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Abstract—In order to optimise bicycle routes across a variety
of multiple parameters, including safety, efficiency and subtle
rider preferences, this work explores the difficult domain of the
Bike Routing Problem (BRP) using a sophisticated Simulated
Annealing approach. In this innovative structure, a wide range of
limitations and inclinations are combined and carefully calibrated
to create routes that skillfully meet the varied and changing needs
of cyclists. Extensive testing on a dataset representing a range
of rider preferences demonstrates the effectiveness of this novel
approach, resulting in significant improvements in route selection.
This research is a significant resource for urban planners and
politicians. Its data-driven solutions and strategic recommen-
dations will help them strengthen bicycle infrastructure, even
beyond its immediate applicability in resolving the BRP.
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I. INTRODUCTION

When compared to driving, biking is an affordable, en-
vironmentally friendly, energy-efficient, and health-conscious
alternative to other forms of transportation [1]. It goes beyond
simple transportation, providing a means of regular physical
activity, encouraging wholesome living, and reducing car emis-
sions. Even with the growing number of towns attempting to
develop networks of bicycle lanes, a significant percentage of
trips within rideable distances are still made by automobile [2].
Promoting a mentality that embraces riding for recreational and
everyday transportation purposes is still a critical obstacle to
creating genuinely bike-friendly urban settings.

The key to solving this problem is to carefully hone the
bike-path network’s functionality and architecture. Riding a
bicycle is one of the most effective ways to use energy and
promote public health. It is also one of the most important
forms of active transportation to reduce traffic congestion and
avoid emissions from vehicles. Because walking and cycling
are accessible and don’t require any specific equipment or
expertise, they are suitable for people of all ages and allow
them to customise the amount of physical effort they want to
put in. But if walking is more suitable for shorter distances,
cycling is a better choice for longer ones. However, the belief
that riding a bicycle is a dangerous activity endures, mostly
because of things like heavy traffic, congested roads, and a
lack of designated bike lanes. There are several obstacles that
prevent cycling from becoming widely accepted, including
worries about comfort, safety, and accessibility [3]. Safety bar-
riers are significant difficulties that arise from concerns about

criminal activity, road accidents, or personal injury. Cycling
enthusiasts frequently view themselves as vulnerable users of
a space designed primarily for motor vehicles. The selection
of bike routes is a significantly more complex procedure than
the selection of driving routes. Whereas motorists focus on
distance and travel time [4], cyclists consider a variety of
factors, such as the condition of the bike lanes that are available
[5][6] and avoiding hilly terrain and particularly unsettling
intersections like roundabouts [7]. Bicyclists’ preferred routes
are greatly influenced by their closeness to motorised vehicles,
especially on high-speed main roads [6]. In order to avoid
heavily trafficked or densely populated bike regions, cyclists
frequently choose longer but supposedly safer routes [8][9].
This paper introduces a novel approach to the Bike Route
Problem (BRP), with a focus on cycling route optimisation
to improve safety, efficiency, and compatibility with a range
of rider preferences. The new framework synthesises a wide
range of limitations and preferences, allowing bicycle routes
to be customised to meet the diverse needs of different riders.
Our study provides empirical confirmation of the suggested
method’s effectiveness using a dataset that encompasses a wide
range of rider preferences. The flexibility of the Simulated
Annealing method demonstrates its ability to create customised
routes that meet the various needs of cyclists.

The Bike Route Problem is explained in Section III, while
the following sections outline the state of relevant research
in Section II. Section IV presents our suggested options for
solving the problem, followed by an in-depth analysis of the
findings. In the end, Section V summarizes the findings and
suggests possible avenues for more research and development.

II. RELATED WORK

Bicycle routing is a problem that has been extensively
studied in a number of research paradigms, both directly
and indirectly. The multi-objective routing problem was first
tackled by Martins et al. [10], who defined the problem in
terms of several objective functions and developed a multi-
criteria label-setting algorithm for its solution. Later research,
like that of Song et al. [11], explored the use of multi-
label correction algorithms to find Pareto routes and included
hierarchical clustering techniques to expedite the selection
procedure. Even with recent improvements in label-setting
algorithms, real-time applications are still hindered by the
processing timescales these techniques demand.

Routing difficulties have seen the use of evolutionary ap-
proaches, most notably genetic algorithms. Genetic algorithms
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were used in conjunction with High-performance Clusters
(HPC) by Arunadevi et al. [12] to address routing issues.
Comparably, Kang et al. [13] used evolutionary algorithms
to compute segment-specific cost functions in networks of
cyclists, taking perceived risk and distance into account. Nev-
ertheless, the multi-objective landscape of bicycle routing was
not explored in these research, which mostly concentrated
on single-objective optimisation. Several studies have used
various criteria to build bicycle routes, frequently maximising
each criterion on its own. Using ArcGIS Server and spe-
cific Google APIs, Hochmair et al. [14] developed an online
cycling route planner. Hrncir et al. [15] used a cost vector
that included several parameters such as trip time, comfort,
quietness, and levelness with the A-Star algorithm. Chen et
al. [16] investigated the use of artificial neural networks to
generate routing algorithm heuristic functions. Contraction
hierarchies were combined with OpenStreetMap data by Luxen
et al. [17] to determine the most straightforward graph-based
pathways. Methods for solving the multi-objective bike routing
problem have been developed recently, and their effective-
ness has been demonstrated in real-world network scenarios.
Bike routing algorithms were improved by Hrncir et al. [18]
and Hrnvcivr et al. [19], who presented a heuristic-driven
Dijkstra algorithm that included a multi-criteria viewpoint.
Notable platforms have surfaced in the world of bicycle-
specific internet route planners. Though it is available in some
areas, Google Maps does not provide much personalization.
Using routing techniques like the A* algorithm and contraction
hierarchies, OpenTripPlanner incorporates a bicycle planning
option that allows users to balance preferences like speed and
terrain flatness. Popular in the United Kingdom, Cyclestreets
offers a range of route alternatives depending on balance,
speed, and tranquilly. Berlin, Germany-based BBBike takes
into account variables including the kind of route and the
presence of lights. Still, there isn’t much written about this
topic in the literature. A few studies—Robert et al. [20] and
Su et al. [21], for example—introduced computerised cycling
route planners customised for certain areas, while Hochmair
et al. [14] offered a bicycle route planner for Broward County,
Florida, taking into account a variety of factors influenced by
cyclist preferences. A route planner for electric bicycles was
presented by Tal et al. [22], with an emphasis on weather and
energy efficiency.

Although bike routing has progressed, there is still a
significant gap in the field of multi-objective methods that
balance optimising complicated objectives with computing
feasibility. In order to close this gap, this work presents a
novel approach that uses genetic algorithms to approximate
the optimal Pareto set. It also investigates the possibility of
using genetic algorithms to solve multi-objective problems in
a reasonable amount of computational time.

III. BIKE ROUTING PROBLEM (BRP)

We define the BRP as follows: let G = {V,E} be a
undirected weighted graph where, i ∈ V and i = 1, 2, . . . , |V |
be a set of nodes, and E be a set of edges between nodes where
Eij be the edge between Vi and Vj . In addition, each edge has
a set attributes denotes A where a ∈ A and a = 1, 2, . . . , |A|.
The starting node is s and the terminal node is e where s =
1 and e = |V |. However, cyclists have number of constraints.
Mandatory Constraints (MC) be denoted MC; mc ∈ MC,

where mc = 1, 2, . . . , |MC|. Optional Constraints (OC) be
denoted OC; oc ∈ OC, where oc = 1, 2, . . . , |OC|. The total
number of constraints |MC|+ |OC| ≤ |A|. In addition, each
constraints (MC or OC) be applied in each edge and be denoted
MCmc

ij or OCoc
ij where MC or OC ⊆ A.

Max

|V |∑
i=1

|V |∑
j=1

Aij ×Xij (1)

(
|MC|+ |OC|

)
≤ |A| (2)

|V |∑
i=1

Xsi = 1 (3)

|V |∑
i=1

Xie = 1 (4)

Xij ∈ {1, 0};∀i, j = 1, 2, . . . , |V | (5)

|V |−1∑
n=1

Xnr =

|V |∑
n=2

Xru = 1 (6)

∀r = 2, . . . , |V | − 1

2 ≤ In ≤ |V | (7)

∀n = 2, . . . , |V |

In − Iu + 1 ≤ (|V | − 1)× (1−Xnu) (8)

∀n, u = 2, . . . , |V |

Eq. 1 presents the objective function of BRP where Xij

denotes the decision variable moving from node i to node j
and the the value of Xij is 0 or 1 (see Eq. (5)). Eq. 3 and 4
represent a constraint to ensure the path starts from s and ends
at e. Eq. 6 is a constraint to ensure that the path is connected
and each vertex is visited once at most. Eq. 7, In denotes the
position of node n in the path, and the combination of Eq. 7
and Eq. 8 prevents sub roues.

MCij =

|MC|∏
mc=1

MCmc
ij (9)

mc
ij ∈ {1, 0} (10)

∀i, j = 1, 2, . . . , |V | and ∀mc = 1, 2, . . . , |MC|

As have been mentioned above that there are numbers of
MCs which is donated in Eq. 9. Mainly, MCmc

ij denotes the
MC (mc) from node i and j where MCmc

ij has one value if
the constraint is satisfied, the value is equal 1 otherwise equal
0 (see Eq. (10)).
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TABLE I. INSTANCE TEST SCENARIO CATEGORIES

Scenario Description Details
S1 Commuter Cyclist Using bike for work commuting
S2 Fitness Enthusiast Cycling for exercise and fitness
S3 Urban Explorer Exploring the city and its surroundings
S4 Nature Lover Cycling in natural landscapes and parks
S5 Daily Commuter Regular commuting for work and daily activities
S6 Adventurous Cyclist Exploring challenging terrains and trails
S7 Family Outings Cycling with family for recreational activities
S8 Bike Commuters Using bike for work commuting in a busy city
S9 Night Rider Cycling during nighttime for relaxation
S10 Touring Cyclist Long-distance touring and exploration

OCij =

|OC|∑
oc=1

OCoc
ij

|OC|
(11)

0 ≤ OCoc
ij ≤ 1 (12)

∀i, j = 1, 2, . . . , |N | and ∀oc = 1, 2, . . . , |OC|

In contrast, a OC indicates a specific level of satisfaction
and meeting it is optional. Numbers of OCs which is donated
in Eq. 11, where OCoc

ij one value between 0 to 1 (see Eq. (12)).
In additional, Eq. 13 presents the calculation of MC and OC
from i to j.

Aij = MCij ×OCij (13)

IV. SOLUTION APPROACHES

In this section, we elaborate on our heuristic-driven Sim-
ulated Annealing method designed for solving the BRP. Our
approach integrates a data model for constraints and Simulated
Annealing techniques to address the Bike Route Problem. The
fundamental concept involves simplifying the complexity of
the problem by consolidating constraints into a single value
that encapsulates the attributes sought by riders.

A. Benchmark Instances

To the best author knowledge there is not any dataset for
bike routing problem, so A set of benchmark instances were
created to analyze how the propose model performs through
numerical experiment results. Random problem instances were
generated so as to maintain the properties of one of ten general
scenario categories as defined in Table I. In each scenario, it
has been generated different circumstances where difference
constraints and preferences are applied. Each instance was
randomly generated assuming a grid of 40 by 40 miles based
on an area similar in size Newcastle upon Tyne, UK. Table II
shows the details of each scenario, and in the dataset has been
created five attributes for each of edges.

Table II delineates a variety of constraints and preferences.
The Optional Constraints (OC) column details the preferences
of the riders, while the Mandatory Constraints (MC) column
lists the constraints that are requisite. Furthermore, the Traffic
Volume attribute accommodates varying preferences: certain
riders opt for routes with low traffic, whereas others may favor
routes with moderate traffic levels. Additionally, the Elevation

TABLE II. INSTANCE TEST SCENARIO IN MORE DETAILS

Scenario Attributes

Safety Bike Lanes Traffic Volume Scenery Elevation
S1 MC OC OC (M) OC OC (Low)
S2 OC OC OC (L) MC MC
S3 OC OC OC (M) MC OC (Low)
S4 MC OC OC (L) MC OC (Low)
S5 MC MC OC (L) OC OC (Low)
S6 OC OC OC (L) OC OC (High)
S7 MC OC OC (L) OC OC (Low)
S8 OC OC MC OC OC (Low)
S9 OC OC OC (L) OC OC (Low)

S10 MC OC OC (L) OC OC (High)

TABLE III. INSTANCE SCENARIO WITH START AND END LOCATION

Instance Start location End location
I1 121 165
I2 77 351
I3 462 145
I4 282 393
I5 25 115
I6 80 476
I7 323 342
I8 109 464
I9 491 171
I10 31 375

attribute reflects diverse inclinations regarding physical exer-
tion; some riders seek routes with minimal elevation to reduce
effort, while others pursue routes with significant elevation for
a more challenging ride.

The ten benchmark sets under consideration encompass a
total of 100 instances, with each set comprising 10 instances
characterized by a node count of 500. While each benchmark
(scenario) shares identical start and end points, they are dif-
ferentiated by their unique constraints and preferences. Table
III details the start and end points for each instance, providing
a clear reference for the scenarios tested.

Algorithm 1 Bike Routing Problem

SenarioData← ReadingDataF iles()
Edges← ReadingEdges()
while i <= SenarioData.lenth() do

while j <= Edges.lenth() do
InitialRoute← CreateInitialRoute()
InitialTemperature = 1000
CoolingRate = 0.995
BestRoute = SimulatedAnnealing()
j ← j + 1

end while
i← i+ 1

end while

B. Simulated Annealing

Simulated Annealing (SA) is a powerful optimization algo-
rithm inspired by the annealing process in metallurgy. Initially
introduced by Kirkpatrick, Gelatt, and Vecchi in the 1980s
[23], SA mimics the annealing of materials, where a solid
is heated to high temperatures and then gradually cooled to
minimize its energy state. This process allows the algorithm
to escape local optima and explore the solution space more ef-
fectively. The key idea behind SA is to accept worse solutions
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Algorithm 2 SimulatedAnnealing Algorithm

while temperature > 0.1 do
while ReplacedNode do

SwapIndex← random(1, Route.length())
NewNode← FindReplacedNode()
if NewNode! = Null then

Route[SwapIndex]← NewNode
Update =

else
ReplacedNode← False

end if
end while

end while

TABLE IV. THE RESULT FOR INSTANCE 1

scenario Total Scores Path
Scenario-1 [121, 297, 422, 165] 0.92
Scenario-2 [121, 297, 346, 165] 0.81
Scenario-3 [121, 297, 346, 165] 0.68
Scenario-4 [121, 319, 309, 165] 0.82
Scenario-5 [121, 297, 422, 165] 1.00
Scenario-6 [121, 319, 309, 165] 0.33
Scenario-7 [121, 297, 143, 165] 0.59
Scenario-8 [121, 297, 422, 165] 0.84
Scenario-9 [121, 239, 257, 249, 165] 0.35

Scenario-10 [121, 297, 143, 165] 0.51

TABLE V. THE RESULT FOR INSTANCE 2

Scenario Total Scores Path
Scenario-1 [77, 422, 351] 0.33
Scenario-2 [77, 422, 351] 0.78
Scenario-3 [77, 422, 351] 0.33
Scenario-4 [77, 422, 351] 0.50
Scenario-5 [77, 422, 351] 0.55
Scenario-6 [77, 422, 351] 0.28
Scenario-7 [77, 422, 351] 0.35
Scenario-8 [77, 422, 351] 1.00
Scenario-9 [77, 422, 351] 0.20
Scenario-10 [77, 422, 351] 0.43

TABLE VI. THE RESULT FOR INSTANCE 3

Instance Total Scores Path
Scenario-1 [462, 86, 145] 0.83
Scenario-2 [462, 86, 145] 1.00
Scenario-3 [462, 41, 2, 145] 0.63
Scenario-4 [462, 86, 145] 1.00
Scenario-5 [462, 86, 145] 0.93
Scenario-6 [462, 86, 145] 0.46
Scenario-7 [462, 86, 145] 0.83
Scenario-8 [462, 86, 145] 0.61
Scenario-9 [462, 86, 145] 0.56
Scenario-10 [462, 86, 145] 0.76

TABLE VII. THE RESULT FOR INSTANCE 4

Instance Total Scores Path
Scenario-1 [282, 291, 148, 393] 0.57
Scenario-2 [282, 291, 243, 393] 0.83
Scenario-3 [282, 366, 144, 393] 0.50
Scenario-4 [282, 366, 144, 393] 0.60
Scenario-5 [282, 291, 243, 393] 0.61
Scenario-6 [282, 455, 325, 393] 0.26
Scenario-7 [282, 291, 243, 393] 0.41
Scenario-8 [282, 291, 243, 393] 0.82
Scenario-9 [282, 455, 325, 393] 0.23
Scenario-10 [282, 291, 243, 393] 0.49

with a certain probability, enabling the algorithm to explore the
solution space broadly before converging towards the optimal
solution [23][24]. This approach has proven to be highly
effective in solving complex optimization problems where the
objective function is not explicitly defined and can only be
evaluated through computationally expensive simulations [24].
SA’s ability to balance exploration and exploitation makes it a
popular choice in various real-world applications, ranging from
engineering and logistics to machine learning and artificial
intelligence [24]. Its widespread applicability and efficiency
in tackling challenging optimization problems have solidified
its position as a prominent metaheuristic algorithm in the field
of computational optimization.

V. COMPUTATIONAL RESULTS

In this section, we provide the outcomes of our numerical
experiments. Initially, we assess the efficiency of our BRP
formulation as well as the Constraints formulation coupled
with Simulated Annealing. Subsequently, we analyze the per-
formance of our proposed Simulated Annealing algorithm. All
experiments were carried out on a computer with an Intel i7-
2.10 GHz processor and 64 GB RAM, running on the Windows
11-x64 operating system.

The study examined the effectiveness of BRP in uneven sit-
uations. Results from the tenth series of tests were analyzed in
comparison with outcomes obtained using Simulated Anneal-
ing methods. Tables IV - XIII summarize the computational
results for each instance, respectively. In these tables, the three
columns display the scenario name, total scores based on the
edges are visited, and the path. The total scores values are
evaluated based in Eq. 1. Please note that, the computation
times of these heuristics are less than 1s.

Table IV reports the results obtained from the test problem
in instance-1 which representing a scenario of transporting
from Node-121 to Node-165. As it can be seen, the results
can be categorized into five categories: (1) Scenario 1, 5, and
8, (2) Scenario 2 and 3, (3) Scenario 4 and 6, (4) Scenario 7
and 10, and (5) Scenario 9; each one of these category has the
same result.

Table V presents the results of the instance-2 which
presents the problem of moving from Node-77 to Node-351. In
addition, Table XII presents the results of the instance-9 which
presents the problem of moving from Node-491 to Node-171.
Surprisingly, all results from different scenarios has the same
result (path); In instance-2 the result is [77, 422, 351], and the
instance-9 the result is [491, 218, 171].

Table VI shows the results of the instance-3 which presents
the problem of moving from Node-462 to Node-145. In this
experiment, All scenarios shows the same results (path) except
the scenario-3.

Table VII presents the results of the instance-3 which
presents the problem of moving from Node-282 to Node-393.
The results can be seen in four categories: (1) Scenario 2, 5,
7, 8, and 10, (2) Scenario 3 and 4, (3) Scenario 6 and 9, and
(4) Scenario 1.

Table VIII presents the results of the instance-2 which
presents the problem of moving from Node-25 to Node-115.
There are six scenarios have different result completely which
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TABLE VIII. THE RESULT FOR INSTANCE 5

Instance Total Scores Path
Scenario-1 [25, 240, 184, 115] 0.56
Scenario-2 [25, 18, 108, 115] 1.00
Scenario-3 [25, 497, 131, 115] 0.47
Scenario-4 [25, 117, 285, 115] 0.72
Scenario-5 [25, 18, 108, 115] 0.95
Scenario-6 [25, 383, 46, 115] 0.49
Scenario-7 [25, 75, 110, 115] 0.60
Scenario-8 [25, 240, 184, 115] 0.70
Scenario-9 [25, 462, 378, 285, 115] 0.41
Scenario-10 [25, 281, 170, 454, 115] 0.49

TABLE IX. THE RESULT FOR INSTANCE 6

Instance Total Scores Path
Scenario-1 [80, 404, 476] 0.74
Scenario-2 [80, 404, 476] 0.91
Scenario-3 [80, 404, 476] 0.52
Scenario-4 [80, 404, 476] 0.83
Scenario-5 [80, 404, 476] 0.87
Scenario-6 [80, 404, 476] 0.42
Scenario-7 [80, 40, 166, 476] 0.46
Scenario-8 [80, 404, 476] 1.00
Scenario-9 [80, 404, 476] 0.42
Scenario-10 [80, 404, 476] 0.70

TABLE X. THE RESULT FOR INSTANCE 7

Instance Total Scores Path
Scenario-1 [323, 421, 342] 0.56
Scenario-2 [323, 421, 342] 0.67
Scenario-3 [323, 421, 342] 0.56
Scenario-4 [323, 421, 342] 0.61
Scenario-5 [323, 421, 342] 0.67
Scenario-6 [323, 437, 313, 342] 0.38
Scenario-7 [323, 421, 342] 0.58
Scenario-8 [323, 421, 342] 0.67
Scenario-9 [323, 421, 342] 0.31
Scenario-10 [323, 421, 342] 0.53

TABLE XI. THE RESULT FOR INSTANCE 8

Instance Total Scores Path
Scenario-1 [109, 18, 100, 464] 0.68
Scenario-2 [109, 106, 498, 464] 0.77
Scenario-3 [109, 125, 377, 464] 0.49
Scenario-4 [109, 370, 243, 464] 0.83
Scenario-5 [109, 225, 214, 464] 0.90
Scenario-6 [109, 341, 498, 464] 0.32
Scenario-7 [109, 432, 377, 464] 0.67
Scenario-8 [109, 370, 202, 464] 0.64
Scenario-9 [109, 20, 458, 268, 464] 0.38
Scenario-10 [109, 252, 56, 464] 0.79

TABLE XII. THE RESULT FOR INSTANCE 9

Instance Total Scores Path
Scenario-1 [491, 218, 171] 0.64
Scenario-2 [491, 218, 171] 0.92
Scenario-3 [491, 218, 171] 0.84
Scenario-4 [491, 218, 171] 0.90
Scenario-5 [491, 218, 171] 1.00
Scenario-6 [491, 218, 171] 0.59
Scenario-7 [491, 218, 171] 0.63
Scenario-8 [491, 218, 171] 0.80
Scenario-9 [491, 218, 171] 0.47

Scenario-10 [491, 218, 171] 0.75

TABLE XIII. THE RESULT FOR INSTANCE 10

Instance Total Scores Path
Scenario-1 [31, 356, 375] 1.00
Scenario-2 [31, 356, 375] 0.95
Scenario-3 [31, 356, 375] 0.88
Scenario-4 [31, 356, 375] 1.00
Scenario-5 [31, 336, 26, 375] 0.60
Scenario-6 [31, 356, 375] 0.62
Scenario-7 [31, 356, 375] 1.00
Scenario-8 [31, 356, 375] 0.63
Scenario-9 [31, 336, 26, 375] 0.24
Scenario-10 [31, 356, 375] 1.00

are Scenario 3, 4, 6, 7, 9, and 10. However, Scenarios 1 and
8 are the same, and the Scenario 2 and 5 are the same.

Table IX shows the results of the instance-6 which presents
the problem of moving from Node-80 to Node-476. In this
experiment, All scenarios shows the same results (path) except
the scenario-7. Moreover, Table X shows the results of the
instance-7 which presents the problem of moving from Node-
323 to Node-342. Also, ins this experiment, All scenarios
shows the same results (path) except the scenario-6.

Table XI shows the results of the instance-8 which presents
the problem of moving from Node-109 to Node-464. Surpris-
ingly, all results are different for each scenario.

Table XIII presents the results of the instance-10 which
presents the problem of moving from Node-31 to Node-375.
The results can be seen in two categories: (1) Scenario 1, 2,
3, 4, 6, 7, 8 and 10, and (2) Scenario 5 and 9.

VI. CONCLUSIONS AND FUTURE WORK

The study successfully applied a heuristic-driven Simulated
Annealing algorithm to the BRP, demonstrating its efficacy in
processing and optimizing complex routing problems within
reasonable computational times. The results confirmed that
the proposed method could handle a variety of scenarios
by accommodating diverse constraints and preferences, thus
offering a flexible and robust solution to the BRP. The findings
suggest that the method is not only applicable in the context
of cycling but may also extend to other forms of trans-
portation where route optimization is essential. The research
contributes to the field by providing a systematic approach
to addressing BRP and paving the way for more sustainable
urban transport systems. Future research directions include
scaling the proposed solution to larger datasets and urban
areas with more complex networks. There is also scope for
integrating real-time data, such as traffic updates and weather
conditions, to enhance the dynamicity and responsiveness of
the route planning process. Another avenue for exploration
is the application of the Simulated Annealing approach to
different types of multi-objective routing problems beyond
cycling, such as pedestrian pathfinding and electric vehicle
charging station routes. Further studies could also investigate
the integration of machine learning techniques to predict and
adapt to cyclists’ preferences more accurately.

www.ijacsa.thesai.org 986 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 12, 2023

REFERENCES

[1] S. Ryu, A. Chen, J. Su, and K. Choi, “Two-stage bicycle traffic
assignment model,” Journal of Transportation Engineering, Part A:
Systems, vol. 144, no. 2, p. 04017079, 2018.

[2] B. E. Saelens, J. F. Sallis, and L. D. Frank, “Environmental correlates
of walking and cycling: findings from the transportation, urban design,
and planning literatures,” Annals of behavioral medicine, vol. 25, no. 2,
pp. 80–91, 2003.

[3] D. Piatkowski, R. Bronson, W. Marshall, and K. J. Krizek, “Measuring
the impacts of bike-to-work day events and identifying barriers to
increased commuter cycling,” Journal of Urban Planning and Devel-
opment, vol. 141, no. 4, p. 04014034, 2015.

[4] J. P. Schmitt and F. Baldo, “A method to suggest alternative routes based
on analysis of automobiles’ trajectories,” in 2018 XLIV Latin American
Computer Conference (CLEI). IEEE, 2018, pp. 436–444.

[5] J. Pucher and R. Buehler, “Making cycling irresistible: lessons from the
netherlands, denmark and germany,” Transport reviews, vol. 28, no. 4,
pp. 495–528, 2008.

[6] R. Buehler and J. Dill, “Bikeway networks: A review of effects on
cycling,” Transport reviews, vol. 36, no. 1, pp. 9–27, 2016.

[7] M. Rasanen and H. Summala, “Car drivers’ adjustments to cyclists at
roundabouts,” Transportation Human Factors, vol. 2, no. 1, pp. 1–17,
2000.

[8] N. Y. Tilahun, D. M. Levinson, and K. J. Krizek, “Trails, lanes, or
traffic: Valuing bicycle facilities with an adaptive stated preference
survey,” Transportation Research Part A: Policy and Practice, vol. 41,
no. 4, pp. 287–301, 2007.

[9] S. E. Vedel, J. B. Jacobsen, and H. Skov-Petersen, “Bicyclists’ prefer-
ences for route characteristics and crowding in copenhagen–a choice
experiment study of commuters,” Transportation Research Part A:
Policy and Practice, vol. 100, pp. 53–64, 2017.

[10] E. Q. V. Martins, “On a multicriteria shortest path problem,” European
Journal of Operational Research, vol. 16, no. 2, pp. 236–245, 1984.

[11] Q. Song, P. Zilecky, M. Jakob, and J. Hrncir, “Exploring pareto routes
in multi-criteria urban bicycle routing,” in 17th international IEEE
conference on intelligent transportation systems (ITSC). IEEE, 2014,
pp. 1781–1787.

[12] J. Arunadevi, A. Johnsanjeevkumar, and N. Sujatha, “Intelligent trans-
port route planning using parallel genetic algorithms and mpi in high
performance computing cluster,” in 15th International Conference on

Advanced Computing and Communications (ADCOM 2007). IEEE,
2007, pp. 578–583.

[13] L. Kang and J. D. Fricker, “Bicycle-route choice model incorporating
distance and perceived risk,” Journal of Urban Planning and Develop-
ment, vol. 144, no. 4, p. 04018041, 2018.

[14] H. Hochmair and F. Zhaohui, “Web based bicycle trip planning for
broward county, florida. gis center,” 2013.

[15] J. Hrncir, Q. Song, P. Zilecky, M. Nemet, and M. Jakob, “Bicycle route
planning with route choice preferences,” in ECAI 2014. IOS Press,
2014, pp. 1149–1154.

[16] H.-C. Chen and J.-D. Wei, “Using neural networks for evaluation in
heuristic search algorithm,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 25, no. 1, 2011, pp. 1768–1769.

[17] D. Luxen and C. Vetter, “Real-time routing with openstreetmap data,”
in Proceedings of the 19th ACM SIGSPATIAL international conference
on advances in geographic information systems, 2011, pp. 513–516.

[18] J. Hrncir, P. Zilecky, Q. Song, and M. Jakob, “Speedups for multi-
criteria urban bicycle routing,” in 15th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015.
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