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Abstract—In recent years, the rapid advancement of image
generation technology has facilitated the creation of counterfeit
images and videos, posing significant challenges for content
authenticity verification. Malefactors can easily extract videos
from social networks and generate their own deceptive renditions
using state-of-the-art techniques. The latest Deepfake face forgery
videos have reached an unprecedented level of sophistication,
making it exceptionally difficult to discern signs of manipula-
tion. While several methods have been proposed for detecting
fraudulent media, they often target specific aspects, and as
new attack methods emerge, these approaches tend to become
obsolete. This paper presents a novel detection approach that
combines Convolutional Neural Networks (CNN) and Long Short-
Term Memory Networks (LSTM). Initially, CNN is employed to
extract image features from each frame of the input facial video,
capturing subtle alterations and irregularities in manipulated
content. Subsequently, the extracted feature sequence is used to
train the LSTM network, mimicking the temporal consistency
of human visual perception and enhancing the effectiveness
of counterfeit video detection. To validate this methodology, a
comprehensive evaluation is conducted using the FaceForensic++
dataset, affirming its proficiency in identifying Deepfake counter-
feit videos.
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I. INTRODUCTION

The rapid and remarkable progress in machine learning
technology has elevated the capabilities of video modification
and production to an unprecedented level. A pivotal develop-
ment in this arena is the widespread adoption of Generative
Adversarial Networks (GANs), which have revolutionized the
automatic generation of images and video synthesis through
network model training [1]. Notably, the advent of Deepfake
technology, a derivative of GANs, has enabled the seamless
replacement of facial features in videos. After post-processing,
these videos attain an exceptional degree of realism. However,
this rapid technological advancement has brought forth a slew
of significant societal challenges [2]. The proliferation of
Deepfake technology raises concerns about privacy violations,
and its misuse can potentially lead to legal liabilities. De-
spite diligent efforts by network oversight bodies, the digital
landscape remains inundated with a vast volume of synthetic,
manipulated videos. It is, therefore, imperative to expeditiously
develop effective methods for detecting forged videos to ad-
dress this burgeoning issue.

As Deepfake technology continues to evolve, the field of
detection methods has made substantial progress. Researchers
have delved deeply into deep learning models, including spatial
domain methods [3], [4], [5] and temporal domain methods

[6], [7], in a comprehensive effort to identify irregularities
and inconsistencies inherent in Deepfake videos. These models
autonomously extract and categorize features, thereby enhanc-
ing the accuracy of forged content detection. Moreover, the
development and utilization of extensive datasets have played
a pivotal role in advancing research on deep forgery detection.
Datasets such as FaceForensics++ [8], Deeperforensics [9]
have provided a wealth of real and fake video examples,
serving as invaluable resources for researchers in this field. The
adoption of multi-modal detection approaches, which combine
visual data with audio, voice, and other sources of information,
has significantly improved the precision and effectiveness of
detection methods. Nevertheless, the field of deep forgery
detection continues to grapple with an array of challenges. Ad-
versaries consistently refine their Deepfake techniques, making
detection increasingly intricate. Consequently, researchers are
compelled to continually enhance detection methodologies to
bolster their robustness and real-time performance, effectively
responding to evolving forgery threats.

In alignment with these advancements, this paper intro-
duces a temporal feature inconsistency analyzing method to
enhance the accuracy of Deepfake forgery detection. Specif-
ically, the proposed approach integrates a deep convolutional
neural network for image feature extraction and incorporates
an LSTM network to analyze correlations between feature
sequences. Empirical findings substantiate the efficacy of this
methodology, affirming its capacity to facilitate efficient and
reliable deep forgery video detection. The main contributions
of this paper are as follows:

1) We propose a deepfake detection framework based
on the extraction of temporal inconsistencies, com-
bining the feature extraction capabilities of CNN and
the temporal feature analysis abilities of LSTM to
achieve accurate detection of deepfakes.

2) We tested the algorithm’s detection accuracy on video
sequences of various lengths using the FaceForen-
sics++ dataset. The experimental results indicate that
our algorithm ensures both detection accuracy and
computational efficiency when applied to video se-
quences of 40 frames in length.

This paper focuses on detecting deepfake videos using
temporal continuity. Section II provides an overview of recent
advancements in deepfake detection research. Section III de-
tails the proposed methodology, while Section IV validates its
effectiveness through experiments measuring detection accu-
racy, computational efficiency, and related metrics. Finally, the
Section V concludes the paper by summarizing our proposed
scheme.
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II. RELATED WORK

Currently, research in the field of image forgery detection
has made notable advancements. However, there is still a
compelling need for further exploration, particularly in the
context of real-world scenarios. The domain of forged video
detection is predominantly categorized into two main classes:
semantic detection and non-semantic detection. The specific
detection methods within these categories are systematically
organized and illustrated in Fig. 1.

Detection of forged video

Semantic methods Semantic-free methods

Based on blink times

Based on image difference

Based on the consistency 
of facial feature points

Design neural networks 
with better performance

Fig. 1. Classification of forgery video detection methods.

A. Semantic-based Detection Method

1) Classification using the number of blinks in the video:
Blinking, denoting the swift opening and closing of eye-
lids, constitutes a notable behavioral trait. The generation of
counterfeit videos through GAN models relies on extensive
training data sourced from facial images. As a consequence,
many genuine photos do not capture subjects with their eyes
closed, leading to a distinctive lack of blink in the generated
fake videos. From this vantage point, the absence of blinking
emerges as a conspicuous discrepancy between counterfeit and
authentic videos.

In the realm of computer vision, blink detection has
garnered attention for diverse applications such as fatigue
detection [10], [11], [12] and face spoofing detection [13].
Various approaches have been explored in this context. Sukno
et al. [14] employed an active shape model in conjunction
with optimal invariant features to delineate the eye contour,
subsequently assessing eye state based on vertical eye dis-
placement. Torricelli et al. [15] analyzed eye states through the
comparison of consecutive frames. Divjak et al. [16] harnessed
optical flow to capture eye motion, subsequently extracting the
principal eye motion for analysis. Yang et al. [17] deployed
parameterized parabolic curves to model eye shapes and fitted
the model to individual frames for eyelid tracking.

Drutarovsky et al. [18] delved into the variance of vertical
eye area movement as detected by the Viola-Jones algorithm.
They further utilized a group of KLT trackers within the eye
area, dividing each eye region into 3x3 subregions to calculate
the average motion within each. Notably, the most recent
development in forged video detection with a focus on blink
motion is attributed to Li et al. [19]. Their approach discerns
blink occurrences through a combination of Convolutional
Neural Networks (CNN) and Long Short-Term Memory Neural

Networks (LSTM), ultimately rendering judgments regarding
video authenticity based on blink frequencies.

However, this technology primarily hinges on the quantifi-
cation of blink incidents. Crucially, GAN models employed for
the generation of counterfeit videos are trained on a substantial
corpus of facial images. In the event that malicious actors
augment the training data with closed-eye facial images, the
resultant Deepfake counterfeit videos will exhibit plausible
blink occurrences, effectively undermining the blink-based
detection mechanism.

2) Using the difference between the head pose of the person
in the generated video and the head pose of the original
video to classify: The face exchange algorithm is designed
to generate faces of different individuals while preserving the
original facial expressions. However, it is essential to note that
the facial feature points of these two faces may not align.
The positions of these feature points on the human face are
intrinsically linked to crucial structures such as the eyes and
mouth. Given that neural network synthesis algorithms cannot
guarantee the exact replication of facial features between the
original human face and the synthesized face, Yang et al.
[20] introduced a novel approach to assess the head pose by
comparing estimations derived from all facial feature points
with those calculated solely from the central region.

This method is grounded in the observation of errors
stemming from the integration of the synthesized face region
into the original image. These errors become evident when
attempting to estimate the three-dimensional head pose from
the facial image. The authors empirically validated this phe-
nomenon through a series of experiments and subsequently de-
vised a classification method based on these observations. It’s
noteworthy, however, that this approach has yet to be evaluated
using the latest Deepfake forged face datasets. Consequently,
the question of whether it can effectively detect the most recent
Deepfake videos remains an open challenge.

3) Classification by comparing the differences between the
face area and the surrounding area: In the realm of image
and video detection, recent strides have been taken towards
identifying content generated by Generative Adversarial Net-
works (GANs). Notably, in the context of face exchange, where
the original face image from one video is transposed onto
the face image of another video, even after a series of fuzzy
optimization processes, disparities inevitably emerge between
the facial image and its surrounding context.

Li et al. [21] introduced a novel approach that leverages
a Convolutional Neural Network (CNN) model to discern
discrepancies between the facial region and its neighboring
context, thereby facilitating the detection of forged faces. To
simulate a broader spectrum of affine distorted faces across
different resolutions, the authors trained four CNN models,
namely VGG16 [22], ResNet50, ResNet101, and ResNet152
[23]. Subsequently, these models were evaluated by testing
them on several synthetic videos sourced from YouTube, af-
firming the effectiveness of this method for detecting Deepfake
forged videos.

B. Non-semantic Detection Method

In recent years, the field of digital image forensics has wit-
nessed a notable integration of deep learning techniques. Rao
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and Ni [24] introduced a network dedicated to detecting image
stitching, while Rahmouni et al. [25] demonstrated the capacity
of deep learning to discriminate between computer-generated
and photographic images. These developments underscore the
robust performance of deep learning in the domain of digital
forensics.

Indeed, traditional microscopic analysis relying on image
noise becomes inapplicable within the constraints of com-
pressed video environments, where image noise is often signif-
icantly denoised. Similarly, differentiating forged face images
at a higher semantic level poses a considerable challenge for
the human eye. To address these issues, Darius and Vincent
et al. [26] proposed an intermediary approach, employing a
deep neural network with a streamlined architecture for image
detection. They presented two network structures tailored for
detecting forged videos, achieving commendable detection
results with a minimal computational overhead. Experimental
results showcase an average detection accuracy of 98% for
Deepfake counterfeit videos. To further validate the efficacy
of this solution, considerable effort was devoted to visualizing
the designed network layers and filters.

Another pioneering contribution in the realm of deepfake
video detection was presented by Huy et al. [27], who har-
nessed capsule networks for detecting counterfeit videos across
diverse scenarios. This work marked a significant advance-
ment, as it was among the first to explore the application of
capsule networks in the field of detection. Capsule networks,
initially devised to address issues in digital forensics, were
thoroughly examined. The authors conducted a comprehensive
analysis and comparison against four mainstream datasets,
affirming the superior performance of their method.

However, challenges still persist in the domain of Deepfake
video detection, including issues related to the representa-
tiveness of datasets and the limited scope of detection. To
address these concerns, this paper employs a combination
of Convolutional Neural Networks for feature extraction and
Long Short-Term Memory networks for analyzing temporal
inconsistencies.

III. PROBLEM ANALYSIS AND PROPOSED METHOD

A. Problems in Deepfake Generation Methods

This section briefly introduces the process of Deepfake
generation, and analyzes the problems existing in Deepfake
generation method according to its production process.

Fig. 2. Forged face generation process diagram.

As illustrated in Fig. 2, the process of generating a forged
frame image within a video is detailed. Initially, the original

image (a) undergoes face detection to delineate the facial
region, depicted as the bounding box in (b). Subsequently, the
facial feature points are extracted, and these extracted points
are visualized in (c). These feature points convey essential
facial characteristics, including facial orientation. Following
necessary adjustments, the result in (d) is obtained, which then
serves as input to a Generative Adversarial Network (GAN)
to produce (g). The subsequent task involves seamlessly inte-
grating (g) with the original image. Two distinct methods are
employed for this integration. The first method entails directly
replacing (g) with the original image (a) via an affine transfor-
mation, generating an image such as (f). However, it becomes
evident from (e) that the replaced area does not seamlessly
blend with the original image, resulting in noticeable discrep-
ancies. The second approach involves initially identifying the
region to be replaced based on the feature points detected in
(c), as depicted in (h). This replacement region predominantly
corresponds to the central area of the face. Subsequently, (g) is
replaced in this region via an affine transformation. Finally, the
boundary of the replacement region is softened and smoothed
to enhance the image’s overall realism. Totally, the problems
of Deepfake generation technology are as follows:

1) Intra-frame: When introducing a new face into the target
frame image, even with subsequent blurring and smoothing
of the boundary, the central facial region tends to exhibit
disparities in terms of color, brightness, and resolution when
compared to the other areas within the target frame image.

2) Inter-frame: In the context of video face forgery, each
image frame undergoes processing, and the GAN employed
to generate facial images lacks the ability to retain knowledge
of previous frames. In essence, the GAN lacks information
about the facial content in the preceding frames, making
it challenging to capture the temporal consistency between
adjacent frames. Consequently, the facial expressions in con-
secutive frames may exhibit significant divergence, whereas
genuine video sequences tend to maintain a higher degree of
consistency in the facial expressions between adjacent frames.

B. The Proposed Method

Building upon David’s approach [28], this paper lever-
ages the incongruities present in intra-frame and inter-frame
Deepfake video content for detection purposes. In addressing
intra-frame disparities, Convolutional Neural Networks are
harnessed to extract image features, with the objective of
obtaining discriminative features capable of distinguishing
genuine from fabricated videos. To address the issue of tem-
poral continuity between frames, this paper adopts the Long
Short-Term Memory network (LSTM) for detection. LSTM is
a network well-suited for processing sequential data, allowing
for the analysis and processing of features that exhibit temporal
coherence.

Consequently, this experiment capitalizes on the inconsis-
tency within the image content of Deepfake forged videos and
the lack of continuity between adjacent frame images. The
process commences with feature extraction performed on each
frame within the video, and the resulting feature sequence
is subsequently input into the LSTM network. The LSTM
network is meticulously trained to identify Deepfake forged
videos. The workflow of this solution is visually represented
in Fig. 3.
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Fig. 3. The workflow of the solution.

1) Video frame extract: Before proceeding with spatial
feature extraction, the initial step involves extracting individual
frame images from the video footage. To comprehensively
evaluate the minimum duration of a forged video that can be
reliably and effectively detected, this experiment involves the
selection of a sequence of consecutive N-frame images. The
study investigates three distinct values for N: 20, 40, and 60
frames, providing a thorough examination of the impact of
video length on detection accuracy.

2) Face image extraction: Prior to the spatial feature
extraction phase, the fundamental process begins with isolating
facial images from the video frames. This initial step holds
significant importance for multiple reasons. Firstly, the facial
region and its immediate surroundings inherently exhibit a
higher degree of distinctiveness, rendering them a valuable
asset in the task of differentiating genuine content from manip-
ulated video segments. In our approach, facial detection tech-
niques are employed to pinpoint and delineate prominent facial
features within each frame. Once these facial feature points
are successfully identified, the corresponding facial images are
cropped and separated from the frames. This foundational step
lays the groundwork for subsequent spatial feature extraction
procedures, ensuring the preservation and utilization of the
most informative and distinguishing component of the video -
the human face - to enhance the robustness and effectiveness
of subsequent detection processes.

3) Image characteristic extraction: Convolutional Neural
Networks (CNN) have consistently proven their superiority
in image classification tasks due to their exceptional feature
extraction capabilities. In the context of forgery video detec-
tion, the process of face replacement inevitably introduces
inconsistencies between the replaced face image and the
surrounding context. These inconsistencies can be effectively
captured by the image features extracted through CNN. This
paper employs multiple CNNs to individually extract features
from face images. The choice of the most suitable neural

network model for forgery video detection is determined by
comparing their classification performance. These CNNs are
utilized to extract image features from video frames within
the training and test datasets.

Considering the potential limitations of self-constructed
network models in feature extraction, pre-trained network
models on the ImageNet dataset, such as VGG19, Inception-
V3, and ResNet, are also considered. After removing the last
output layer, the output of the final fully connected layer serves
as the feature representation for each frame image, thereby
facilitating feature extraction from each frame.

4) LSTM network training: To analyzing the temporal
inconsistency, the Long Short-Term Memory (LSTM) network
is harnessed to analyze the feature sequence extracted by CNN.
The LSTM network is equipped with a fully connected layer to
map the features derived from LSTM into the ultimate forgery
video detection probability. This training process culminates
in the development of an LSTM network model designed to
serve as a classifier for forged videos.

IV. EXPERIMENTS

Aiming at the inconsistency in Deepfake forged video, this
experiment uses Convolutional Neural Network to extract the
spatial features of each frame image to obtain the continuous
spatial features of the video, and then inputs the feature
sequence into the LSTM network. The sequence features are
extracted by the LSTM network to train the classifier, so as to
realize the detection of forged video. This chapter introduces
the experimental part.

A. Experiment Settings

1) Dataset: This study leverages the widely recognized
FaceForensics++ dataset, an extension of the original Face-
Forensics dataset that has gained extensive adoption in the
digital forensics community. The creation of this dataset in-
volved a meticulous process. The dataset production team
initiated the project by sourcing 1000 original video files from
various online platforms. To ensure the suitability and quality
of these videos for research purposes, a minimum resolution
of 480p or higher was enforced for each selected video.
In recognition of the potential confounding factor of facial
occlusion, the production team embarked on a comprehensive
manual segmentation process to painstakingly remove any
occluded facial fragments within the videos. As a result, the
dataset comprises a total of 1000 original videos, with each
video yielding an extensive collection of 509,914 individual
frames upon the extraction of each image frame. The pri-
mary focus of this research lies in the detection of Deepfake
counterfeit videos. Therefore, the dataset predominantly draws
upon the original video set available in the dataset, comple-
mented by a dedicated Deepfake counterfeit video dataset. The
construction and preparation of these datasets were carried
out with exceptional care and precision, underscoring their
pivotal role in facilitating robust and credible research in the
domain of forged video detection. Within the dataset, the
training set comprises 720 videos, while the validation and
test sets collectively encompass 140 videos. The exact count
of video frames included in each dataset can be found in
Table I, providing a comprehensive overview of the dataset’s
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composition. This rigorous dataset design and curation serve
as an indispensable foundation, ensuring the availability of a
diverse and comprehensive set of video data that is critical for
advancing the field of forged video detection.

TABLE I. THE TOTAL NUMBER OF VIDEO FRAMES CONTAINED IN EACH
DATASET

Dataset Training set Validation set Testing set
Original 367,282 68,862 73,770

Face2Face 367,282 68,862 73,770
FaceSwap 292,376 54,630 59,672
Deepfakes 367,282 68,862 73,770

2) Experimental parameters: With the network architecture
defined, the subsequent step involves data transmission to
initiate the training phase. For this experiment, the Adam
optimizer, acknowledged for its proficiency in optimizing deep
learning models, is employed. The learning rate, a critical hy-
perparameter influencing convergence and training dynamics,
is thoughtfully set to 1e-4 to promote a well-balanced learning
process. During the training phase, a designated batch size of
8 examples is input into the network in each training iteration.
This iterative process continues until the network achieves
convergence, a pivotal juncture in the training cycle where the
model has reached its optimal learning capacity. Subsequently,
the trained network model undergoes rigorous testing to assess
its performance, with a specific focus on detection accuracy.
In Table II, provided below for reference, the experiment
accounts for the variability in the number of nodes within
the fully connected layers in distinct network configurations.
To reconcile this variance, systematic adjustments are made
to the parameters governing the Long Short-Term Memory
(LSTM) layers and the subsequent fully connected layers.
These parameter modifications are executed with precision,
ensuring the seamless and coherent operation of the network
across various architectural configurations.

B. Face Image Extraction

The fundamental premise of this algorithm centers on
harnessing discrepancies within the facial region, recognizing
that this region exhibits substantial variations indicative of
manipulation. Nonetheless, it’s essential to acknowledge that
a complete video frame contains a plethora of information
extending beyond the facial area, which may not be pertinent to
the analysis at hand. Therefore, a critical preprocessing step in-
volves the extraction of facial images, with a specific focus on
precisely delineating the face and its immediate surroundings.
This segmentation process is pivotal in isolating the region
of interest, as depicted in Fig. 4, and subsequently refining
the dataset for effective analysis. This strategic extraction not
only mitigates computational overhead but also streamlines the
subsequent processes of feature extraction and classification,
thereby enhancing the efficiency and accuracy of Deepfake
video detection.

TABLE II. PARAMETER SETTINGS OF THE NETWORKS

Network VGG19 Inception-V3 ResNet50
LSTM 4096 2048 2048

Fully connected layer 512 512 512

Fig. 4. Comparison diagram before and after face extraction.

C. Image Characteristic Extraction

In this experimental phase, a series of neural networks is
employed for spatial feature processing on the dataset. This
process is designed to extract one-dimensional features of a
fixed length for each image frame extracted from the video
sequences. To exemplify this procedure, we will utilize the
Inception-V3 network as a representative model. The crux
of this operation lies in the extraction of salient features
from video frames. The resulting features, pertaining to both
unaltered and Deepfake videos, are visually presented in Fig.
5 for reference. The top row showcases the features extracted
from a continuous sequence of frames in an unaltered video,
while the bottom row illustrates the features extracted from a
sequence of frames within a Deepfake video. These visualiza-
tions serve to elucidate the distinctions in the extracted features
between authentic and manipulated video content. They offer
invaluable insights into the characteristic disparities that can
be harnessed for Deepfake detection. These visual aids play
a pivotal role in comprehending the feature extraction process
and its implications for the differentiation between genuine and
manipulated video material.

Fig. 5. The extracted feature comparison diagram.

The key observation here pertains to the selected frames
extracted from the video, which, being part of a continuous
sequence, exhibit an exceptionally high degree of similarity
among their image features. This heightened similarity is a
direct consequence of the contiguous nature of the frames
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within the video. Additionally, it is essential to note that
the features extracted from different videos manifest notably
distinct characteristics. This pronounced disparity in feature
attributes underscores their potential for effective classification.

Fundamentally, these findings emphasize that features ex-
tracted from videos possess a discriminative quality, enabling
classification to a significant extent. This attribute not only
substantiates the feasibility of distinguishing between genuine
and manipulated video content but also underscores the effec-
tiveness of feature extraction in augmenting the performance
of Deepfake video detection systems.

D. Time Continuity Network Training

In our experiment, which involves the VGG19, Inception-
V3, and ResNet networks, it is noteworthy that the output
feature sequences generated by these networks exhibit varying
lengths. To address this variability, we have meticulously tai-
lored LSTM (Long Short-Term Memory) modules with lengths
that correspond to each network’s unique feature sequences.
This adaptation ensures the effective processing and analysis
of the distinct features extracted by each network.

Following the feature analysis conducted by the LSTM
modules, the subsequent architectural component comprises a
fully connected layer consisting of 512 nodes. This layer plays
a pivotal role in consolidating the information derived from the
feature sequences. Subsequently, a sigmoid layer is introduced
to compute the classification probability. The sigmoid layer
serves to transform the output of the fully connected layer
into a probability distribution, facilitating the classification of
the video content as either authentic or Deepfake.

During the training phase of this experiment, the dataset is
divided into a training set, used to train the network model, and
a validation set. The network’s performance on the validation
set is closely monitored, with the classification results offering
feedback on the model’s effectiveness. Based on the validation
outcomes, decisions are made regarding whether to halt the
ongoing model training or make further adjustments to model
parameters. Iteratively, model parameters are fine-tuned, and
this process is reiterated until the optimal model configuration
is achieved.

As an illustrative example of the feature extraction process
from the ResNet network, the relevant data are visually rep-
resented in Fig. 6. This visualization offers insights into the
nature of the features extracted from the ResNet network and
their potential to enhance the Deepfake detection process.

The analysis of the four curves provides valuable insights
into the performance of the LSTM network in our experi-
ment. It is evident that the LSTM network demonstrates a
commendable ability to effectively fit the training set, pro-
ducing outcomes that closely align with the ground truth
labels. However, when the same network is applied to the
validation set, the results appear to be comparatively less
accurate. This performance discrepancy between the training
and validation sets reveals a couple of key observations. Firstly,
this observed difference underscores the LSTM network’s
capability to effectively harness the features extracted by
the Convolutional Neural Network (CNN) for classification
purposes. The capacity of the LSTM network to adapt to

Fig. 6. Network training curve diagram.

and learn from the features derived from the CNN highlights
the symbiotic relationship between these components within
the deep learning framework. On the other hand, the noted
performance gap between the training and validation sets also
suggests that the dataset size may be insufficient to achieve a
perfect fit to the validation set. This situation is not uncommon
in the field of machine learning, particularly when the model
tends to memorize the training data rather than generalize to
unseen data. Therefore, the results underscore the necessity
for larger and more diverse datasets to bolster the network’s
performance on validation data, thereby enhancing its ability
to make accurate classifications in real-world scenarios.

E. Detection Accuracy

In our experimental design, we deliberately limited our
analysis to three specific lengths of consecutive video frames:
N = 20, 40, and 60. The rationale behind conducting these
three distinct sets of experiments was to ascertain the minimum
video length necessary for effective Deepfake video detection.
To accomplish this, we harnessed the capabilities of four
distinct networks for spatial feature extraction. Subsequently,
we employed LSTM (Long Short-Term Memory) for the
analysis of sequence features, ultimately culminating in the
determination of classification accuracy for detecting forged
video, as exemplified in Table III.

Analyzing the results depicted in Fig. 7, it becomes ev-
ident that ResNet has consistently demonstrated outstanding
performance across the various video clip lengths used in the
experiments. This observation underscores that the features
extracted by ResNet are notably representative and adaptable
in the context of classification challenges like video forgery
detection. In contrast, the classification results of the simpler
Convolutional Neural Network (CNN) on the test set appear to
be less impressive. The primary reason for this disparity lies
in the absence of pre-training using large-scale datasets. As
a consequence, the features extracted by the simple CNN do
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TABLE III. CLASSIFIED RESULTS

Number of video frames Simple CNN + LSTM VGG19+LSTM Inception-V3+LSTM ResNet+LSTM
20 0.5096 0.7749 0.762 0.7829
40 0.5113 0.7781 0.7669 0.8327
60 0.5112 0.8039 0.7572 0.8472

TABLE IV. TIME CONSUMPTION OF RESNET+LSTM

Video frame length Frame extraction(s) Face extraction(s) Feature extraction(s) Classification(s)
20 18.26 11.88 79 56
40 19.52 22.83 148 94
60 19.97 34.1 222 135

not effectively capture the distinctions between different video
frames.

Fig. 7. Classification accuracy comparison chart.

Furthermore, it is noteworthy that there are variations in de-
tection accuracy among video clips of differing lengths. These
differences arise due to variations in the features extracted by
different networks, with these variations impacting the repre-
sentation of features concerning temporal continuity. As the
length of the video clip increases, the classification accuracy
gradually improves. This trend suggests that in longer videos,
the contiguous frames more effectively reflect the temporal
continuity. For instance, taking ResNet as an illustration, a
video clip with a length of 40 frames attains a commendable
83.27% detection accuracy. Expanding the length to 60 frames
yields only a modest 1.5% improvement in accuracy, while
also increasing the computational complexity. As a result,
in practical applications, opting for 40-frame video clips for
detection represents a reasonable compromise. Similar trends
can be observed in the performance of other networks in the
experiments.

F. Time Consumption

Focusing on the ResNet network’s performance within
the experiment, this paper utilizes the ResNet architecture in
combination with LSTM for a more detailed analysis of the
method’s time consumption.

Table IV illustrates the time allocation for various stages

of the method, revealing that the processes of frame extraction
and face extraction consume a considerable amount of time.
The duration of these processes is also influenced by the sys-
tem’s hardware performance. As a remedy, when implementing
this algorithm within a system, these two time-consuming steps
can be executed in the background to mitigate user wait times
and enhance system efficiency.

Guided by the comprehensive analysis of classification
accuracy and time consumption across the experiment, the
results point to the utility of 40-frame video clips. This
length not only yields superior classification accuracy but also
minimizes the computational overhead, resulting in a more
efficient and responsive system.

G. A Comparison with Existing Researches

The analysis of the experimental results highlights the
effectiveness of the methodology that utilizes Convolutional
Neural Networks (CNN) for feature extraction, complemented
by Long Short-Term Memory (LSTM) networks for se-
quence feature extraction. Particularly, the features extracted
by ResNet prove to be the most suitable for the task of
Deepfake video detection.

Table V offers a comprehensive overview of performance
metrics for various algorithms, as provided by the FaceForen-
sic++ dataset production team, with a specific emphasis on
Deepfake video classification. Each method in the table is
labeled with ‘c23’ and ‘c40,’ denoting the video compression
rate used. A notable observation from the table is the highest
reported detection accuracy of 0.882, as provided by the
dataset production team. In contrast, the best result achieved
in our experiment stands at 0.924, surpassing the performance
of other detection techniques listed in the table.

This outcome serves as robust validation of the effective-
ness of the methodology we have employed. The method capi-
talizes on CNNs for image feature extraction and subsequently
subjects these feature sequences to LSTM network training
and testing. This comprehensive approach demonstrates the
method’s ability to effectively detect Deepfake forged videos,
as evidenced by its superior performance relative to other
techniques in the comparative analysis.
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TABLE V. FACEFORENSIC++ DATASET DETECTION ACCURACY TABLE
OF EACH METHOD

Methods Detection accuracy(%)
Ours 0.924

Bayar c23 [29] 0.882
Recast c23 [30] 0.836

XceptionFull(FaceForensics++) [31] 0.755
MesoNet c40 [26] 0.700

Rahmouni c40 [25] 0.691

V. CONCLUSION AND FORESIGHT

This paper addresses the challenge of forged video detec-
tion as a binary classification task and introduces a novel ap-
proach that leverages the synergy between Convolutional Neu-
ral Networks (CNN) and Long Short-Term Memory (LSTM),
yielding outstanding classification results. CNN has demon-
strated its prowess in computer vision, affirming its exceptional
feature extraction capabilities. The methodology effectively
harnesses CNN for comprehensive feature extraction on indi-
vidual image frames, followed by an in-depth analysis of these
feature sequences using LSTM, culminating in reliable forged
video detection. The experiment was conducted using the
FaceForensics++ dataset, encompassing a substantial number
of manipulated videos. The results unequivocally demonstrate
the remarkable efficacy of our method in detecting Deepfake
face forgery videos. In our future research endeavors, we are
committed to ongoing enhancements of existing classification
algorithms to further elevate the accuracy of Deepfake face
forgery video detection. We are enthusiastic about the evolving
landscape of this research domain and firmly believe that these
advancements will yield more reliable and efficient solutions
for forged video detection.
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