1−
√

(1− PD)2 + (0− PF )2√
2

.

MCC (Matthews Correlation Coefficient) is to measure
the correlation coefficient between the actual and predicted

outputs, which is denoted as:

MCC =
TP× TN− FP× FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

AUC(Area Under the Curve) The Area Under the Curve
(AUC) refers to the area under the receiver operating char-
acteristic curve (ROC). AUC is a comprehensive metric that
effectively captures the trade-off and provides a better reflec-
tion of the overall performance of a prediction model.

C. Research Questions

To assess the predictive performance of the proposed
LPDA, we delve into three research questions, in depth.

RQ1: Does LPDA perform better than the instances-based
CPDP approaches?

As baselines for addressing this question, we employed five
instance transfer approaches, which include ALL, NN-Filter,
TNB, Peter-Filter, and DTB. Among these, TNB and DTB
involve the reweighting of instances to mitigate the adverse
influence of irrelevant cross-project data. In contrast, NN-
Filter and Peter-Filter focus on filtering instances from the
source project that are similar to the target project. These
methods do not change the original feature space. Unlike
these methods, the proposed method transfers the feature
spaces while exploiting all the instances in the training step to
avoid information loss. This research question is designed to
investigate whether LPDA is superior to the instances-based
CPDP methods in terms of CPDP performance improvement.

RQ2: Is LPDA more effective than the domain adaptation
based CPDP methods?

We attempted to improve the CPDP performance from two
aspects: the transferability between projects and the discrim-
inability between class. Typically, domain adaptation-based
CPDP methods investigate transferability by assuming that
the source and target projects share a common distinguishing
boundary. However, although the distribution gap between
the two projects is narrowed after feature transformation, the
instances from different classes are too close to be clas-
sified accurately near the decision boundary. The proposed
LPDA method simultaneously explores the transferability and
discriminability for CPDP tasks. This research question is
designed to investigate whether the method considering both
the transferability and discriminability is better able to improve
the CPDP performance compared with other transfer learning
methods.

RQ3: How do LPDA components have affect the prediction
performance?

Since locality-preserving projection and distribution align-
ment are used in the proposed method, this research question is
designed to investigate whether the components (i.e. transfer-
able distribution alignment, discriminant distribution alignment
and locality-preserving projection) can affect the prediction
performance.
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D. Statistical Testing

To better illustrate the effectiveness of the proposed
method, we employ two statistical testing methods, namely
the Wilcoxon signed-rank test and the Scott-Knott ESD test.

The Wilcoxon signed-rank test used to determine whether
a significant difference exists between our method and each
baseline for each cross-project task. Data distributions are iden-
tical without the assumption that they follow the normal dis-
tribution. Additionally, we employ the Win/Tie/Lose (W/T/L
for brevity) evaluation to assess how many cross-project tasks
our method can enhance in comparison to each baseline. Each
entry’s W/T/L implies that our method outperforms W cross-
project tasks, ties on T cross-project tasks, and loses on L
cross-project tasks.

The Scott-Knott ESD test is an expansion of the statis-
tical methodology developed by Scott-Knott, which employs
hierarchical cluster analysis to categorize a set of evaluation
metrics into distinct, non-overlapping groups with statistically
significant differences. This test consists of two stages: (1) the
identification of a partition that maximizes the mean between
different groups, and (2) either the separation into two distinct
groups or the merging of any two groups with statistically
significant differences and a negligible effect size into a single
group. For a comprehensive explanation of the Scott-Knott
ESD test, please refer to [53].

E. Experimental Settings

A total of 23 projects from four different repositories
including AEEEM (5 projects), NASA (5 projects), ReLink (3
projects) and Promise (9 projects) are used in the paper. We we
first identify all cross-project tasks in NASA, AEEEM, Relink
and Promise. One project is selected as the target project, and
the other projects from the same repository as the source. For
example, when EQ is selected as the target project, the other
projects separately are use as the source project. There are
four cross-project tasks: JDT⇒EQ, LC ⇒EQ, ML⇒EQ, and
PDE⇒ EQ. In total, there are 118 (9× 8+5×4 +5×4+3×2)
cross-project tasks. We repeat each cross-project task 30 times
and report the average values, each time we randomly select
90% of instances the source projects as the training set to
train the model and all instances from the target project as
test set, since a random selection of 90% of instances ensure
that the training data are not consistently identical. In the
article, Logistic Regression (LR) is selected as the foundational
classifier. Due to its simplicity and effective performance in
contrast to more intricate modeling methods, LR (Logistic
Regression) has been a common choice in previous SDP
research[18].

V. EXPERIMENTAL RESULTS

A. Results for RQ1

To investigate the question, we apply some CPDP based-
instance transferring methods as the baselines, including ALL,
NN-Fifter, Petter-Fifter, TNB and DTB. ALL means that all
the instances from the source project are used to train the
prediction model without any instance filter and reweight
process.

TABLE II. AVERAGE VALUES OF FOUR INDICATORS FOR LPDA AND
FIVE INSTANCE BASED CPDP METHODS ON THE DIFFERENT DATASET

Dataset indicators ALL NN-Filter Peter-Filter TNB DTB LPDA

AEEEM
F-measure 0.404 0.423 0.409 0.532 0.486 0.542
Balance 0.572 0.600 0.578 0.601 0.597 0.696
MCC 0.204 0.233 0.239 0.248 0.276 0.378
AUC 0.656 0.662 0.611 0.716 0.669 0.748

NASA
F-measure 0.358 0.417 0.317 0.418 0.393 0.474
Balance 0.603 0.633 0.536 0.606 0.603 0.670
MCC 0.179 0.186 0.193 0.202 0.206 0.233
AUC 0.628 0.686 0.563 0.709 0.662 0.724

Promise
F-measure 0.442 0.482 0.498 0.459 0.457 0.563
Balance 0.596 0.624 0.639 0.658 0.662 0.702
MCC 0.250 0.316 0.256 0.322 0.259 0.338
AUC 0.662 0.683 0.690 0.722 0.731 0.746

RELINK
F-measure 0.543 0.534 0.569 0.587 0.546 0.767
Balance 0.607 0.640 0.638 0.595 0.637 0.708
MCC 0.262 0.292 0.269 0.289 0.280 0.320
AUC 0.669 0.700 0.702 0.641 0.701 0.745

TABLE III. WILCOXON SIGNED-RANK TEST RESULTS OF LPDA
AGAINST EACH INSTANCE BASED CPDP METHOD

Dataset Against(W/T/L)
indicators ALL NN-Filter Peter-Filter TNB DTB

AEEEM
F-measure 20/0/0 19/1/0 19/1/0 14/2/4 15/3/2
Balance 20/0/0 18/2/0 18/2/0 16/0/4 13/4/3
MCC 19/0/1 19/0/1 18/0/2 17/1/3 14/2/4
AUC 18/1/1 17/3/0 20/0/0 13/5/2 16/2/2

NSNA
F-measure 18/1/1 14/3/3 18/1/1 15/1/4 14/3/3
Balance 15/1/4 13/2/5 17/2/1 16/1/3 17/0/3
MCC 16/1/3 17/0/3 16/1/3 14/1/5 14/1/5
AUC 16/2/2 12/2/5 19/0/1 8/5/7 18/2/0

Promise
F-measure 61/3/8 55/6/11 46/4/22 47/4/22 56/4/12
Balance 64/4/4 57/4/11 54/4/14 46/12/14 53/6/13
MCC 52/5/15 51/15/6 49/6/17 43/20/9 50/4/18
AUC 56/3/13 53/4/15 48/8/16 44/6/22 40/6/26

RELINK
F-measure 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0
Balance 6/0/0 6/0/0 6/0/0 5/1/0 5/1/0
MCC 6/0/0 5/1/0 6/0/0 5/0/1 5/1/0
AUC 6/0/0 4/2/0 6/0/0 6/0/0 4/2/0

Total
F-measure 105/7/ 6 94/13/11 89/9/20 81/16/21 91/13/14
Balance 105/8/5 94/11/13 95/11/12 83/17/9 88/14/16
MCC 93/9/16 92/19/7 89/10/19 79/25/14 83/11/24
AUC 96/9/13 86/15/17 93/11/14 71/19/28 78/15/25

According to the data presented in Table II, the proposed
LPDA consistently outperforms the five baseline methods
across various indicators on all datasets. For instance, on the
AEEEM dataset, LPDA achieves an average F-measure value
of 0.542, which represents a substantial improvement, ranging
from 1.87% (in comparison to TNB) to a remarkable 34.06%
(in comparison to ALL), with an average enhancement of
21.6%. In terms of the average Balance score (0.696) achieved
by LPDA, improvements range from 15.77% (in comparison
to TNB) to 21.68% (in comparison to ALL), with an average
boost of 18.01%. Moreover, the average MCC value (0.376)
obtained with LPDA demonstrates significant improvements,
varying from 36.81% (in comparison to DTB) to an impressive
85.59% (in comparison to ALL), with an average enhancement
of 59.04%. The average AUC value (0.748) also shows positive
trends, with improvements ranging from 4.47% (in comparison
to TNB) to 22.38% (in comparison to NN-Filter), averaging
a substantial 12.85% improvement when contrasted with the
five instance-based CPDP methods. Concerning the 20 cross-
project pairs on the AEEEM dataset, data from Table III reveal
that LPDA exhibits a statistically significant superiority in
at least 13 of these cross-project pairs across all indicators.
Conversely, it may perform less favorably on most of the
four cross-project pairs. Fig. 1 demonstrates that the median
values of all four indicators by LPDA higher than the five
baseline methods. In particular, the median F-measure, Balance
and AUC of the Relink dataset by LPDA are similar or even
better than to the maximum value achieved by the five baseline
methods.
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Fig. 1. Boxplots of f-measure, balance MCC, and AUC across all datasets for LPDA and the five instance-based CPDP methods.

On NASA dataset, the average F-measure value (0.474)
by LPDA yields improvements between 13.40% (for TNB)
and 49.45% (for Peter-Filter) with an average improvement of
25.92%, the average Balance value (0.670) by LPDA gains
improvements between 5.77% (for NN Filter) and 24.89%
(for Peter-Filter) with an average improvement of 12.65%,
the average MCC value (0.233)by LPDA achieves improve-
ments between 13.37% (for DTB) and 30.41%(for ALL) with
an average improvement of 21.07%, and the average AUC
value (0.724) gets improvements between 2.14% (for DTB)
and 28.61% (for Pete-Filter) with an average improvement
of 12.23% compared against the five instances-based CPDP
methods. Three are also 20 cross-project pairs on NASA
dataset. From Table III, the result shows that LPDA is sig-
nificantly more accurate at least on 14 cross-project pairs and
significantly less accurate at most on five cross-project pairs
in terms of F-measure, Balance and MCC indicators. LPDA
almost equal TNB (eight wins and seven losses) in terms of
AUC. Compared to other the four baseline methods, LPDA is
almost complete victory (at least 12 wins and at most 5 losses).

On the RELINE dataset, LPDA achieves an average F-
measure value of 0.767, resulting in improvements ranging
from 30.76% (compared to TNB) to 43.36% (compared to
Peter-Filter), with an average improvement of 38.25%. The
average Balance value, at 0.708 by LPDA, shows enhance-
ments ranging from 10.64% (compared to NN-filter) to 18.98%
(compared to TNB), with an average improvement of 13.66%.
Furthermore, the average MCC value of 0.320 by LPDA

demonstrates improvements ranging from 9.75% (compared
to NN-filter) to 22.50% (compared to ALL), with an average
improvement of 15.33%. The average AUC value of 0.745
also shows enhancements ranging from 6.16% (compared to
Peter-Filter) to 16.16% (compared to DTB), with an average
improvement of 9.27% when compared to the five instances-
based CPDP methods. It is evident from Table III that LPDA
outperforms the five baseline methods in terms of these four
indicators, albeit it falls slightly short of them in certain
aspects.

On Promise dataset, the average F-measure value (0.563)
by LPDA yields improvements between 13.06% (for Peter-
Filter) and 27.25% (for ALL) with an average improvement
of 20.56%, the average Balance value (0.702) by LPDA gains
improvements between 6.05% (for DTB) and 17.73% (for
ALL) with an average improvement of 10.46%, the average
MCC value (0.338) by LPDA achieves improvements between
4.84% (for TNB) and 34.90% (for ALL) with an average
improvement of 21.84%, and the average AUC value (0.746)
gets improvements between 2.08% (for DTB) and 12.72%
(for ALL) with an average improvement of 7.07% compared
against the five instances-based CPDP methods.

Table III shows the results of Wilcoxon signed-rank sta-
tistical test for each baseline method. By using the “W/T/L”
evaluation, we can investigate 118 cross-project pairs in which
LPDA can outperform other comparing method. As shown in
the table, it is obvious that LPDA can achieve more positive
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Fig. 2. The results of scott-knott ESD test in f-measure, balance MCC, and AUC across all datasets for LPDA and other instance-based methods. The smaller
ranking, the better performance.

results in terms of F-measure,Balance, MCC and AUC measure
indicators when compared with other competing methods. For
example, LPDA has significant superiorities to TNB on 81/118
(81 out of 118 cross-project pairs) in F-measure, and 83, 79
and 71 in Balance, MCC, and AUC, respectively. Fig. 2(a)-(d)
present the results of Scott-Knott ESD test for the proposed
LPDA and five baseline methods in terms of F-measure,
Balance,MCC, and AUC, respectively. The x-axis and y-axis
represent the method and ranking, respectively. The smaller the
ranking, the better the performance. Each method corresponds
to a bar denoting the range of ranking of this method on all
cross-project pair tasks. The dot in the bar indicates the average
ranking value. Different colors denote different groups with
statistically significant differences. From these figures, we can
see that LDPA obtains the smallest average ranking and thus
is categorized into the top group which do not include any
baseline method in terms of the four indicators.

B. Results for RQ2

In order to address this question, we have chosen five
domain adaptation-based methods. A concise overview of these
baseline methods is provided below:

1) TCA: This method aims to match marginal distribu-
tion between two projects [38] .

2) TCA+: An TCA variation improved in previous re-
search [17] add customized normalization rules be-
fore distribution matching.

3) JDM: This method matches the marginal and condi-
tional distributions simultaneously [15].

4) BDA: BDA [18] takes into account both the marginal
and conditional distributions and dynamically assigns
varying weights to them.

5) TPTL: TPTL [39] selects the benefits of source
project selection and use transfer learning to construct
a SDP model.

Table IV presents the mean values of the four metrics for
both LPDA and the five domain adaptation-based methods
across the four datasets. Fig. 3 illustrates box-plots represent-

TABLE IV. AVERAGE VALUES OF FOUR INDICATORS FOR LPDA AND
FIVE DOMAIN ADAPTATION BASED CPDP METHODS ON THE DIFFERENT

DATASET

Dataset indicator TCA TCA+ JDM BDA TPTL PLDA

AEEEM
F-measure 0.468 0.487 0.505 0.533 0.510 0.542
Balance 0.671 0.645 0.674 0.689 0.647 0.696
MCC 0.217 0.244 0.253 0.258 0.290 0.378
AUC 0.701 0.716 0.725 0.703 0.729 0.748

NASA
F-measure 0.391 0.382 0.456 0.484 0.456 0.474
Balance 0.651 0.572 0.646 0.666 0.660 0.670
MCC 0.190 0.199 0.205 0.216 0.220 0.233
AUC 0.657 0.675 0.705 0.707 0.726 0.724

Promise
F-measure 0.472 0.448 0.538 0.487 0.511 0.563
Balance 0.656 0.678 0.693 0.699 0.706 0.702
MCC 0.247 0.316 0.249 0.314 0.287 0.338
AUC 0.668 0.677 0.693 0.690 0.705 0.746

RELINK
F-measure 0.636 0.639 0.632 0.643 0.703 0.767
Balance 0.630 0.487 0.599 0.639 0.640 0.708
MCC 0.271 0.306 0.282 0.306 0.295 0.320
AUC 0.611 0.621 0.645 0.665 0.733 0.745

ing the four metrics for all six methods across the entire set
of datasets.

According to the data in Table IV, LPDA outperforms the
five domain adaptation-based methods in all metrics when it
comes to the AEEEM dataset, with higher average values.More
specifically, LPDA compared with the five domain adaptation
based methods achieves improvements of 1.55%–15.75% in F-
measure , 0.92%–7.8% in Balance, 30.40%–74.42% in MCC,
2.26%–6.68% in AUC.

On the NASA dataset, the proposed LPDA achieves the
best average values in terms of Balance and MCC, while
BDA and TPTL achieve the best average values in terms of F-
measure and AUC, respectively. More specifically, compared
with the five baseline methods, LPDA achieves improve-
ments ranging from 0.58% to 17.11% on Balance, and 5.92%
to 22.99% on MCC, respectively. However, the average F-
measure and AUC of LPDA are 1.95% and 0.2% lower than
TNB and DTB, respectively. The results presented in Table
IV show that average values in four evaluation indicators by
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Fig. 3. Boxplots of f-measure, balance MCC, and AUC across all datasets for LPDA and the five domain adaptation based CPDP methods.

TABLE V. WILCOXON SIGNED-RANK TEST RESULTS OF LPDA AGAINST EACH DOMAIN ADAPTATION BASED CPDP METHOD

Dataset Against(W/T/L)
indicators TCA TCA+ JDM BDA TPTL

AEEEM
F-measure 13/4/3 12/3/5 10/2/8 11/2/7 8/3/9
Balance 14/2/4 14/3/3 13/3/4 8/9/3 14/3/3
MCC 19/0/1 19/0/1 17/1/2 17/1/2 13/2/5
AUC 18/1/1 14/4/2 13/4/3 11/4/5 13/4/3

NSNA
F-measure 13/4/3 12/3/5 10/2/8 11/2/7 8/3/9
Balance 11/5/4 13/2/5 12/4/4 8/6/6 8/3/9
MCC 14/3/3 14/3/3 13/4/3 11/4/5 9/5/6
AUC 12/5/3 14/1/5 11/5/4 10/6/4 13/1/6

Promise
F-measure 54/1/17 50/1/21 39/2/31 49/7/16 44/3/25
Balance 48/10/14 47/4/21 40/6/26 32/9/31 35/7/30
MCC 55/2/15 45/15/12 52/4/16 38/19/15 44/5/23
AUC 59/2/11 51/5/16 52/4/16 49/2/21 45/7/20

RELINK
F-measure 5/1/0 4/0/2 5/1/0 3/2/1 3/2/1
Balance 6/0/0 6/0/0 6/0/0 5/1/0 5/1/0
MCC 6/0/0 5/1/0 6/0/0 5/0/1 5/1/0
AUC 6/0/0 6/0/0 6/0/0 6/0/0 3/2/1

Total
F-measure 90/10/18 84/8/26 71/8/39 71/18/29 72/13/33
Balance 79/20/19 80/12/26 71/16/31 53/27/38 63/16/39
MCC 93/9/16 82/21/15 87/13/18 69/29/20 69/17/32
AUC 95/11/12 85/13/20 82/16/20 76/15/27 67/17/34

the proposed LPDA are the best average values on the Relink
dataset. More specifically, compared with the five baseline
methods, average value by LPDA gains the improvement of
9.17%-21.34% in terms of F-measure, of 10.53%–45.47%
in terms Balance, of 4.61%–18.04% in terms MCC, and of
1.61%–21.82% in terms AUC. On the Promise dataset, the
proposed LPDA achieves the best average values in terms of
F-measure, MCC and AUC, while TPTL achieves the best
average values in terms of Balance. To be specific, compared
with the five baseline methods, LPDA achieves improvements
ranging from 4.69% to 25.56% on F-measure, 6.97% to
36.79% on MCC, and 5.83% to 11.69% on AUC, respectively.
However, the average value by LPDA is 0.58% lower than
the best average value (for TPTL) among the five baseline

methods in terms of Balance. From Table V, It is obvious that
LPDA has more than 53 wins over Wilcoxon signed-rank test
in any evaluation indicator. Taking TCA+ as an example, the
“W/T/L” results show that LDPA has statistically significant
improvements of 84/118 (84 out of 118 cross-project pair
prediction), 80/118, 82/118 and 85/118 in F-measure, Balance
MCC and AUC, respectively.

Fig. 3 depicts the boxplots of four indicators for the six
methods on four datasets. This figure illustrates that the median
values of all four indicators achieved by LPDA surpass those
obtained by the five baseline methods on both the AEEEM
and Relink datasets. On the NASA dataset, the median values
of all four indicators by LPDA are not superior to these by the
TPTL. On the Promise dataset, the values of Balance indicators
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Fig. 4. The results of scott-knott ESD test in f-measure, balance MCC, and AUC across all datasets for LPDA and the five domain adaptation based CPDP
methods.

by LPDA are slightly weaker than that by the TPTL.

Moreover, in Fig. 4(a)-(c), the outcomes of the Scott–Knott
ESD test are presented for LPDA and the five domain
adaptation-based methods across 118 cross-project pairs, con-
sidering F-measure, Balance, MCC, and AUC. The figures re-
veal that LPDA consistently achieves the lowest average rank-
ing and is clearly separated into a distinct group concerning the
four evaluation metrics. This indicates that LPDA significantly
outperforms domain adaptation-based CPDP methods.

C. Results for RQ3

TABLE VI. AVERAGE VALUES OF FOUR INDICATORS FOR LPDA AND
IT’S VARIANTS ON THE DIFFERENT DATASET

Dataset indicator LPDA TA LPDA DA LPDA noDA LPDA noLP PLDA

AEEEM
F-measure 0.474 0.498 0.496 0.504 0.542
Balance 0.639 0.667 0.668 0.677 0.696
MCC 0.336 0.363 0.358 0.361 0.378
AUC 0.687 0.727 0.725 0.728 0.748

NASA
F-measure 0.389 0.399 0.392 0.413 0.474
Balance 0.608 0.647 0.639 0.654 0.670
MCC 0.214 0.212 0.212 0.228 0.233
AUC 0.707 0.707 0.706 0.708 0.724

RELINK
F-measure 0.527 0.546 0.538 0.564 0.767
Balance 0.687 0.670 0.701 0.666 0.708
MCC 0.291 0.310 0.313 0.306 0.320
AUC 0.713 0.717 0.717 0.732 0.745

Promise
F-measure 0.419 0.432 0.437 0.456 0.563
Balance 0.662 0.666 0.683 0.684 0.702
MCC 0.320 0.324 0.323 0.330 0.338
AUC 0.719 0.728 0.727 0.729 0.746

LPDA has three key components, including locality preserving,
transferable distribution transferable distribution alignment and
discriminant distribution alignment. To investigate whether
the proposed LPDA approach is more effective than other
combinations of these three components, we specially conduct
experiments to study the design of these components. We
separately conduct LPDA TA with only transferable distribu-
tion alignment (without locality preserving and discriminant
distribution alignment), which is referred to as LPDA TA,
LPDA without discriminant distribution alignment, which is
referred to as LPDA noDA and LPDA without locality pre-
serving, which is referred to as LPDA noLP and LPDA with
only discriminant distribution alignment which is referred to
as LPDA DA.

TABLE VII. WILCOXON SIGNED-RANK TEST RESULTS OF LPDA
AGAINST EACH VARIANT METHOD

Dataset Against(W/T/L)
indicators LPDA TA LPDA DA LPDA noDA LPDA noLP

AEEEM
F-measure 17/1/2 14/2/4 16/1/3 16/1/3
Balance 13/2/5 14/5/1 15/4/1 12/4/4
MCC 13/3/4 10/8/2 14/6/0 12/5/3
AUC 14/1/5 15/0/5 11/6/3 9/4/7

NSNA
F-measure 17/1/2 16/3/1 17/1/2 14/1/5
Balance 16/2/2 11/3/6 16/2/2 10/6/4
MCC 13/5/2 14/5/1 17/2/1 10/7/3
AUC 11/4/5 12/3/5 12/4/4 12/3/5

Promise
F-measure 56/5/11 58/3/11 55/3/11 50/8/14
Balance 48/10/14 47/4/21 40/6/26 32/9/31
MCC 47/8/17 42/23/7 41/28/3 35/32/5
AUC 45/16/11 40/13/19 43/15/14 43/16/13

RELINK
F-measure 6/0/0 6/0/0 6/0/0 5/1/0
Balance 4/1/1 6/0/0 4/0/2 6/0/0
MCC 4/1/1 3/2/1 2/3/1 5/1/0
AUC 5/0/1 4/1/1 5/0/1 4/1/1

Total
F-measure 96/10/15 94/11/16 94/9/18 85/14/22
Balance 82/22/17 76/22/23 81/28/12 70/32/19
MCC 77/29/15 69/41/11 74/42/5 62/48/11
AUC 75/24/22 71/20/30 71/28/22 68/27/26

Table VI shows the average values of F-measure, Balance,
MCC and AUC on four different datasets of LPDA TA,
LPDA DA, LPDA noDA, PLDA noLS and LPDA on Relink
dataset, AEEEM dataset, NASA dataset and Promise dataset.
In these table, the best values in each row are in bold. Fig.
5 depicts the boxplots of four indicators for the five methods.
Table VII shows the results of Wilcoxon signed-rank statistical
test. We present the following findings in Table VI, Table VII
and Fig. 5. The results on the AEEEM dataset show that
the proposed LDPA performs better than its four variants.
To be specific, the improvement of LPDA over LPDA TA,
LPDA DA, LPDA noDA and PLDA noLS on average is at
least by 8.83%, 4.13%, 4.21%, 2.72% and at most by 14.38%,
8.87%, 12.48%, 8.86% in terms of F-measure, Balance, MCC
and AUC, respectively. The results of Wilcoxon signed-rank
statistical test shows that LPDA achieves more than 12 im-
provements with reference to Balance and F-measure , more
than 10 improvements with reference to MCC, and more than
nine improvements with reference to AUC, respectively.

On NASA dataset, the improvement of LPDA over
LPDA TA, LPDA DA, LPDA noDA and PLDA noLS on
average is at least by 14.69%, 2.38%, 2.26% , 2.27% and at
most by 21.95%, 10.19%, 10.18%, 2.56% with regard to F-
measure, Balance, MCC, and AUC, respectively. The results
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Fig. 5. Boxplots of f-measure, balance MCC, and AUC across all datasets for LPDA and it’s variant methods.

Fig. 6. The results of scott-knott ESD test in f-measure, balance MCC, and AUC across all datasets for LPDA and it’s variant methods. The smaller ranking,
the better performance.

of Wilcoxon signed-rank statistical test shows that LPDA
achieves more than 10 improvements with reference to Balance
and MCC , more than 14 improvements with reference to F-
measure, and more than 11 improvements with reference to
AUC respectively.

On Relink dataset, the improvement of our method over
LPDA TA, LPDA DA, LPDA noDA and PLDA noLS on
average is at least by 36.11%, 1.04%, 2.33% , 1.76% and
at most by 45.51%, 6.38%, 10.28%, 4.9% with regard to F-
measure, Balance, MCC, and AUC, respectively. The results
of Wilcoxon signed-rank statistical test shows that LPDA
achieves more than four improvements with reference to
Balance, AUC and F-measure. However, MCC of LPDA only

wins on two cross-project pairs and ties on three cross-project
pairs compared with LPDA noDA.

On Promise dataset, the improvement of our method
over LPDA TA, LPDA DA, LPDA noDA and PLDA noLS
on average is at least by 23.44%, 2.55%, 2.28% , 3.32%
and at most by 34.37%, 5.68%, 5.45%, 3.66% with regard
to F-measure, Balance, MCC, and AUC, respectively. The
results of Wilcoxon signed-rank statistical test shows that
LPDA achieves more than 50 improvements with reference
to F-measure, more than 32 improvements with reference
to Balance, more than 35 improvements with reference to
MCC and more than 43 improvements with reference to AUC
respectively. As can be seen from the results shown in TableVII
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Fig. 7. Average f-measure, balance, MCC and AUC of LPDA on different datasets using differ trade-off parameter µ.

that LPDA attains more than 85 improvements in term of
F-measure , more than 70 improvements with reference to
Balance, more than 63 improvements with reference to MCC
, and more than 68 improvements with reference to AUC,
respectively.

VI. DISCUSSION

A. Parameters Sensitivity

We explored the parameter sensitivity of LPDA to confirm
that a diverse range of parameter values can be utilized to
achieve a satisfactory level of performance. There are three
parameters in LPDA, including the regularization parameter
λ, the trade-off parameters µ and η. We change the values
of these parameters in the range of {0, 0.00001, 0001, 0.001,
0.01, 0.1, 1, 10,1000} to report the overall average F-measure,
Balance, AUC, and MCC on different datasets at 30 ran-
dom points of times. It is worth noticing when µ=0,LPDA
becomes LPDA noDA, which is without discriminant term,
when η=0, LDPA becomes LDPA noLP, which is without
locality preserving term, and when µ=0 and η=0, LDPA
becomes LPDA TA.

Fig. 7 presents the aggregate average value of F-measure,
Balance, MCC, and AUC for LPDA across various datasets,
influenced by varying the trade-off parameter µ. This figure
suggests that indicates that lower emphasis on discriminant
distribution alignment (reflected by a smaller µ value) leads to
less accurate LPDA predictions. Additionally, the g-measure
exhibits steady fluctuation within the µ, parameter range
of [0.01, 100]. We plotted the overall average F-measure,
Balance, MCC and AUC of LPDA with different trade-off
parameter η on four different datasets which are shown in
Fig. 8. We find that LPDA is sensitive to η and robust to η in
[0.001, 10].

We plotted the overall average F-measure, Balance, MCC
and AUC of LPDA with different trade-off parameter λ on four
different datasets which are shown in Fig. 9. We find LPDA is
sensitive to λ and the robust results of λ on different datasets
are different. We observe that λ ∈ [0.001, 1] is the robust
prediction result for AEEEM and NASA datasets. λ ∈ [0.01, 1]
and λ ∈ [0.1, 100] are the robust parameter values for Promise
and Relink datasets, respectively.

VII. THREATS TO VALIDITY

A. Internal Validity

The primary challenges to internal validity stem from
unmanaged variables affecting the experimental procedure.
An instance of this is the emergence of defects during the
reimplementation of baseline methods, which may occur dur-
ing the coding phase. To mitigate these issues, especially
for baselines with openly accessible source code (e.g., TCA
and TPTL methods), we utilize the provided source code
to minimize potential discrepancies. For baselines without
accessible source code, we make every effort to ensure precise
implementation by meticulously adhering to the instructions
outlined in relevant research studies.

B. External Validity

External validity mainly concerns that our research can be
generalized to other software projects. Twenty-two software
projects are employed in our experiment. We evaluated our
methods against ten CPDP approaches using five perfor-
mance evaluation metrics. Additionally, we employed both the
Wilcoxon signed-rank test and the Scott Knott-ESD test for
further analysis. However, we still cannot guarantee the con-
sistence of our method on other software projects not covered
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Fig. 8. Average f-measure, balance, MCC and AUC of LPDA on different datasets using differ trade-off parameter η.
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Fig. 9. Average f-measure, balance, MCC and AUC of LPDA on different datasets using differ trade-off parameter λ.

www.ijacsa.thesai.org 905 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 12, 2023

in this article. Further investigations on the applications of our
research to commercial projects are needed.

VIII. CONCLUSION

In this paper, we propose a novel representation learning
method LPDA for CPDP, which efficiently learned represen-
tations: 1) achieving transferability between two projects, and
2) preserving the local geometry to achieve discriminability
between different categories. The local geometry is preserved
by minimizing the distances between instances and their
nearest neighbors within the same categories and maximizing
the distances between instances and their neighbors in the
different categories. The performance of LPDA is evaluated by
five well-known evaluation indicators, including Balance, F-
measure, MCC and AUC. We select ten state-of-the-art CPDP
methods as baselines. We compare LPDA with ten baselines
using the Wilcoxon signed-rank test and Scott-Knott ESD test
(see Fig. 6). The experimental results on 22 software projects
from four software repositories have shown that LPDA method
is significantly superior to ten other CPDP methods. However,
the proposed LPDA still has some limitations. LPDA does not
consider important practical issues regarding the acquirement
of useful knowledge from multiple external software projects
and the application to projects. Moreover, LPDA method only
considers traditional metric features and ignores effective high-
level context features of source code. In our future work, we
will further explore the potentials of LPDA.
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