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Abstract—In this paper, an iterative learning control (ILC)
strategy under compression mapping framework is presented for
high relative degree discrete-time systems with random initial
shifts. Firstly, utilizing the high relative degree of the system
and difference term, a control law is designed and a p-order
non-homogeneous linear difference equation is established. The
appropriate control gain is selected according to the charac-
teristics of solution of the difference equation and the initial
shifts, so as to ensure that the high relative degree discrete-time
system can reach a steady-state deviation output at a fixed time.
Subsequently, a PD-type control law is employed to correct the
fixed deviation of the system. Theoretical analysis indicates that
this ILC strategy can ensure that the high relative degree systems
achieve accurate tracking after the predefined time. Finally,
the simulation experiments are conducted on a linear discrete-
time Multiple-Input Multiple-Output(MIMO) system with rela-
tive degree 1 and a Multiple-Input Single-Output(MISO) system
with relative degree 2, respectively, and the results verify the
effectiveness of the algorithm.
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I. INTRODUCTION

For the control systems in the field of repetitive operations,
iterative learning control (ILC) is a commonly used intelligent
control strategy. Drawing from prior batch tracking errors and
inputs to update the current batch’s control inputs, ILC enables
the repetitively operated system to follow the desired trajectory
to a high degree of precision over a finite interval. Notably,
ILC’s lack of reliance on the knowledge of system dynamics,
coupled with its superior adaptability, renders it an ideal fit for
complex control systems. ILC is widely used in robot control
systems [1]-[3], medical rehabilitation [4], [5], multi-agent
formation [6], [7], batch processes [8], [9], train automatic
control [10], [11]and so on.

The relative degree is utilized to express the extent to
which a system control input directly feeds back the system
output. In mathematical terms, the relative degree is defined
as the lowest order derivative of system output with respect
to time, which can be directly fed back by the control inputs.
In the discrete-time dynamic systems, the relative degree is
manifested as the time delay between the input and output
of system, which is inherent in many practical applications.
In many engineering practices, the system relative degree is
larger than 1. The widespread presence of high relative degree
dynamic systems has incited considerable interest in their ILC
research within the control community in recent years.

For the high relative degree nonlinear continuous systems,
under strict conditions of zero initial error, [12] adopted an
antagonistic ILC method to enable system convergence; [13]

designed a class of ILC algorithms based on data sampling;
[14] proposed ILC laws which using error derivatives with
the order less than the system relative degree. [15] presented a
first-order D-type ILC based on the dummy model, which does
not require the relative degree to be known. When there is a
fixed initial shift, the control law proposed in [16] achieved
consistent tracking over a specified interval by incorporating
an initial correction behavior. This correction strategy had also
been used in [17], [18] for high relative degree nonlinear
discrete-time systems with fixed initial states.

For the high relative degree linear continuous systems,
when the initial error is 0, [19] proposed a linear matrix
inequality(LMI) design method based on the bounded real
lemma(BRL). The research in [20] presented a unified 2-D
analysis method for both continuous and discrete-time systems
by defining similar symbols for continuous and discrete oper-
ators, but the model can only achieve asymptotic tracking for
systems with initial shifts. The study in [21] proposed a PD-
type control law for the fixed initial shifts, which guarantees
convergence of the system within a finite interval, and the
convergence speed is uniform. For uncertain systems with
fixed initial shifts, [22] proposed an adaptive ILC algorithm.
For the high relative degree linear multi-variable discrete-time
systems, [23] proposed an iterative learning controller with an
H∞-based approach to suppress the random iteration-varying
perturbations; when the system has a fixed iteration initial
error, a P-type ILC algorithm is presented in [24] can achieve
asymptotic tracking.

Regarding the initial value problem of ILC, most of the
studies require that the initial shift is zero or fixed [25]-[27].
However, in many practical situations, the system will always
inevitably exist initial shifts at each iteration, and due to the
limitation of the actual repeat localization accuracy, the study
of ILC with arbitrary initial shifts is of great significance.
For nonlinear systems with varying initial iteration errors
and tracking trajectories, the study in [28] proposed two
adaptive ILC laws to achieve a complete reference trajectory
tracking. The study in [29] presented a ILC method with a
time-varying sliding mode, which enables random initial state
errors to converge to zero beyond a initial time interval. This
strategy achieves complete tracking for second-order nonlinear
systems. An adaptive ILC algorithm based on filtering error
correction is proposed in [30] to achieve precise tracking for
non-parametric uncertain systems with random initial shifts
and unknown input dead zones. For linear discrete time-delay
systems, [31] proposed an ILC strategy with correction of
initial state deviation to solve the trajectory tracking problem.
The research in [32] adopted a phased ILC strategy, which first
corrected arbitrary initial deviation to fixed deviation, and then
corrected the fixed deviation, to achieve complete tracking for
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second-order continuous systems.

Despite these remarkable advances on ILC for arbitrary
initial value problems, the study of high relative degree systems
with arbitrary initial shifts is still relatively scarce. For the
linear continuous MIMO systems with vector relative degree,
the study in [33] proposed a control strategy based on an
iteratively moving average operator, which make the system
converge under a fixed initial error condition. Under an ar-
bitrary initial error condition, this algorithm only made the
system converge to a bounded range. For high relative degree
SISO continuous systems, the presented ILC algorithm in [34]
is based on the high relative degree, which utilized a form of
multi-pulse compensation to suppress arbitrary initial shifts.
For high relative degree linear discrete-time MIMO systems,
[35] presented three ILC algorithms based on average operator
to achieve complete tracking under the condition that the initial
state vibrate slightly near a fixed point.

In this paper, an ILC algorithm based on compression
mapping are presented to solve the random initial shift problem
for high relative degree linear discrete-time systems. This
algorithm draws on the phased correction strategy in [32] to
deal with the random initial deviation problem. The random
initial shifts are transformed into a fixed shift using a difference
controller, and then the fixed shift is corrected by a PD-type
controller to make the system converge at a predefined time.
Finally, the validity of the proposed algorithm is demonstrated
by simulation of two examples with different relative degrees.
The conclusions are presented.

II. PROBLEM FORMULATION

Consider a linear discrete-time system operating in the
interval [0, T ]:

xk(t+ 1) = Axk(t) +Buk(t)
yk(t) = Cxk(t)

(1)

where, k = 1, 2, · · · denotes the number of iterations; xk(t) ∈
Rn, uk(t) ∈ Rn , yk(t) ∈ Rn denote the state variable,
input and output of the system, respectively. A,B,C are system
parameter matrices, which B is right invertible and C is left
invertible.

yd(t) is the given desired output, xd(t) is the corresponding
desired state. The system output error is defined as follows:

ek(t) = yd(t)− yk(t) (2)

Definition 1: [35] For the linear discrete-time system (1),
if the Markov parameters satisfy{

CAiB = 0, 0 ≤ i ≤ p− 2
CAp−1B ̸= 0.

(3)

The system relative degree of system is p.

Assumption 1: The initial state xk(0) ̸= xd(0) varies only
arbitrarily within a certain range, i.e., xk(0) is a neighborhood
of xd(0).

D = {xk(0)| | xk(0)− xd(0) |≤ Λ
2 , xk(0) ̸= xd(0)}

where, Λ
2 is the radius of the neighborhood D.

III. CONTROLLER DESIGN

In order to correct the random initial shifts of system (1),
the controller is designed as follows:

uk+1(t)

= uk(t) +
∑p−1

i=0 Ki(ek+1(t− i)− ek(t− i)) + rk(t)
(4)

where, Ki are control gains that can be set manually. rk(t) is
a undetermined function.

Considering xk+1(t+ p)− xk(t+ p), there is

xk+1(t+ p)− xk(t+ p)
= A(xk+1(t+ p− 1)− xk(t+ p− 1))

+B(uk+1(t+ p− 1)− uk(t+ p− 1))
(5)

Combining the control law (4) and Eq. (5), there is

xk+1(t+ p)− xk(t+ p)
= A(xk+1(t+ p− 1)− xk(t+ p− 1))

+B
∑p−1

i=0 Ki(ek+1(t+ p− 1− i)− ek(t+ p− 1− i))
+Brk(t+ p− 1)

= A(xk+1(t+ p− 1)− xk(t+ p− 1))

−B
∑p−1

i=0 KiC(xk+1(t+ p− 1− i)− xk(t+ p− 1− i))
+Brk(t+ p− 1)

Setting ηk(t) = xk+1(t)− xk(t), there is

ηk(t+ p) + (BK0C −A)ηk(t+ p− 1)

+B
∑p−1

i=1 KiCηk(t+ p− 1− i)
= Brk(t+ p− 1)

(6)

Eq. (6) is a p-order linear non homogeneous difference
equation with constant coefficients. The corresponding homo-
geneous difference equation is

ηk(t+ p) + (BK0C −A)ηk(t+ p− 1)

+B
∑p−1

i=1 KiCηk(t+ p− 1− i) = 0
(7)

Let its general solution be as follows:

ηk(t) = φk(t) + φ∗
k(t)

where φk(t) is the general solution of Eq. (7) and φ∗
k(t)

is a particular solution of Eq. (6). One can set φk(t) =∑p
j=1 Cjλ

t
j . λj are the p characteristic roots of the character-

istic Eq. λp +(BK0C −A)λp−1 +B
∑p−1

i=1 KiCλp−1−i = 0;
Cj are arbitrary constant matrices.

Let characteristic equation have only one root λ, there is

λ = λj =
A−BK0C

p (8)

The control gains Ki (i = 1, 2, · · · , p−1) can be obtained
as follows:

Ki = B−1Ci+1
p (−λ)i+1C−1 = B−1p!(−λ)i+1C−1

(p−i−1)!(i+1)!
(9)

Then φk(t) can be written as:

φk(t) =
∑p−1

s=0 Cst
sλt

For convenience, one can set rk(t+ p− 1) = Qλt, where
Q is an undetermined constant matrix. There is rk(t) =
Qλt−p+1. There is

φ∗
k(t) = qtpλt
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where q is an undetermined constant matrix.

Substituting the particular solution φ∗
k(t) and Eq. (9) into

Eq. (5), there is

BQλt

= q(t+ p)
p
λt+p + (BK0C −A)q(t+ p− 1)

p
λt+p−1

+B
∑p−1

i=1 KiC(t+ p− i− 1)
p
qλt+p−i−1

= ((t+ p)
p − p(t+ p− 1)

p

+
∑p−1

i=1 Ci+1
p (−1)i+1(t+ p− i− 1)

p
)qλt+p

=
∑p

j=0 C
j
p(−1)j(t+ p− j)

p
qλt+p

=
∑p

j=0 C
j
p(−1)j(−j)

p
qλt+p

(10)

Thus

Q = B−1
∑p

j=0 C
j
p(−1)j(−j)

p
qλp (11)

ηk(t) can be represented as

ηk(t) =
∑p−1

s=0 Cst
sλt + qtpλt

=
∑p

s=0 Cst
sλt (12)

where Cp = q.

When t ∈ [0, p− 1], there are
ηk(0) = C0

ηk(1) =
∑p

s=0 Csλ
ηk(2) =

∑p
s=0 Cs2

sλ2

...
ηk(p− 1) =

∑p
s=0 Cs(p− 1)sλp−1

(13)

If at a certain time t = h, there is ηk(h) → 0, thus

ηk(h) =
∑p

s=0 Csh
sλh = 0 (14)

From (13) and (14), the coefficients Cs in (12) can be
obtained as follows.

C0

C1

C2

...
Cp−1

Cp

 = Υ



ηk(0)
ηk(1)
ηk(2)

...
ηk(p− 1)

0

 (15)

where,

Υ =



I 0 0
λ λ λ
λ2 2λ2 22λ2

...
...

...
λp−2 (p− 2)λp−2 (p− 2)

2
λp−2

λp−1 (p− 1)λp−1 (p− 1)
2
λp−1

λh hλh h2λh

· · · 0 0
· · · λ λ
· · · 2p−1λ2 2pλ2

. . .
...

...
· · · (p− 2)

p−1
λp−2 (p− 2)

p
λp−2

· · · (p− 1)
p−1

λp−1 (p− 1)
p
λp−1

· · · hp−1λh hpλh



−1

When t = h (h > p) and ηk(h) → 0, there are xk+1(h) →
xk(h), xk(h) → xk−1(h), · · · , x3(h) → x2(h),. That is, when
t = h, the system output yk+1(h) tends to a certain steady
value, but not necessarily yd(h).

In order to converge the output error to zero, the controller
is modified as follows:

uk+1(t) =


uk(t) +

∑p−1
i=0 Ki(ek+1(t− i)− ek(t− i))

+rk(t) t ∈ [0, h]
uk(t) +Kd(ek+1(t)− ek(t))
+Γek(t+ p) t ∈ (h, T ]

(16)

where Kd and Γ are control gains that can be set manually.

IV. CONVERGENCE ANALYSIS

This section focuses on he convergence analysis of the
system (1) after applying the control law (16). In this section,
|| · || is defined to be a certain norm for vectors or matrices.

Theorem 1: When the initial shifts satisfies Assumption
1, and the control gain Γ satisfies

||I −BΓCAp−1|| < 1 (17)

Then the correction control law (16) can make the system (1)
achieve complete tracking,that is limk→∞ ||ek+1(t)|| = 0.

Proof: According to the Definition 1, when t ∈ [0, h],
CAi−1B = 0, one has

yk(t+ i)
= Cxk(t+ i)
= CAxk(t+ i− 1) + CBuk(t+ i− 1)
= CA2xk(t+ i− 2) + CABuk(t+ i− 2)

+CBuk(t+ i− 1)

= CAixk(t) +
∑i

j=1 CAj−1Buk(t+ i− j)

= CAixk(t)

(18)

In the analysis of the previous section, through the correc-
tion of the control law (16), the output error of the system (1)
is stabilized at a fixed value when t = h.

When t > h, one has

xk+1(t)− xk(t)
= A(xk+1(t− 1)− xk(t− 1))

+BKd(ek+1(t− 1)− ek(t− 1))
+BΓek(t+ p− 1)

(19)

From the Eq. (18), there is

ek(t+ p− 1) = CAp−1(xd(t)− xk(t)) (20)

Setting ∆xk(t) = xd(t)− xk(t). Substituting ∆xk(t) into
(19), one has

∆xk(t)−∆xk+1(t)
= (A−BKdC)(∆xk(t− 1)−∆xk+1(t− 1))

+BΓCAp−1∆xk(t)
(21)

When t = h+ 1, according to xk(h) = xk+1(h) and (21),
there is

∆xk+1(h+ 1) = (I −BΓCAp−1)∆xk(h+ 1)
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Therefore, when ||I −BΓCAp−1|| < 1, there is

limk→∞ ||∆xk+1(h+ 1)|| = 0 (22)

So

limk→∞ ||ek+1(h+ 1)||
= C limk→∞ ||∆xk+1(h+ 1)||
= 0

Similarly, when t ∈ (h+ 1, T ], there is

limk→∞ ||ek+1(t)|| = 0

V. NUMERICAL SIMULATIONS

To verify the above conclusion, this paper conducts simu-
lation experiments on two systems with relative degree 1 and
2, respectively. And compared it with the algorithm proposed
in [24].

A. Linear Discrete-time MIMO System with Relative Degree
1

Considering the following MIMO system:

xk(t+ 1) =

[
0.6 0.25
0 0.65

]
xk(t) +

[
1 0.05
0.1 1.7

]
uk(t)

yk(t) =

[
0.8 −0.13
0.1 0.5

]
xk(t)

(23)

From CB ̸= 0, the system relative degree is p = 1. Let
the control gains of (16) be

K0 = 1.2, Kd = 0.9, Γ =

[
0.27 0.14
0.03 0.31

]

It is easy to verify that ||I − BΓCAp−1|| < 1 , which
satisfies the condition of Definition 1. rk(t) is determined
according to Eq. (11) and (15). The system reference trajectory
is as follows:

yd(t) =

[
y1,d(t)
y2,d(t)

]
=

[
0.0008(t− 50)2 − 1

sin(0.02πt)

]
(24)

The system initial state is xk(0) = [rand + 0.5 rand −
0.5]T (where rand generates a random value between 0 and
1). Let the system operating interval be [0, 100], and the preset
time h = 15. The simulation results are shown in Fig. 1− 3,
where simulation is implemented for 50 iterations.

Fig. 1 shows the results of system outputs y1,k(t) and
y2,k(t) tracking the reference trajectories y1,d(t) and y2,d(t)
after different number of iterations, respectively. Fig. 2 shows
the results of tracking errors e1,k(t) and e2,k(t). Fig. 3 shows
the variations of system inputs u1,k(t) and u2,k(t). From Fig.
1 − 3, it is obvious that when t = 15, the system outputs
y1,k(t) and y2,k(t) tend to be fixed values, and when t = 16,
both the system tracking errors are zero, the system achieves
accurate tracking.
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Fig. 1. Outputs yi,k(t) and reference trajectories yi,d(t).
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Fig. 2. Errors e1,k(t)e2,k(t).
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Fig. 3. Inputs u1,k(t)u2,k(t).

B. Linear Discrete-time MISO System with Relative Degree 2

Considering the following MISO system: xk(t+ 1) =

[
0.8 0.1

−0.25 −0.33

]
xk(t) +

[
0
1.1

]
uk(t)

yk(t) = [1.7 0]xk(t)
(25)

From CB = 0 and CAB ̸= 0, the system relative degree
is p = 2. Let the control gains in the control law (16) be K0 =
1.8,Kd = 1.1,Γ = 2.9. According to the relative degree p = 2
and Eq. (9), there exists K1 = −0.0052. rk(t) is determined
according to Eq. (11) and (15). It is also easy to verify that ||I−
BΓCAp−1|| < 1. Let the system operating interval be [0, 100],
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and the preset time h = 20. The system desired trajectory is
as follows:

yd(t) = cos(0.02πt) t ∈ [1, 100]

The system initial state is xk(0) = [rand rand]T . The
simulation results are shown in Fig. 4 − 6, where simulation
is implemented for 50 iterations. Fig. 4 shows the result of
the system output yk(t) tracking the desired trajectory yd(t)
with the number of iterations. Fig. 5− 6 shows the variations
of tracking error ek(t) and system input uk(t) after different
number of iterations, respectively.
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Fig. 4. yk(t) and yd(t).
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Fig. 5. Errors ek(t).
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Fig. 6. Inputs uk(t).

From Fig. 4−6, it is obvious that when t = 20, the system
output tends to a fixed value. When t = 21, the system tracking
error is 0, and the system achieves accurate tracking.

C. Comparison of Different Algorithms

For high relative degree linear discrete-time systems, the
current research mainly focuses on the systems with fixed
initial shifts, which is not applicable to the ones with random
initial shifts. The ILC law (16) is compared with the algorithm
proposed in [24] to demonstrate the effectiveness of the
algorithm presented in this paper. Under the same conditions,
the system (25) is simulated by using these two algorithms
separately, and the results are shown in Fig. 7. The blue lines
denote the outputs of the algorithm proposed in [24] after
48, 49, and 50 iterations respectively, and the black solid line
denotes the desired trajectory, the red lines denote the outputs
of the algorithm proposed in this paper. It is obvious that our
algorithm can make the system converge, while the algorithm
in [24] is unable to do.
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Fig. 7. yk(t) and yd(t).

VI. CONCLUSION

The ILC problem for high relative degree linear discrete-
time systems with random initial shifts is discussed in this
paper, and a control strategy with deviation correction is
proposed. Theoretical analysis indicates that the presented
algorithm can quickly correct the system initial state error
and make the system converge after the predefined time.
Finally, simulations were conducted using two discrete-time
systems with relative degree 1 and 2, respectively, and the
results proved the effectiveness of the algorithm. In the future,
the effectiveness of this ILC strategy on discrete time-delay
systems will be discussed.
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