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Abstract—The collaboration between distribution companies
is gaining a great interest in the last years due to the benefit
provided to reduce the cost of deliveries. In this work we study the
centralized two-echelon collaborative multi-center multi-periodic
vehicle routing problem with a specific constraints. In which each
distribution center conserves its VIP customers, and each partner
keep their delivery scheduling unchangeable. The problem is
modelled as a MILP, and to solve it a hybrid algorithm is
proposed. This algorithm combines a multi-population memetic
algorithm (MPMA) and a variable neighbourhood search algo-
rithm that integrates a tabu search list (VNS-T). The results
obtained are compared with those obtained by CPLEX solver
and the best known solution of the multi-depot vehicle routing
problem (MDVRP).
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I. INTRODUCTION

The significant growth in the delivery of small volumes
of goods generated by the increase in e-commerce sales [1]
and domestic freight, particularly during the Covid-19 pan-
demic [2], creates major challenges for distribution companies
operating in the urban sector. It’s well known that the urban
transport faces a major problem of empty runs with more than
40% of unloaded trips. The empty running of trucks generates
multiple challenges like higher delivery costs [3], congestion
of distribution networks [4], and increased CO2 emissions [5].
To face these challenges, distribution companies are driven to
explore new distribution strategies.

Recently, centralized collaborative strategies have been
gaining considerable attention due to their positive impact on
the reduction of distribution costs. These strategies generate
coalitions involving multiple independent members, in which
the organization of the collaborative process can be outsourced
to a third-party (TP). This collaboration is often described by
the collaborative multi-center vehicle routing problem (CM-
CVRP) [6]. The maximum performance of a collaborative
process is obtained through total information sharing between
its members [7]. Nonetheless, the formation of new coalitions
faces several challenges [8], especially in establishing the
necessary level of trust between partners. The most common
problem resides in the lack of background in the field of
collaborative practices as well as an incomplete legislative
framework [9]. Moreover, Companies are not willing to risk
losing their Very Important (VIP) customers in favour of other

coalition members. On the other hand, to prevent a possible
deterioration of their service quality, companies try to keep
their delivery schedules unchangeable.

To the best of our knowledge, there are no studies that
tackle the centralized CMCVRP where the information related
to VIP customers is concealed and the delivery schedule
of each member of the coalition is kept unchanged. To fill
this gap, this paper studies a new extension of the two-
echelon collaborative multi-center vehicle routing problem
(2E-CMCVRP) by considering constraints of VIP customers
and inflexible delivery schedules [10]. The problem is for-
mulated as a MILP, and a multi-phase solving approach
(MPSA) is proposed to solve it. The MPSA integrates a multi-
population memetic algorithm (MPMA) and a modified VNS
algorithm.
The remainder of this paper is organized as follows. In Section
II, the literature is reviewed. Then in Section III, we describe
the problem and we formulate its corresponding mathematical
model. In Section IV, a detailed description of the proposed
multi-phase solving approach is presented. The numerical
results are presented in the Section V. Finally, the conclusions
and future research suggestions are presented in the Section
VI.

II. LITERATURE REVIEW

A. Collaborative Two-echelon Periodic MCVRP

The underlying problem of this paper (CMCVRP) is an
extension of the MDVRP. Several approaches to solve the
MDVRP have been examined in the literature. In 2012 Vidal
et al. proposed a hybrid genetic algorithm with an adaptive
diversity control metaheuristic to solve the periodic MDVRP
[11]. In 2015, Rahimi et al. introduced a new modular heuristic
algorithm (MHA) to manage the periodic MDVRP with capac-
ity, duration, and maximum budget constraints [12]. Recently,
an extensive review of different formulations and solving
approaches for the MDVRP was published by Ramos, Shara
et al. [13], [14].

To deal with the different challenges, distribution com-
panies are constrained to treat their competitors differently
by introducing new forms of interaction. Therefore, various
forms of collaboration are emerging in this sector that show
an important potential benefits [15], [16], [17], [18], [19].
Moreover, different variants of the routing problem in a
collaborative setting have been explored. In [20] the authors
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developed an adaptive large neighborhood search iterative
algorithm to solve a pickup and delivery problem with time
window (PDPTW) that considers the outsourcing and exchange
of requests between collaborators in a centralized collaborative
configuration. In 2016, Soysal et al. studied the impact of
horizontal collaboration on perishable products, logistics costs,
and CO2 emissions for the inventory routing problem (IRP)
[21].

Generally, the urban distribution is a periodic VRP (PVRP)
for which several studies focused on implementing collab-
orative scenarios are presented. In [22] an empirical study
is conducted to evaluate the influence of three companies’
characteristics (e.g., the number of orders to transport, the
order size and the ability of a company to delay its orders)
which operate in a periodic scenario on the total profit. In 2017,
Smilowitz et al. developed an adaptive large neighborhood
search algorithm to solve the periodic location routing problem
in the collaborative recycling sector [23]. They concluded
that increasing the flexibility of delivery schedules impacts
positively the reduction of expenses, especially when the
maximum capacity constraint is very stringent.

The two-echelon vehicle routing problem (2E-VRP) is a
variant of the multi-echelon vehicle routing problem (MEVRP)
where the delivery of goods to customers is done by various
intermediate plants. The urban distribution is one of the sectors
where the 2E-VRP is often implemented [24]. In [25] Wang
et al. introduced the two-echelon collaborative multi-center
vehicle routing problem (2E-CMCVRP) as a combination of a
multi-center VRP (MCVRP) and a profit allocation problem.
The authors evaluated the economic and environmental impact
of such collaboration and they proposed a two-phase algorithm
based on a clustering method and a non-dominated sorting
genetic algorithm to solve it.

In 2020, Wang et al. [26] proposed a collaborative and
resource-sharing strategy to solve the multi-depot multi-period
vehicle routing problem with pickup and delivery (MD-
PVRPPD). The authors concluded that combining collabora-
tive and resource-sharing mechanisms improve the multi-depot
multi-period logistics network with pickup and delivery.

B. Information Sharing in Decentralized and Centralized Col-
laboration Configurations

The development of the collaborative process involving
different partners requires certain level of information sharing.
Generally, there are two information sharing strategies: partial
sharing in decentralized collaborative configurations and total
sharing in centralized configurations [27]. In both strategies, a
third-party (A logistics service provider, online platform...etc)
it’s responsible for organizing the collaboration.

The decentralized collaborative VRP has been the focus
of several studies that considered different mechanisms of
information sharing. In [28] the authors suggested a request
exchange mechanism based on the auction of a single request
with limited information. In 2017, Huang et al. [29] developed
an efficient auction-based mechanism for the carrier collab-
oration problem with bilateral exchange (CCPBE) where the
carriers can only offer requests with the highest marginal costs
and can bid on a bundle of lanes. Under this mechanism,
the shared lanes’ information is available to all carriers. In

[30], the authors evaluated the impact of providing information
about requests to the auction pool in an auction-based carrier
collaboration problem where the requests are shared in an
aggregated form. The aggregates are generated through grids
that cover the geographical area of the requests.

Different types of central authorities have been considered
in studies investigating the centralized collaborative VRP. The
dynamic collaborative pickup and delivery problem which
relies on a peer-to-peer platform that matches ad hoc drivers
or backup vehicles to deliver tasks in real time is introduced
in [1]. In [17], Maneengam et al. developed the centralized
collaborative bidirectional multi-period vehicle routing prob-
lem under profit-sharing agreements, where the collection and
integration of information and resources are done by a control
tower. The tower establishes a collaborative transport planning
respecting the profit-sharing agreements. The integration of
tactical collaborative decisions has been raised in [32], in
which the authors evaluated the economic and environmental
impact of two collaborative scenarios in a centralized con-
figuration: semi-cooperative and fully cooperative. In the first
scenario, collaboration takes place at the operational level
where all the customers and vehicle capacity information are
shared to build the routing plan. In the second scenario, the
collaboration occurs not only on an operational level but also
tactical one. In this scenario, the routing and facility location
decisions are taken jointly.

III. THE TWO-ECHELON COLLABORATIVE
MULTI-CENTER MULTI-PERIODIC VEHICLE ROUTING

PROBLEM

A. Problem Description and Assumptions

The 2E-CMCPVRP with VIP customers and inflexible
delivery schedules is a distribution network with several in-
dependent distribution centers (DC), in which we suppose that
one of the centers has the needed infrastructure to play the
role of a logistics center (LC). Each center i serves a set
of customers according to a specific schedule wi of several
periods t with a fleet of Ki vehicles, some of these customers
can be shared with other centers except its VIP customers.
Furthermore, we consider that a neutral third-party is in charge
of the organization of the centralized collaborative process
whose objective is to establish a collaborative network by a
possible reassignment of non-VIP customers. The volumes of
goods corresponding to the reassigned customers are initially
stored in the LC. The presence of a LC transforms the initially
independent distribution network into a collaborative two-
echelon system where the routes between the LC and the DCs
are covered by semi-trailers. The major assumptions of this
study are:

• The LC has enough additional storage space,

• Each center DC has enough storage space to accom-
modate the reassigned goods from other centers,

• The customer’s demand is deterministic and is known
a priori,

• Each customer is visited only once during the consol-
idated delivery schedule,

• The fleet of vehicles is homogenous and each DC has
a limited number of vehicles,
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• Each vehicle starts and ends its route at the center in
which it is parked within a limited time,

• The semitrailer starts and ends its route at the LC,

• The average speed of the roads (arcs) may differ from
one road to another,

• The maintenance, leasing, and fuel costs of the vehi-
cles may differ from one vehicle to another.

• Model formulation

The proposed MILP model for the 2E-CMCPVRP-VCIS
is formulated as a two-echelon collaborative periodic VRP
model. The objective is to minimize the total distribution costs
considering the VIP customers’ constraints and the inflexible
delivery schedules. The parameters and related notations used
in the 2E-CMCPVRP-VCIS model are detailed in the next
section.

B. Parameters and Notations

The parameters and notations used in this work are pre-
sented in Table I, Table II and Table III. The best values of
the parameters are obtained by testing various values of each
parameter.

TABLE I. DATA SETS IN THE 2E-CMCPVRP-VCIS

Set Definition
I Set of centers (DC and LC)
J Set of customers
K Set of vehicles
T Set of periods in w
Ki Set of vehicles belonging to the center i, i∈ I
Ji Set of customers initially assigned to center i, i∈ I

C. Modeling

a) Objective function: The objective function is defined
as follows:

Ttotal = T1 + T2 + T3 (1)

where,T1 defines the sum of costs related to the semi-trailer’s,
T2 is the sum of the dispatching, maintenance, leasing, and
fixed costs and T3 is the sum of delivery costs related to the
fuel consumption during a consolidated delivery schedule.

T1 =
∑
t∈T

(T t
11 + T t

12) (2)

where, T t
11 and T t

12 are respectively the sum of the fuel costs
and maintenance costs of the semi-trailer over a period t given
by the Eq. (3) and Eq. (4).

T t
11 =

∑
i,h∈I,h̸=i

Hse × ρ× dih × otih (3)

T t
12 =

∑
(i,h∈I,h̸=i)

M × otih × dih
Ka

(4)

TABLE II. INPUT PARAMETERS IN THE 2E-CMCPVRP-VCIS

Parameter Definition
ut
j Equals 1 if the customer must be visited

on period t, j∈J,t∈T
ρ Fuel price
Ni Number of vehicles belonging to the center i,i∈I
Ns Number of semi-trailers
Hse Average fuel consumption of the semi-trailer per 100km
hk Average fuel consumption of the vehicle k,k∈K per 100km
F Average annual vehicle maintenance costs
L Average annual vehicle rent or leasing costs
Qmax Maximum capacity of a vehicle
NTot Total number of available vehicles
Ka Average annual distance covered by a semi-trailer (Km)
B The capacity of the semi-trailer
Tmax Maximum working time per period
qj The demand of the customer j,j∈ J
M Average annual semi-trailer maintenance costs
Gi Fixed costs of center i per period. The third-party (TP) covers

the fixed costs when the centre i agrees to cooperate, i∈I
Pi CA’s service costs for center i per period when

cooperation is achieved, i∈I
τ Number of consolidated delivery schedules per year
wi Delivery schedule of center i,i∈I
w Consolidated delivery schedule of the coalition with w = ∪i∈Iwi

dij The distance between centers i and j, i,j∈ J ∪ I

yi Coefficient of variable costs of center i, i∈I
vipij If the customer j is a VIP customer of centre i,

vipij = 1 else vipij = 0,j∈J, i∈I
vij Average road speed between nodes i and j, (j,i)∈ J ∪ I
Vik Assignment of a vehicle to a specific center, i∈I,k∈K
yi yi=1 if centre i collaborates else yi= 0, i∈I

TABLE III. DECISION VARIABLES

Variable Definition
xkt
ij Equals 1 if vehicle k travels directly from i to j during the period t

otherwise is equal to 0,
(i,j)∈I∪J,k∈K,t∈T

otij If the semi-trailer travels directly from center i to centre j on period t,
otij = 1 else otij = 0, i,j∈I,t∈T

ϕik A variable used for the elimination of sub-turns in the second echelon.
It is always positive, i∈I,k∈K

δik A variable used for the elimination of the sub-turns in the first echelon.
It is always positive, i∈I,k∈K

T2 gives the sum of the dispatching, maintenance, leasing,
and fixed costs as in the Eq. (5).

T2 = T21 +
∑
t∈T

T t
22. (5)

where T21 Gives the total service costs required by the
third-party plus the maintenance and leasing costs of the fleet,
and T t

22 is the dispatching costs of the quantities delivered
during a period t. where:

T21 =
∑
i∈I

[(1− yi)Gi + yiPi + (T23 × (
F + L

τ
))] (6)

where T23 gives the needed number of vehicles to cover the
customers’ demands over the consolidated delivery schedule;
it is equal to the highest number of vehicles used by all centers
during a period t.

T t
22 =

∑
i∈I

∑
k∈Ki

∑
p∈I∪J

∑
j∈J

xkt
ij × ut

j × qj × γi. (7)
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T3 is the sum of delivery costs related to the fuel
consumption during a consolidated delivery schedule as in
Eq. (8)

T3 =
∑
t∈T

∑
i,j∈I∪J

∑
k∈K

dij × xkt
ij × ut

j × ρ× hk

100
. (8)

First echelon constraints:∑
j∈J,j ̸=i

otji = 1, i ∈ I, t ∈ T (i = 1 corresponds to LC) (9)∑
i∈J,j ̸=i

otij = 1, j ∈ I, t ∈ T (j = 1 corresponds to LC) (10)∑
j∈I

otij −
∑
j∈I

otji = 0, i ∈ I, i ̸=, t ∈ T (11)∑
i∈I

∑
k∈Ki

∑
l∈I∪J,p∈J⧹Ji,l ̸=i)

xkt
ij × ut

j × qp ≤ B, t ∈ T (12)

ϕi − ϕj +Ns × otij ≤ (Ns − 1), i, j ∈ I, i ̸= 1, t ∈ T (13)
ϕi ≥ 0, i ∈ I, i ̸= 1 (14)

Second echlon constraints:∑
t∈T

∑
k∈K

∑
i∈I∪J,i ̸=j

xkt
ij × ut

j = 1, j ∈ J (15)∑
j∈J

(qj ×
∑

i∈I∪J
xkt
ij ) ≤ Qmax, k ∈ K, t ∈ T (16)

δik − δjk +Nv × xkt
ij ≤ NTot − 1, k ∈ K, i, j ∈ J, t ∈ T (17)

δik ≥ 0, k ∈ K, i ∈ J (18)∑
j∈I∪J

xkt
ij −

∑
j∈I∪J

xkt
ji = 0, k ∈ K, i ∈ I ∪ J, t ∈ T (19)

∑
i,j∈I∪J

xkt
ij × dij

vij
≤ Tmax, k ∈ K, t ∈ T (20)∑

t∈T

∑
Kp

∑
i∈I∪J

xkt
ij ≥ vipij, p ∈ I, j ∈ J (21)∑

k∈K

∑
j∈J

xkt
ij ≤ Ni, i ∈ I, t ∈ T (22)∑

J∈J
xkt
ij − Vik = 0, i ∈ I, k ∈ K, t ∈ T (23)

T23 ≥
∑
k∈K

∑
i∈I,p∈J

xkt
ij (24)

xkt
ij ∈ {0, 1}, i ∈ I ∪ J, j ∈ J, k ∈ K, t ∈ T (25)

θtij ∈ {0, 1}, i ∈ I, j ∈ J, t ∈ T (26)

Constraints (15) ensure that each customer must be visited only
once during the consolidated delivery schedule. Constraints
(16) concern the vehicle’s capacity. Constraints (17) and (18)
are used for the vehicle’s sub-tours elimination. Constraints
(19) guarantee the flow conservation from/to each customer.
Constraints (20) limit the vehicle travel time. Constraints (21)
state that if j is a VIP customer it can be served only if there
is a vehicle starting from its original center, otherwise, if it is
not a VIP customer, it can be served by any available vehicle.
Constraints (22) limit the number of vehicles starting from
a center to the number of vehicles belonging to this center.
Constraints (23) guarantee that any vehicle that starts from

a center must belong to this center. Constraints (24) ensure
that the number of vehicles to cover all the customer requests
throughout the consolidated delivery schedule equals the sum
of the maximum of vehicles used by each center in the busiest
period. Constraints (25) and (26) ensure that the decision
variables are binary.

IV. MULTI-PHASE SOLUTION APPROACH

The main objective of this approach is to determine the
optimal coalition that minimizes the distribution cost and
assures the best individual profit for its members. The approach
is divided into two phases. In the first phase, we optimize
the second echelon routes using a multi-population memetic
algorithm (MPMA). And, in the second phase, to optimize
the semi-trailer’s routes we propose a variable neighbourhood
search (VNS) algorithm that integrates a tabu list mechanism.
These two phases are performed for each period of the delivery
schedule.

Memetic algorithms are a hybridization of a genetic al-
gorithm (GA) with local search heuristics. They are widely
adopted in the resolution of routing problems [33], [34]. In
the proposed MPMA, the chromosomes are encoded as a
giant tour as presented in sub-section IV-A. The solutions are
firstly evaluated using the clustering algorithm detailed in sub-
section IV-B, and secondly by an improved splitting algorithm
given by the pseudo-code 2. The MPMA uses three same-
sized populations to avoid premature convergence [35]. Two
populations are relaxed and may contain infeasible solutions
Prelax1 and Prelax2 while the third one contains only feasible
solutionsPfeasible. To build the initial populations a clustering
method is used as described in sub-section IV-C.

In Prelax1 the fleet size Ni is relaxed according to the
following equation Ni = CRv ×Ni, i ∈ I, CRv ≥ 1 while in
Prelax2, the maximum working time Tmax and the maximum
capacity Qv are relaxed as follows Tmax = CRt × Tmax and
Qv = CRl × Qv, CRt ≥ 1, CRl ≥ 1 where CRv is the
vehicles number relaxation coefficient, CRt is the maximum
route duration relaxation coefficient and CRl is the maximum
load relaxation coefficient. During the search process, the
populations remain sorted in ascending order according to their
solutions’ fitness values. In each generation, the algorithm
selects two parent solutions from each population and then
performs the crossover procedure presented in sub-section
IV-D. The resulting offspring solutions are then evaluated
using the modified Beasley-Bellman algorithm described in
sub-section IV-G. If the new solution is feasible it is inserted
in Pfeasible if it verifies the insertion conditions. Otherwise,
the new solution will be inserted in one of the corresponding
unfeasible populations if it checks the insertion conditions.
The insertion conditions are: (1) the new solution should be
different from all the existing solutions in the population and
(2) the new solution should outperform the worst one in this
population. To intensify the search around the newly generated
solutions, a local search procedure, as presented in sub-section
(e), is performed after each n = Freqloc generations. The
algorithm then calculates the second echelon costs T3 and
based on the best feasible solution it calculates T22. Then,
the first echelon route optimization is performed as detailed in
sub-section (g). When all the periods are processed the MPMA
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calculates T23 and T21. Finally, the sub-coalition total cost is
computed.

The pseudo-code of MPMA is shown in Algorithm 1.

Algorithm 1 Multi-phase solving approach
Load data
for <each sub-coalition Of industries> do

Establish the consolidated schedule based on T
for each period Of T do

for each population do
Choose the clustering parameters Ninitial, wf, wd, Maxdeviation

Create a giant tour for each DC
Determine the intersection zones between DCs
Relax Tmax and split the giant tour into trips
Perform the route sequencing
for n fro 1 to nmax do

Perform the intra-routes Swap(1,1), inter-routes Swap(i,i)
Insert the generated solutions into the current population
n = n + 1

end for
end for

end for
for g�1 to gmax do

if counter=Freqloc then then
Perform the VNS-Tabu search algorithm
Perform the diversification heuristic

end if
Perform the parents’ selection procedure
Perform the crossover procedure
Perform the advanced split procedure
if Is Feasible Population then

if Is a Feasible Solution then
Compute cost
Insert offspring into the feasible population according to the cost order
if Is New Best Solution then

Update the new best solution
Insert into the relaxed population according to the penalized cost

order
end if

else
Compute penalized cost
Insert into the relaxed population according to the penalized cost order
Remove the worst solution from the population
g = g + 1

end if
end if

end for
With the best solution from the feasible population
for g → 1 to g do

Compute the second echelon routes costs
Compute goods’ exchange between collaborating DCs in period w
Compute used vehicles per DC
Improve semitrailer routes
Compute semitrailer routes costs
Determine necessary vehicles per DC
Compute the maintenance and leasing vehicles’ costs
Compute the centers fixed and variables costs
Return the total costs for each sub-coalition

end for
end for

A. Chromosome encoding

The chromosome encoding is defined by a giant tour
divided into routes by delimiters representing the center from
which each route starts. The node numbering (0, . . . , i−1) rep-
resents the centres and the following numbers (i, . . . , n+i−1)
represent the set of n customers. During the crossover, the
route delimiters are removed and then reinserted later using
the splitting algorithm as shown in Fig. 1.

Fig. 1. Chromosome encoding in the MPMA.

B. Chromosome Evaluation

To build the solution corresponding to each chromosome,
we apply the splitting procedure described in Algorithm 2. This
algorithm is inspired by Vidal’s adapted version of the Beasley-
Bellman method [36] and integrates specific constraints of our
model. During the splitting process, we perform an extrac-
tion of intermediate solutions while updating the set of the
needed vehicles for each centre. The feasible sub-sequences
of customers Tts = (Tt, . . . , Ts), t ∈ [0, n], s ∈ [t + 1, n] are
evaluated using two nested loops as shown in Algorithm 2. The
duration of the route (dc, σTts, dc), where σTts is a circular
permutation of Tts, is calculated by choosing the dc having
available free vehicles and offering minimal service time. If
among the customers belonging to sub-sequence Tts there is a
VIP customer of a centre i then this centre must be the starting
and ending node of the route.

C. Generation of Initial Population

To generate the initial population, we use the Split Middle
Line Clustering (SMLC) method, which is a variant of the
route-first cluster-second method. The SMLC method takes
into consideration the collaborative and periodic aspects of the
problem.

a) Step1: Initial clustering: This procedure creates a
giant tour or a cluster clit for each pair center-period (i,
t), which includes the centers’ VIP customers and closest
customers as shown in Fig. 2(b). After that, it creates shared
zones between each pair of clusters clit and cljt which include
non-VIP customers for whom the distance to the nearest
customers belonging to the other cluster is smaller than the
distance to the nearest customers of their own cluster (see Fig.
2(b)).

b) Step2: Route splitting: The splitting procedure di-
vides the giant tour into routes, respecting the problem’s
constraints, by assigning customers from the center’s giant tour
and shared areas to the routes as follows:

• Place the center dci as the first element of each route
rmi starting from dci where m is the index of the route
and i is the number of the centre.

• Add the closest node ni to dci as the second element
of rmi and determine the barycentre z of (dci, ni).

• Add the closest node n2 to the barycentre and deter-
mine the new barycentre of (dci, n1, n2). Repeat this
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Algorithm 2 : Splitting algorithm
Non-splitted chromosome
/*Initialize relaxation coefficients CRv=vehicles, CRt=route duration, CRl=load*/
if the Current population= Pfeasiblethen then

CRv�1 State CRt�1
CRl�1

else
CRv�crv /*Vehicles number relaxation coefficient */
CRt�crt /*Maximum route duration relaxation coefficient */
CRl�crl /*Maximum load relaxation coefficient */

end if
Q�Vehicle capacity × CRl
H�Maximum route duration ×CRt
Fc�Fleet per center × CRv
i�Number of centres
n�Number of nodes in the current period
Tour=(S1,S2,...,Sn) �Giant tour of chromosome
V1...n ←− ∞ /*Initial costs of arcs */
P1...n ←− ∅ /*List of predecessors */
for v ←− 1 to n do

/*Single node case*/
load ←− Request Of (Sv)
/*Add the node t to path*/
path ←−(Sv)
/*Choose the nearest centre dc to node v */
/*If v corresponds to a VIP customer, choose its original centre */
dc ←− Nearest Center (Sv)
route ←− (dc, Sv , dc)
time ←− Duration Of(route)
s ←− v+1

end for
while s≤ n and time¡H and load+RequestOf (Ss) ≤ Q do

load←− load+Request Of (Ss)
/* Add the nodes to the path */
Add Node(path, Ss)
/* Choose the centres that have enough vehicles (used vehicles ¡ Fc) */
/* Compute, for each centre with s in the best placement, the route duration */
/* Choose the centre dc with the minimal route duration */
dc←− Best Center For (path)
route ←− (dc, path, dc)
time ←− Duration Of (route)
if time≤ Vs then

Vs ←− time
Ps ←− s-1
s ←− s+1

end if
end while
/* Using route and the list P to update the partial solutions */
Return Splitted chromosome

operation until reaching the parametrized number of
nodes Ninitial.These nodes are used to determine the
first slope of the line connecting dci to the barycentre
z of (dci, n1,2 ..., nNinitial).

• Determine the slope ∆c = y2−y1

x2−x1
of the line con-

necting the center dci to z where (y1, y2) are the
coordinates of dci and (x1, x2) are the coordinates
of z.

• Add the node p which minimizes the value of D.
Given the new slope ∆t and the length lp of the
arc N(initial,p): D = wf |(∆t − ∆c)/∆c| + wd × lp.
Where wf= shape weight, wd= distance weight, with
|∆t−∆c)

∆c
| ≤ Maxdeviation

• Add the following nodes according to the same prin-
ciple while respecting the non-relaxed constraints. If
the deviation of the resulting slope ∆c engendered
by adding the node p’ to the route is greater than
Maxdeviation, then the node p’ will not be considered.

• Place the center dci as the last node of the route.

• Merge the routes of not fully loaded vehicles if the
non-relaxed constraints allow it.

c) Step3: Route sequencing:

• Project the nodes coordinates of each route on a plane
and divide it into two sub-routes by a split middle line
(SML).

• Project the nodes of the first sub-route on the SML
and reorder them in ascending order according to the
resulting coordinates as shown in (see Fig. 2(a)).

• Project the nodes of the second sub-route on the SML
and reorder them in descending order according to the
resulting coordinates as shown in (see Fig. 2(a)).

• Reconstruct the route by connecting the two sub-
routes considering dci as the starting and ending node
of the route (see Fig. 2(a)).

d) Step4: Initial improvement:

• Perform inter-route improvement using a
swap(n1, n2) move by exchanging n1 successive
customers of one route with n2 successive customers
of another route while respecting the route’s
constraints.

• Perform intra-route improvement using an iterative
swap(1, 1) move.

The three populations pfeasible, prelax1 and prelax2 are filled
using the intermediate solutions generated in Step 4.

Fig. 2. (a) Route splitting and (b) The initial clustering

D. Selection and Crossover Mutation

In the selection procedure, the first parent is randomly
selected from the first half of the population which is always
sorted according to the fitness value, and the second parent is
randomly chosen from the other half of the population. The
proposed genetic operator performs three types of transposi-
tions with different frequencies. To perform the crossover, two
cutting points are defined randomly as shown in Fig. 3:

• A typical crossover consists of placing the genes
between the cutting point of the second parent in the
same position in the first offspring and the rest of its
genes are copied from the first parent circularly. The
same operation is performed for the second offspring
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by changing the roles of parents 1 and 2 as shown in
(see Fig. 3).

• A transposition similar to the first one, but in this case
the exchanged portions are partially or fully rotated
(see Fig. 4).

• A transposition with position shifting in which the
position of the exchanged portions is shifted when
placed in the offspring chromosomes (see Fig. 5).

Fig. 3. First transposition method of the genetic operator.

Fig. 4. Second transposition method of the genetic operator.

Fig. 5. Third transposition method of the genetic operator.

E. Local Variable Neighbourhood Tabu Search

The proposed VNS-Tabu algorithm (VNS-T) is a modified
version of the Skewed Variable Neighbourhood Search algo-
rithm proposed by Hansen et al. in 2020 [36], [37], it integrates
a Tabu list and a variable acceptance margin α. The VNS-Tabu
algorithm uses a list of neighbourhoods k = (k1, k2, . . . , kn)
corresponding to a sequence of intra-route and inter-route swap
moves and shift moves applied on a current solution s. The

local search (LocalImprovement) performs 2-opt and 3-opt
heuristics moves. A new solution S

′

i is accepted only if the cost

quotient f(s
′
i)

f(s) is inferior to 1+α where α = β× i
Maxreps and

β is a scale parameter. To avoid a local optimum, a Tabulist
that stores the solution s and the move kj performed on it
is used. This list is emptied for each new value of α. The
pseudo-code of VNS-T is presented in Algorithm 3.

Algorithm 3 : VNS-Tabu algorithm
Sbest ← Splitted chromosome
s← Sbest

k = (k1, k2, ..., kn) ← Set of neighbourhoods
j← 1
I←1
α ←0
while i ≤Maxreps do

while j ≤ n do
if (s, kj) /∈ Tabulist then

s′ ← Shake(s,kj )
s
′′
← LocalImprovements

′

if f(s”)
f(s)

≤ (1 + α) then
Tabulist.Add(s,kj )

end if
if f(s”)≤ f(s) then

Sbest → s”
s← s′′

else
j ← j + 1

end if
elsej ← j + 1
end if

end while
Tabulist.Empty()
i← i + 1
α← β × 1

Maxreps
end while
Return

a) No results found by CPLEX within the time limit. b)
The time limit for the small and medium sized instances was
set to 3600s. For the large-scale instances (≥150 customers)
the time limit is 7200s.

F. Results of the MPMA for the MDVRP Instances

To measure the efficiency of the MPMA, a comparative
study is performed between the results of Vidal’s HGA [31]
and Juan’s ILS [12] and those obtained by our algorithm
with the best-known solutions (BKS) in the literature for 20
MDVRP instances of Cordeaux & al. Table V shows that
the solutions obtained by the MPMA are close to the BKS
with an average gap of 0.33%. Also, we observe that our
method outperforms the ILS algorithm. Furthermore, MPMA
was able to match 13 BKS within relatively small processing
times. These experiments prove the efficiency of the proposed
algorithm and its adaptability to solve the MDVR problem.

G. Fitness Evaluation

In the second echelon, the fitness evaluation for a given
period t and a given population is based on the objective
sub-function T t

3 =
∑

i,j∈I∪Jt

∑
k∈K

dij×xkt
ij×u

t
j×ρ×hk

100 . For
pfeasible, the fitness is equal to T t

3 . For prelax1 and prelax2,
the fitness is equal to T t

3

Cfv
× Cfl × Cft where Cfv is the

percentage of centres respecting the fleet constraint,Cft is the
percentage of routes respecting the duration constraint and Cfl
is the percentage of routes respecting the load constraint. For
the first echelon, we use the objective function Ttotal.
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TABLE IV. COMPARISON BETWEEN THE MILP AND MPMA RESULTS

Instances MILP MPMA
Instance Cst. DCs. Prds. BI(1) Gap(1-2) LB(2) Time(s)b Stat. Avg.(3) Time(s) Gap(3-2)(%) Gap(3-1)(%)
C-PVip-1 20 4 2 10619 10.04 9553 3600 Int 9591 5 0.4 -10.72
C-PVip-2 20 4 2 10842 0.03 10838 336 Opt 10841 1 0.03 -0.01
C-PVip-3 30 4 2 11053 12.49 9673 3600 Int 9713 3 0.41 -13.8
C-PVip-4 30 4 2 11317 2.19 11069 3600 Int 11233 3 1.46 -0.75
C-PVip-5 30 2 3 8886 0.04 8882 3600 Int 8886 2 0.05 0
C-PVip-6 50 2 3 10746 8.64 9818 3600 Int 10097 3 2.76 -6.43
C-PVip-7 75 5 3 20224 4.28 19359 3600 Int 19451 17 0.47 -3.97
C-PVip-8 80 2 3 27384 11.19 24320 3600 Int 25146 9 3.28 -8.9
C-PVip-9 95 3 3 58096 2.11 56871 3600 Int 57711 15 1.46 -0.67

C-PVip-10 97 2 3 -a - 12465 3600 - 13281 10 6.14 -
C-PVip-11 100 2 3 14604 23.38 11189 3600 Int 11510 17 2.79 -26.88
C-PVip-12 100 4 4 61560 2.31 60138 3600 OM 60661 10 0.86 -1.48
C-PVip-13 100 4 4 60207 5.55 56868 3600 Int 56952 47 0.15 -5.72
C-PVip-14 150 4 4 76222 14.91 64859 5405 OM 67327 13 3.67 -13.21
C-PVip-15 150 2 3 - - 32355 7200 - 33909 13 4.58 -
C-PVip-16 200 4 4 - - 69175 7200 - 71423 54 3.15 -
C-PVip-17 249 4 4 - - 73482 2100 OM 79206 49 7.23 -
C-PVip-18 249 2 3 - - - - OM 50989 54 - -
C-PVip-19 249 3 3 - - - - OM 31918 57 - -

H. First Echelon Optimization using the Local Variable Neigh-
bourhood Tabu Search Algorithm

The first phase of the MPMA generates the second echelon
routes for each period t, then based on the best second echelon
feasible solution Sbest, the demands of the reassigned cus-
tomers are calculated. These demands represent the quantities
of goods to be delivered by the LC to each DC each period t.
Additionally, the algorithm optimizes the semi-trailer route by
performing the above-mentioned VNS-T algorithm.

V. NUMERICAL RESULTS

In this section, we present the results obtained by MPMA
by solving 19 new instances built for the 2E-CMCPVRP-
VCIS with IBM Ilog CPLEX Optimization Studio 20.1. After
that, we compare the efficiency of our MPMA with Vidal’s
HGA and Juan’s ILS based on Cordeaux’s MDVRP bench-
mark instances. Three different scenarios are considered: non-
collaborative, collaborative with VIP customers, and collabo-
rative without VIP customers.

A. Description of Data Instances

19 new instances of different sizes and complexity are
considered by adapting Cordeaux’s MDVRP benchmark in-
stances. For each instance, we add the following information
related to the first and second echelon: semi-trailer’s fuel
consumption and annual maintenance costs, vehicles assign-
ment to the centers, maintenance, annual leasing costs of
each vehicle, centers’ fixed and variable costs, the variable
cost coefficient, customers’ initial assignment to the centers,
centers’ delivery schedules, centers’ VIP customers and third-
party service costs. In these instances, the number of customers
(Cst.) varies between 20 and 498, the number of centers (Dc)
ranges from 2 to 6, the number of periods varies between 2 and
4, and the average speed of the arcs ranges between 70km/h
and 110km/h. Moreover, the input parameter settings are:

Hse = 98l/100km, Hsl=410l/100km,h(k) ∈[19,25]l/100km,
Fv ∈[123 800,138000],Lv ∈[216000,288000], Ka =
190720km, M = 380000, B =2000, ρ = 9.8, Gi ∈ [586, 645],
Pi ∈[605,935], yi = 1.5.

B. Parameter tuning

To tune the parameters of the proposed algorithm, multiple
iterative computational treatments are performed on a set
of MDVRP benchmark instances following an experimental
methodology inspired by the design of experiments (DOE)
approach. Firstly, we determine the three parameters that most
significantly impact the performance of our MPMA and their
levels through extensive testing. The parameters that obtained,
and their respective levels are: Maxreps ∈ {10, 20, 40},
Freqloc ∈ {2, 7, 14}, Pfeasible ∈ {30, 50, 100}. In the sec-
ond phase, 10 runs of the algorithm are performed on the
instances set for each of the following twenty-seven parameter
configurations: {10, 20, 40}×{2, 7, 14}×{30, 50, 100}. Then,
the average of all the iterations’ results for each instance is
compared to the corresponding BKS. Next; the average gap
and the standard deviation for each configuration is computed.
The experiments indicate that the optimal parameter settings
are: maxreps = 40, freqloc = 7, Pfeasible = 30.

C. Results of the MILP and MPMA for the 2E-CMCPVRP-
VCIS Instances

The comparison between the MILP and MPMA results
based on the values of the fitness function Ttotal are presented
in Table IV. In the first four columns, the parameters of the
2E-CMCPVRP-VCIS instances are described in the following
order: name of the instance, number of customers, number of
centers, and number of periods. The second part of Table IV,
from column 5 to column 9, summarizes the MILP results
obtained by the CPLEX solver. BI refers to the best integer
solution found by CPLEX, LB refers to the lower bound and
column Stat describes the CPLEX status (Opt: CPLEX found
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TABLE V. MPMA RESULTS VS BEST KNOWNS SOLUTIONS OF THE MDVRP

Instance Cst. DCs Vehicles BKS{1} HGA{2} ILS{3} MPMA{4} Gap(%)
{4− 1}

Gap(%)
{4− 2}

Gap(%)
{4− 3}

Time(s)
(MPMA)

1 50 4 4 576.87 576.87 576.87 576.87 0 0 0 5
2 50 4 2 473.53 473.53 473.87 473.53 0 0 -0.07 3
3 75 5 3 641.19 641.19 641.19 641.19 0 0 0 5
4 100 2 8 1001.04 1001.04 1003.45 1003.86 0.28 0.28 0.04 43
5 100 2 5 750.03 750.03 751.9 750.03 0 0 -0.25 16
6 100 3 6 876.5 876.5 876.5 876.5 0 0 0 16
7 100 4 4 881.97 881.97 885.19 881.97 0 0 -0.36 50
8 249 2 14 4372.78 4372.78 4409.23 4400.36 0.63 0.63 -0.2 273
9 249 3 12 3858.66 3858.66 3882.58 3882.11 0.61 0.61 -0.01 296

10 249 4 8 3629.6 3631.11 3646.67 3634.74 0.14 0.1 -0.33 257
11 249 5 6 3545.48 3546.06 3547.09 3546.06 0.02 0 -0.03 426
12 80 2 5 1318.95 1318.95 1318.95 1318.95 0 0 0 25
13 80 2 5 1318.95 1318.95 1318.95 1318.95 0 0 0 9
14 80 2 5 1360.12 1360.12 1360.12 1360.12 0 0 0 25
15 160 4 5 2505.42 2505.42 2511.92 2505.42 0 0 -0.26 78
16 160 4 5 2572.23 2572.23 2573.78 2572.23 0 0 -0.06 58
17 160 4 5 2709.09 2709.09 2709.09 2709.09 0 0 0 17
18 240 6 5 3702.85 3702.85 3702.85 3708.7 0.16 0.16 0.16 364
19 240 6 5 3827.06 3827.06 3840.91 3827.06 0 0 -0.36 213
20 240 6 5 4058.07 4058.07 4063.64 4091.78 0.83 0.83 0.69 278

the optimal solution, OM: CPLEX goes out of memory, Int:
The best solution was found by CPLEX within the time limit).
The results obtained show that CPLEX was able to find an
optimal solution only for the small-sized instance C-PVip-2
within 336 seconds. For sixteen instances, CPLEX was able
to find a feasible solution within the set time limit and with an
average gap between BI and LB of 7.7%. For two instances,
the solver found a feasible solution but went out of memory
before the time limit. For the large-scale instances, CPLEX
went out of memory before finding any solution or LB. The
third-party of Table IV, from columns 10 to 13, presents the
average results of the MPMA on 10 runs for each one of the 19
instances, the computational time of the MPMA and the gaps
between the MPMA results and the LB and BI respectively.
The results revealed that the MPMA was able to find good
quality solutions for all the instances with an average gap of
2.01% with the LB and −6.59% with the BI and within a
relatively short average computational time of 43.23 seconds.
Moreover, the gap between the MPMA and CPLEX for the
instance C-PVip-2 for which the MILP optimal solution was
found is negligible. The computational results validate the
MILP model and prove the efficiency of the MPMA.

VI. CONCLUSION

In this paper, we have introduced the two-echelon col-
laborative multi-center multi-periodic vehicle routing problem
with VIP customers and inflexible delivery schedules (2E-
CMCPVRP-VCIS). To solve the proposed model, an efficient
multi-phase solving approach (MPSA) based on a multi-
population memetic algorithm (MPMA) and a variable neigh-
borhood search method is proposed. The performance of the
MPSA is evaluated on benchmark MDVRP instances as well
as newly created instances for our case of study. The numerical
results on the benchmark instances show that the MPMA out-
performs Juan’s ILS and can find high-quality solutions with

an average gap of 0.33% to the BKS. Furthermore, the results
on the new instances prove the performance of our algorithm
and its superiority compared to the upper bounds obtained by
solving the MILP model on CPLEX. This research underscores
the effectiveness of the proposed MPSA in tackling the 2E-
CMCPVRP-VCIS.
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