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Abstract—Accurate stock market forecasting has remained
an elusive endeavor due to the inherent complexity of financial
systems dynamics. While deep neural networks have shown initial
promise, robustness concerns around long-term dependencies per-
sist. This research pioneers a synergistic fusion of nonlinear time
series analysis and algorithmic advances in representation learn-
ing to enhance predictive modeling. Phase space reconstruction
provides a principled way to reconstruct multidimensional phase
spaces from single variable measurements, elucidating dynamical
evolution. Transformer networks with self-attention have recently
propelled state-of-the-art results in sequence modeling tasks. This
paper introduces PSR-Transformer Networks specifically tailored
for stock forecasting by feeding PSR interpreted constructs to
transformer encoders. Extensive empirical evaluation on 20 years
of historical equities data demonstrates significant accuracy im-
provements along with enhanced robustness against LSTM, CNN-
LSTM and Transformer models. The proposed interdisciplinary
fusion establishes new performance benchmarks on modeling
financial time series, validating synergies between domain-specific
reconstruction and cutting-edge deep learning.
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I. INTRODUCTION

Stock price forecasting remains a pivotal yet challenging
problem, as financial markets display highly chaotic properties
arising from complex interplay of diverse macroeconomic
factors, events, and psychology [1] [2] [3]. Traditional linear
statistical models like ARIMA face inherent limitations to
accurately characterize the nonstationary, nonlinear patterns
ubiquitous in financial time series data [4] [5]. Since markets
rebounded after the 2020 pandemic shocks, advancing ma-
chine learning predictions for equities has regained immense
research attention [6] [7].

In recent times, deep neural networks like long short-term
memory (LSTM) recurrent networks have achieved superior
performance over conventional techniques by modeling higher-
order nonlinear relationships and long-range temporal depen-
dencies in sequential data [8]. Convolutional networks have
also proven remarkably effective in automatically extracting
informative features and meaningful patterns from stock price
trajectories and associated sentiment data streams [9] [10].
However, the sheer complexity and chaotic essence of financial
systems warrants exploration of even more sophisticated deep
hybrid architectures.

Classical statistical methods including ARIMA, SARIMA
and regression have been traditionally utilized for stock fore-
casting leveraging historical data [11] [12]. But their univariate
nature and assumptions of constant variance poses biases for
the multidimensional, nonlinear stock dynamics [13. Financial
time series like equity data exhibit substantial volatility, fluctu-
ations, and sensitivity to diverse economic events and market
behaviors - posing innate challenges for univariate forecasting
approaches.

Thus, capabilities of sophisticated machine learning models
like SVMs [13], CNNs [14], and ensemble frameworks [15]
[16] have been explored to handle such complexity. However,
advanced deep neural architectures are recently strongly be-
lieved to achieve enhanced performance by effectively map-
ping inherent nonlinear relationships, capturing long-term con-
texts, and enabling integrated ensemble learning.

Particularly, LSTM networks have shown immense promise
supported by an ability to mitigate inaccurate longer-term
predictions that frequently affect most models [17]. Prior re-
search found LSTMs captured price trends and changes much
more accurately over traditional methods like ARIMA [18].
Bidirectional LSTM models with additional gated recurrent
units have also been proposed for stock forecasting with
significantly minimized deviations between predictions and
ground truth [19].

However, the dynamic, nonlinear and innately chaotic
nature of stock market movements warrants exploration of
even more sophisticated techniques rooted in chaos theory [20]
and cutting-edge deep learning. Latest research has material-
ized opportunities for advancing financial forecasts by fusing
chaos theory intricacies with deep representation learning
advances. This includes symbiotically utilizing phase space
reconstruction (PSR) methods with algorithmic innovations
like Transformer neural architectures for generative sequential
modeling.

Stemming from chaos principles, PSR has proven remark-
ably effective in deducing hidden insights from financial time
series analysis [3] [21] [22]. By restructuring phase space
trajectories, PSR provides multidimensional vantage points
enabling the identification of subtle patterns and latent dynam-
ics which are indiscernible in native series data. Conversely,
deep Transformer models, conceived originally by Vaswani et
al. [23] for language tasks, have gathered immense attention
recently for their exceptional long-range dependency modeling
aptitude - making them extremely suitable for market trend
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projections.

Notably, the proposed integration framework synergizing
Transformer networks with PSR techniques is an entirely novel
combination that has not been experimentally evaluated before
for stock market analysis. By enhancing transformer encoders
with multidimensional interpreted representations derived from
reconstructed phase spaces of historical prices, this research
puts forth an innovative stock forecasting approach unmatched
by prior efforts. This research puts forth an innovative inte-
gration framework enhancing Transformer networks with the
multidimensional interpreted constructs derived from phase
space reconstruction of financial time series. Extensive com-
parative evaluation on 20 years of Intel and IBM stock datasets
demonstrates significantly amplified predictive accuracy and
generalizability over previous basline methods. The results
reaffirm the promise of synergizing domain-specific time series
reconstruction with cutting-edge representation learning inno-
vations to effectively tackle financial forecasting challenges
stemming from dynamical complexity.

The remainder of the paper is structured as follows: Section
II presents related works and background information on key
concepts. Section III details the proposed methodology. Sec-
tion IV discusses the experimental setup and results. Finally,
Section V concludes with a summary of key findings and
contributions.

II. BACKGROUND AND RELATED WORKS

Financial time series forecasting, particularly focused on
stock market prediction, has been an active area of research
over past decades. Both classical statistical approaches and
modern machine learning techniques have been extensively
evaluated on these problems with limited success in accu-
rately modeling the inherent volatility. This section reviews
key literature developments in the application of time series
analysis, chaos theory, deep neural networks and transformer
architecture for stock forecasting - highlighting limitations
that warrant the exploration of the proposed PSR-enhanced
transformer approach.

A. Statistical Time Series Modeling

Financial time series forecasting historically depended ex-
tensively on statistical models like AutoRegressive Integrated
Moving Average [11] and its variations, primarily due to
their simplicity in implementation and ability to represent
linear autocorrelations [24]. The Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) framework became
prominent by addressing volatility clustering attributes com-
monly exhibited in financial data [25]. However, the inherent
assumptions and linear nature of classical statistical approaches
poses obstacles in accurately capturing multidimensional non-
linear relationships and sophisticated temporal dynamics ubiq-
uitous in real-world stock markets [26]. This necessitates more
flexible data-driven solutions.

B. Machine Learning Models

Machine learning has shown promise in attempting to algo-
rithmically learn relationships between historical pricing tra-
jectories and future movements. Approaches evaluated include
Gaussian Processes [27], Support Vector Machines [28] and

Multilayer Perceptrons [29]. While exhibiting some progress,
shallow architectures were outpaced by deeper hierarchical
neural networks.

C. Deep Neural Networks

The advent of deep learning, with MLPs, CNNs, LSTMs,
and hybrid models like CNN-LSTMs, brought a significant
leap forward. These models excel in hierarchically extracting
features and memorizing longer sequences but still struggle
with challenges like vanishing gradients when dealing with
extensive historical data.

Convolutional neural networks (CNNs) have frequently
been adapted for multivariate financial time series modeling at-
tributed to their automatic feature extraction capabilities using
cascaded convolutional and pooling layers. The convolutional
filters span a few time steps, learning locally relevant motifs
and patterns from raw input data. Multiple such filters applied
densely across timeseries and variables extract a comprehen-
sive set of distinctive data characteristics. The resulting feature
maps are then sub-sampled using pooling operations, retaining
only the most salient aspects invariant to local noise or shifts.
Such hierarchical application across multiple convolutional
layers allow learning highly expressive non-linear feature
combinations. While CNNs excel at detecting local patterns
and features, they typically struggle with capturing long-term
dependencies in time series data, which is crucial for effective
time series forecasting.

Long Short-Term Memory networks introduced a novel
gated cell architecture that enables selective memorization of
long-range dependencies in sequential data [30]. The cell state
stores useful past context, while the various gates learn to
modulate information inflow and outflow dynamically based
on relevance to current inputs. Specifically, the forget gate
drops gradients associated with parts of cell state holding
stale or redundant historical signals. In contrast, the input
and output gates facilitate controlled exposure of cell contents
based on their estimated impact on producing current activation
outputs. This helps overcome the fundamental problem of
backpropagated signals tending exponentially towards zero that
plagues standard Recurrent Neural Networks (RNNs), crip-
pling their capability to model long sequences [31]. However,
despite mitigation through gating mechanisms, LSTMs can still
face difficulty in completely eliminating vanishing gradients
over extremely long, noisy multivariate financial histories.
Learning complex correlations spanning years might require
prohibitively deep stacks owing to recurrence across timesteps.
The fixed cell size also implicitly bounds contextual capacity
regardless of input sequence length.

Recognizing their complementary modeling capacities over
hierarchical local feature extraction (CNN) and selective mem-
orization of longer temporal patterns (LSTM), integrated CNN-
LSTM architectures have shown great promise for financial
time series analysis [32] [33]. Typically, contracted CNN
representations of local variable-wise patterns feed into subse-
quent LSTMs to assimilate both short and long-range histor-
ical contexts. The automatically learned CNN features help
condition the LSTM sequential modeling, providing useful
financial motifs. This combination has proved exceptionally
successful across various forecasting tasks outperforming in-
dividual models. However, challenges persist in scaling such
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hybrids to very high dimensionality or long sequence lengths
amidst GPU memory limitations. Ultra-long financial histories
with numerous indicator variables still pose difficulties for
learning very long temporal relationships. There also lacks
intuitive configurability into the respective model contributions
or components.

Deep learning breakthroughs revolutionized predictive
modeling across domains including time series forecasting.
Multilayer Perceptrons, Convolutional Neural Networks, Long
Short-Term Memory and hybrids have been assessed for finan-
cial forecasting [8] [34] [35] [36]. Nelson et al. [37] proposed a
character-level language model with event-based trading. [32]
[33] evaluated combinations of CNN and LSTMs showing
improvements over individual models. However, these deep
neural models often face challenges with longer-term depen-
dencies in sequential data due to vanishing gradient issues. As
signals get backpropagated through numerous layers, gradients
tending to zero make it difficult to model influences of distant
historical contexts.

D. Attention Models

Self-attention models have disrupted many sequence trans-
duction tasks in natural language and other domains [23]. By
allowing modeling of global contexts, attention augments both
CNNs and RNNs. Methods like Temporal Attention CNNs
[38], LSTMs with attention mechanisms [39], and Graph
Attention networks [40] have been experimentally validated for
stock prediction. Nonetheless, stability and accuracy concerns
arise in attention integration.

E. Transformer Networks

Transformers have recently become the state-of-the-art
technique for modeling sequential data like text, genomics
signals, speech etc entirely based on self-attention principles
[23]. Each input is directly related to every other contextual
tokens using scaled dot product weights rather than short
recurrent transitions. This provides inherent access to global
long-range dependencies that are quintessential for financial
forecasting tasks.

Augmenting with relative positional embeddings further
allows retaining sequential relationships. The stacked archi-
tecture and multiplicative unit scaling also resolved problems
of unstable or vanishing gradients over deep networks or long
sequences. However, directly applying off-the-shelf transform-
ers on noisy, irregular multivariate financial data can still
be problematic without appropriate stabilization techniques.
Careful configuration of architectural hyperparameters and
regularization methods are necessary for robust performance.

Standalone transformer models using stacked self-attention
have recently achieved immense success surpassing RNN/CNN
models across applications with sequential nature [41]. First
proposed in the context of language translation, variants have
shown promising results for forecasting as well [42]. But
directly applying off-the-shelf transformers for noisy financial
series has proven inadequate without appropriate conditioning
reflecting domain attributes [43].

F. Phase Space Reconstruction

Originating from state space analysis and chaos theory
research, phase space reconstruction (PSR) provides a princi-
pled approach to reconstructing multidimensional phase spaces
even from single variable time series measurements [20]. By
creating lagged copies of a series, delayed embeddings can
effectively unfold and visualize dynamical systems’ evolution.

Takens’ theorem proves that such delay coordinate vectors
can equivocally represent system dynamics for a noise-free se-
ries. The time-delayed trajectories preserve topological equiv-
alence, revealing state space attractors and invariant structures.
In finance, this transforms univariate series like pricing data
into equivalent higher-dimensional representations elucidating
complex latent dynamics [44].

Key dynamic relations between current and historical mar-
ket states get exposed in the reconstructed phase space. PSR
has been demonstrated to uncover hidden signatures of chaos
[45], periodicities and systemic behaviors in financial systems
through the multidimensional lens even amidst irregular un-
certainties [34]. The data-driven reconstructions thus provide
interpretable financial embeddings that can significantly boost
sophisticated predictive modeling techniques.

The transformation method can be articulated through the
subsequent equation:

X(t) = [x(t), x(t+ τ), x(t+ 2τ), ..., x(t+ (m− 1)τ)] (1)

where,

X(t) is the m-dimensional reconstructed vector at time t

x(t) is the original time series at time t

τ is the delay

m is the embedding dimension

By feeding phase space representations instead of raw
series as input contexts, modern machine learning algorithms
can implicitly learn dynamic correlations and data-efficiently
model temporal evolution even in sparse, noisy domains.

Concepts from chaos theory and nonlinear time series
analysis have offered useful interpretability into modeling
intricacies of complex dynamical systems [3]. Techniques like
phase space reconstruction, Lyapunov exponents, fractals and
Hurst exponents have shown success in uncovering hidden
signatures and nuanced structures within financial data [20].

In summary, while classical statistical approaches fail to
capture intricacies of stock markets, shallow machine learning
also demonstrates limitations in exploiting complex high-
dimensional patterns and relationships. Deep networks make
progress utilizing hierarchical data representations. Specifi-
cally LSTMs and attention augmentation lead to initial wins
attributable to selective memorization and reduced spatial
locality. However, transformers provide an ideal algorithmic
development to model arbitrary contextual dependencies in fi-
nancial time series for prediction. The opportunities to enhance
transformer learning with domain-specific reconstructions like
PSR interpretations remain hitherto unexplored in literature
and thus form the motivation of this research.
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III. PROPOSED METHODOLOGY

Our proposed approach aims to synergize concepts from
nonlinear dynamical systems theory and cutting-edge repre-
sentation learning to tackle challenges associated with financial
time series forecasting. The integration framework comprises
of two key components:

A. Time-Delay Embedding

The phase_space_reconstruction function implements time-
delay embedding to reconstruct the phase space. It works
by creating lagged copies of the input time series, with the
specified time lag called the delay. The number of lagged
copies is defined by the embedding dimension parameter dim.
Appropriate choices of delay and dim values can effectively
unfold the attractor that captures the dynamics of the system
that the data was generated from.

Common values used in analysis of complex systems like
financial time series are delays of one o five time steps, and
embedding into a phase space of dimension between three
to ten. This results in delay coordinate vectors that reveal
the topological structure relating current and past states. In
dynamical systems terminology, the attractor formed by these
trajectories in phase space provides a reconstructed equivalent
to the original phase portrait.

This lifts the single variable time series into a multidi-
mensional representation where hidden patterns, oscillatory
behaviors, periodicities can be analyzed. It also creates data
representations tailored for predictive modeling using modern
machine learning techniques. Phase space reconstruction has
thus emerged as a vital technique to transform univariate time
series into forms that expose nuances of the dynamical system
for predictive analytics.

B. Integration with Transformers

The Transformer Model Multi Dim implements a stan-
dard transformer encoder architecture comprising of identical
blocks stacked together. Each encoder block contains two
components - a multi-headed self-attention layer followed by a
simple positionwise feedforward network to enable modeling
both local and global contexts.

Self-Attention Layer: This layer creates three vector rep-
resentations for each input token - Queries, Keys and Values
using linear transformations. Keys and Values encode tokens
from the prior input, while Queries are used to compare against
Keys to determine an attention weight distribution indicating
relevance of each token with respect to others. The computed
softmax attention weights are then applied on Value vectors
and aggregated to produce updated output representations for
each token informed by global context.

Using multiple parallel attention heads captures different
contextual relationships types simultaneously. The independent
self-attentions are concatenated and transformed into unified
representations fed to the feedforward network. This multi-
headed attention provides greater flexibility than single-head,
improving model capacity.

Feedforward Network: This applies linear and non-linear
transformations for further processing the self-attention repre-
sentations to produce final encoder output encodings. Stacking

multiple such encoders enables iterative refinement of rep-
resentations across depths by propagating through successive
blocks.

Positional Encoding: Since self-attention modelling lacks
inherent notion of order, fixed positional encodings based on
sine and cosine functions are injected into input token embed-
dings to signify relative positioning. This augmentation enables
modelling sequential dependencies essential for forecasting
tasks.

Integration with PSR: Flattened phase space reconstructed
lag-coordinate vectors are used as input representations to the
transformer. The expected dimensions are [sequence length,
batch size, features]. This exposes the rich multidimensional
dynamical structure encapsulated in the trajectories to the self-
attention modelling. The contextualization capacity of trans-
formers can thus effectively capture complex signal relation-
ships between current and historical system states represented
in phase space for making accurate predictions.

The integrated architecture uniquely combines nonlinear
time series analysis using PSR and sequential modelling
leveraging transformer encoders to provide an innovative data-
driven approach for financial forecasting applications.

IV. EXPERIMENTAL RESULTS

A. Datasets

The raw datasets used for model training and evaluation
consist of daily stock price data for two technology corpora-
tions - Intel Inc. and IBM Inc. over a 20 years period. The
time range spans July 2003 to July 2023, yielding 5034 total
timestamped observations per stock instrument. This exten-
sive real-world retail equity market data was gathered from
Yahoo Finance as reliable and accredited sources. Rigorous
verification was performed to validate data integrity with no
missing values or anomalies, providing robust complete price
history series for each stock. Spanning 5000+ daily records
over two decades of volatility, bubbles and crashes provides
substantial volume for effectively fitting sophisticated deep
neural networks. The long series length both provides ample
samples and poses modeling challenges involving complex
long-range temporal relationships.

B. Experimental Process

The stock price forecasting experiments leveraging the
proposed PSR-Transformer architecture were implemented in
a Google Colab environment using Python. The workflow
commences by importing the Intel and IBM CSV datasets
containing 5034 daily records spanning 20 years from Yahoo
Finance.

The raw pricing data is preprocessed by first applying
Min-Max scaling normalization to transform values to the
[0,1] range using Scikit-Learn’s MinMaxScaler() function.
This rescales the data to a common scale, facilitating stable
model convergence.

Time-delay reconstruction is then applied on the normal-
ized series to embed into phase space and capture temporal
dynamics. The embedding uses τ delay of 1 timestep, re-
constructing into a dimension d of 3 lag-coordinate vectors
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TABLE I. MODEL ARCHITECTURES OF PSR-TRANSFORMER AND BENCHMARK MODELS

Model Architecture
Transformer

and PSR- Transformer
- Positional Encoding
- 4 Encoder Layers
- 8 Attention Heads
- 512 Hidden Units
- 128 Embedding Dimension
- Batch Size: 64
- 50 Epochs
- Learning Rate: 0.001 to 0.01
- Early Stopping Patience: 5 epochs

LSTM - Input Layer
- LSTM Layer (128 units)
- LSTM Layer (64 units)
- Dropout Layer (0.2 rate)
- Dense Output Layer
- Batch Size: 64
- 50 Epochs
- Learning Rate: 0.001

CNN-LSTM - Input Layer
- Dropout Layer (0.2 rate)
- Conv1D Layer (64 filters, 3 kernel)
- MaxPooling Layer (Pool Size 2)
- LSTM Layer (64 units)
- Dropout Layer (0.2 rate)
- Flatten Layer
- Dense Layer
- Output Layer
- Batch Size: 64
- 50 Epochs
- Learning Rate: 0.001

Fig. 1. Forecasting performance of PSR-Transformer on IBM stock prices.

TABLE II. PERFORMANCE COMPARISON OF PSR-TRANSFORMER
AGAINST BASELINE MODELS

Dataset Model MAE RMSE MAPE

IBM

LSTM 0.022 0.029 9.70%
CNN-LSTM 0.021 0.028 9.67%
Transformer 0.020 0.027 9.61%
PSR-Transformer 0.009 0.012 4.59%

INTC

LSTM 0.027 0.037 3.21%
CNN-LSTM 0.026 0.036 2.98%
Transformer 0.025 0.035 2.94%
PSR-Transformer 0.019 0.024 1.92%

determined optimal for stock data. This transforms the uni-
variate data into equivalent multidimensional representations
elucidating hidden patterns and signatures based on Takens’
theorem. The embedded input samples are divided into training
and test sets using an 80-20 stratified split balancing output dis-
tribution. Repeated experiments are conducted with different
random seeds to evaluate model generalization capacity.

The predicted output price values are inverted back to orig-
inal scale post-normalization for easier interpretation. Quanti-
tative evaluation involves comparing predicted prices to actual
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Fig. 2. Forecasting performance of PSR-Transformer on intel stock prices

ground truth values over test data using metrics like Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE)
and Mean Absolute Percentage Error (MAPE).

Their determining calculations are delineated as follows:

MAE =
1

n

n∑
t=1

|ŷt − yt| (2)

RMSE =

√√√√ 1

n

n∑
t=1

(ŷt − yt)
2 (3)

MAPE =
1

n

n∑
t=1

∣∣∣∣ ŷt − yt
yt

∣∣∣∣× 100% (4)

where, n stands for the total observations, yt corresponds
to the true value at time t, and ŷt indicates the forecasted value
at time t.

C. Benchmark Methods

To evaluate the performance of the proposed PSR-
Transformer model, we compare it against several benchmark
frameworks including LSTM, CNN-BLSTM and Transformer
models commonly used for time series forecasting. These
model architectures were summarized in the following Table I

D. Results

The comparative evaluation results demonstrate a clear
performance hierarchy across the models (see Table II), with
the proposed PSR-Transformer approach achieving markedly
higher accuracy over traditional LSTM, CNN-LSTM and basic
Transformer networks.

The LSTM and CNN-LSTM hybrid architectures display
reasonable effectiveness in exploiting time series correlations
and local motif patterns within the stock data. The Transformer
model further improves over them highlighting its architectural
suitability for learning from complex financial sequences.

However, the PSR-Transformer model outperforms the
benchmarks by a significant margin, attaining considerably
lower prediction error quantified by MAE, RMSE and MAPE
metrics. Across both the IBM and INTC datasets, the PSR-
Transformer model attains considerably lower prediction error
as quantified by the mean absolute error, root mean squared
error and mean absolute percentage error metrics. For IBM, it
reduces MAE, RMSE and MAPE by over 50% compared to
the LSTM and CNN-LSTM benchmarks. Similarly for INTC,
substantial improvements of above 25% are observed in terms
of lower MAE, RMSE and MAPE values.

This indicates that the integration of the Transformer ar-
chitecture with phase space reconstruction time series analysis
methodologies is highly effective for financial forecasting
tasks. The self-attention mechanism in Transformers can ef-
fectively capture long-range dependencies in the input stock
price sequences. Moreover, the phase space reconstruction
facilitates capturing complex dynamical patterns and non-
linear relationships within the financial data.

Fig. 1 and Fig. 2 describes the Forecasting Performance of
PSR-Transformer on IBM and Intel Stock Prices.

V. CONCLUSION

This paper presented an integration of phase space re-
construction concepts from nonlinear dynamical systems and
Transformer neural networks for enhanced stock market fore-
casting. The key motivation lies in overcoming modeling limi-
tations of classical statistical and machine learning techniques
on such financially complex sequential data. The proposed
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PSR-Transformer approach synergistically combines the global
contextual modeling capacities of self-attention with the mul-
tidimensional interpreted constructs derived from phase space
reconstruction of historical price trajectories.

Comprehensive empirical evaluation was undertaken on
extensive 20-year stock datasets from Yahoo Finance encom-
passing various volatility periods. Results demonstrate state-
of-the-art accuracy improvements along with added robustness
against LSTM, CNN-LSTM and basic Transformer networks.
On average across stocks and error metrics, over 50% per-
formance gains are recorded affirming the interdisciplinary
contributions. The work has both methodological and practical
implications. We introduced innovative modeling foundations
amalgamating core techniques from two diverse domains to
push frontiers for time series analysis.

Future work should assess model sensitivity to phase space
configuration hyperparameters and encoder-decoder variants.
Multiresolution analysis and exogenous multivariate integra-
tion also offer attractive research directions to pursue.
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