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Abstract—Fraud is the unlawful acquisition of valuable assets 

gained via intended misrepresentation. It is a crime committed 

by either an internal/external user, and associated with acts of 

theft, embezzlement, and larceny. The proliferation of credit 

cards to aid financial inclusiveness has its usefulness alongside it 

attracting malicious attacks for gains. Attempts to classify 

fraudulent credit card transactions have yielded formal 

taxonomies as these attacks seek to evade detection. We propose 

a deep learning ensemble via a profile hidden Markov model 

with a deep neural network, which is poised to effectively classify 

credit-card fraud with a high degree of accuracy, reduce errors, 

and timely fashion. The result shows the ensemble effectively 

classified benign transactions with a precision of 97 percent. 

Thus, we posit a new scheme that is more logical, intuitive, 

reusable, exhaustive, and robust in classifying such fraudulent 

transactions based on the attack source, cause(s), and attack time 

gap. 

Keywords—Fraud transactions; fraud detection; deep learning 

ensemble; credit card fraud; cluster modeling; financial inclusion 

I. INTRODUCTION 

The rise in the adoption of computing devices to aid 
effective data processing and resource sharing has continued to 
attract adversaries. This has necessitated the deployment of 
systems to avert such threats. The growth in these attacks has 
also resulted in higher costs associated with the safeguarding of 
valuable resources shared across networks [1]. Attackers have 
become more proficient at exploiting flaws with access to 
privileges, aimed at financial gains – even with advances made 
in the medium of data sharing [2]. This remarkable evidence 
advances a digital revolution such that day-to-day living is 
impacted therein with the proliferation of buying/selling via 
such mode, platform(s), and adoption of credit cards that have 
consequently, exposed many users to more clever and 
complicated methods to steal considerable money [3]–[5]. The 
growing complexity of ICT and the frequency of threats have 
also increased the data required to successfully detect them. 
There is also a rise in the adoption of multi-staged, subterfuge 
attacks targeted at various levels of security as provisioned in 
many organizations. Another barrier to detection is that 
adversaries often disguise the true forms and nature of their 
assault – and rarely, take up abrupt spurts of suspicious 
behavior that are easily recognized by simple intrusion 
detection schemes [6]–[9]. 

Previous studies have continued to acknowledge the rise in 
trend/alarming growth in credit card fraud, which has 
continued to lower user trust (irrespective of the rise in the 
adoption of credit cards) [10]. Studies also note that such 
fraudulent activities have caused greater losses to the financial 
services industry. This has thus, positioned as imperative – 
many researchers that adopted statistical models in detecting 
malicious credit card transactions [11]. Implementing a 
stochastic model has its bottleneck – as malicious transactions 
are aimed to evade detection, and their respective performance 
is often hindered by model over-fitting, parameter selection, etc 
[12]. 

The limited availability of data and „censored‟ results from 
previous studies – have also led to difficulties to advance this 
field as datasets contain ambiguities, partial truth, and noise. 
These, have led to improper selection of features, data 
encoding, poor learning convergence, and incorrect results 
from over-parameterizing, overfitting, and overtraining. This 
increases false-positives and true-negatives error rates. We 
resolve this via a robust search that will effectively classify 
observations and yield the expected values [13]–[16]. 

The continued complexity in credit-card fraud detection has 
left us all in a frenzy with the continued quest to tweak 
methods to evade detection (for adversaries) as well as means 
to curb all attacks/threats (for security experts). This, in turn, 
has made and left such task and business, both a continuous 
and inconclusive feat [17]. In the quest therein for improved 
frameworks, some studies have shown that such tasks also, 
yield models whose performance is continually degraded at 
intervals due to improper selection of features within the used 
dataset for training and testing therein [18]–[20]. Even with the 
use and adoption of intelligent, stochastic, and dynamic 
classifiers, credit-card fraud persists as adversaries continue to 
evolve their techniques. 

Thus, our study seeks to explore the use of feature selection 
[21]–[23] that is capable of addressing the issues of 
optimization with appropriate feature(s) selection, and 
adequately training the framework to avoid pitfalls from over-
parameterization and overfitting of the model using deep 
learning. We propose a deep-learning cluster model to aid 
credit-card fraud detection. This will help to explore, exploit 
and use observed data as well as seek the underlying stochastic 
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feature of interest to yield a robust output and ensure 
qualitative knowledge. 

II. METHODS AND MATERIALS 

A. Credit-Card Fraud Detection: Review of Literature 

The cost of financial crimes (globally) was estimated to be 
about $ 42 billion in 2018. With this, is constantly on the rise – 
the financial services industry must employ systems that 
implement innovative fraud mitigation and prevention modes. 
Many methods for detecting abuse of a technical system [24], 
[25], are required. Fraud detection seeks to detect cases of 
fraud from logged data and user behavior [26]. Fraud 
management thus advances a step further to set up preventive 
measures. Oracle offers real-time detection and correlation 
capabilities of complex user behavior with use-case 
management – to result in its early detection and prevention via 
complex, multi-channel with reduced risk [27]. Fraudsters 
continue to seek effective means with improved complexity 
and circumvent border systems, which profile behavior at the 
point of access [28], and internal hacks that seek to steal client 
data and defraud valuable clients. Fraud monitoring should 
offer combined risk monitoring and detection analytics [29]. 
The system must intelligently correlate event alerts from 
various channels to offer optimal solutions via early fraud 
detection of multi-channel, and complex fraud, enhance client 
protection, and minimize risks [30]–[32]. 

Fraud is an unlawful act of possessing a valuable asset via 
intended misrepresentation. It is also associated with criminal 
cases such as embezzlement, theft, and larceny. It posits that an 
unknowing victim depends largely on a criminal's bogus claims 
for gains. It is committed by either an internal/external user. 
Today, credit cards have not only enhanced their usefulness in 
financial inclusion, but they have also attracted malicious 
attacks for gains [33], [34]. With credit cards easily targeted – 
crimes perpetrated with them are only discovered days 
afterward. Successful credit-card fraud techniques include (not 
limited to): (a) card-cloning and acquiring user‟s data, and (b) 
vendors' over-charge without cardholder's awareness [35], [36]. 
When banks lose money to card fraud, a cardholder is partly or 
wholly made to pay for such loss via many means that include 
higher interest rates, and reduced benefits. Thus, it is in both 
cardholders' and banks' interest to reduce fraudulent acts on a 
card [17], [37], [38]. 

In [39], the RBF model used 7 features and the trained RBF 
recognizes a packet as an attack, it is sent to a filter alarm. Else, 
it is classified as a normal packet. Profiles were constructed via 
stream sampling. Results showed that we can: (a) accurately 
profile packets, and (b) identify anomalies in low false-positive 
and false-negative. As routers exchange data, they capture key-
feats in each packet – allowing them to profile the packets, and 
increase their rate and confidence in detection. Also [40] 
posited a distributed change aggregation trees (CATs) 
detection scheme. It lets the router detect minor shocks in data 
– which is then investigated and events correlated at the 
different sessions. The router then proactively terminates the 
session (if it detects an attack is imminent). In [41], the 
supervised memetic rule-based model used 7-feats to monitor, 
inspect and detect packet rates. However, [1] sought to extend 
the work [41] via deep learning, an unsupervised modular 

network that captures a packet's key feats used as a profile to 
help analyze and classify packet patterns in a traffic session as 
either the normal or a DDoS attack. 

B. Data Gathering / Sample Population 

Datasets are transactions generated through the Central 
Bank of Nigeria e-channel having 41,667 records with 15 feats 
as in Table I, which shows a description of the collected dataset 
including cardholder and transaction data. We split the dataset 
into training (70%) and Testing (30%) as in [18], [42], [43]. 

TABLE I. DATASET DESCRIPTION, DATA TYPES, AND FORMAT 

Features Description of Features DataType Format 

User Name Account Holder‟s Name Object abcd 

Bank Name Bank of Account Holder Object abcd 

NUBAN 
Account 

Nigerian Universal Bank Number e-
channel Trans. 

Int 1234 

Billing 

Address 

Account holder's local bank address 

of withdrawal, hotel 
Object abcd 

Transaction 

Amount 

Amount of transactions adjusted in 

the bank‟s currency 
Float 12.34 

Transaction 

Type 

Local, International, and/or e-

Commerce as type 
Object Abcd 

Date/Time Transaction Date and Time Float M:D:Y 

Transaction 
Channel 

Channel (payment terminal and/or 
merchant application) 

Object Abcd 

Merchant Hotels, Restaurants, etc Object Abcd 

Transaction 

Gap Time 

Duration from last transaction to the 

current transaction 
Float M:D:Y 

Daily 

Transaction 

Daily average transactions 

performed by a cardholder 
Int 1234 

Daily Tran. 

Limit 

The daily limit of the amount that 

cardholders can do daily 
Float 12.34 

Weekly 

Transaction 

Weekly average transactions 

performed by the cardholder 
Int 1234 

Monthly 

Transaction 

Monthly average transactions by the 

cardholder 
Int 1234 

Freq. Trans. 

Types 

Average frequency of transactions 

by cardholder 
Int. 1234 

C. Parameter / Features Tuning 

A critical issue in machine learning is the formatting of 
data, the selections of feats/parameters of interest to 
understudy, properly encode the chosen dataset, and tuning the 
parameters to avoid model overfitting and overtraining to 
mention a few. Datasets are often rippled with inconsistencies, 
ambiguities, partial truths, and noise – such that selecting 
optimal parameters for a model, and encoding it by mapping to 
the required form a model understands – is a herculean feat and 
task. To transform our parameters and map them to the dataset, 
we use the Pandas data type Library as in the listing 1 
algorithm [44]–[46]. 
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Algorithm 1: Data Description for DeLClustE Algorithm 

Input: Features are Selected 

Output: Features are Converted to Appropriate Data Type 

Initialize DeLClustE with Select Parameters 
For Each Selected Parameter do 

   if Feature Selected is Non-Numerical then 

  Category for the Data Type is Generated 
  End if 

End For 

D. Experimental DeLClustE Ensemble 

Fig. 1 details our hybrid ensemble leveraging the work of 
[47]. The ensemble leans on two-components namely: the 
profile Hidden Markov model and deep-learning neural 
network. The selected training data forms a cluster of 
parameters that are passed via a PHMM represented as thus: 
(a) circles are delete-states for unclassified rules, (b) rectangles 
as accurately matched states that classify rules into class types, 
and (c) diamonds are insert-states to update the rules 
knowledgebase. As PHMM moves between the states, its insert 
and match states observe the emission state with probabilities 
corresponding to B. Thus, computes the probabilities via a 
forward algorithm, and computes the frequency of the number 
of rules each state emits [48]. Lastly, the delete state lets a 
PHMM pass through the gaps in the model to reach other 
emission states. The gaps in the model prevent it from over-
fitting and over-parameterization [47], [49], [50]. 

DNN in its bid to learn, and adapt useful selected parameters 
via a carefully constructed deep, multilayer net that aims to 
improve forecast precision. Its hidden layer often transforms 
[51] data non-linearly and passes it on from a previous layer to 
its next [52]. With learning handed over to the DNN, [53] 
stressed that the DNN trains itself using 2-stages namely pre-
training, and fine-tuning. It learns and resolves each task posed 
to it thus: (a) first, it groups all training data into cliques, to 
find the center point of each clique, (b) it then trains each 
clique of the DNN [54], learning the various features of each 
data subset, (c) third, it then applies a test data to previous 
clique centers to detect the outlier(s) in the pre-trained DNNs, 
and (d) lastly, it aggregates the output of each DNN as the final 
result of outliers [40]. A detailed description of the benchmark 
DNN is described in [55]. Also, the experimental ensemble 
yields a 3-phase model as in Fig. 1 [56]–[59]. 

The stages are as thus [14], [52], [53], [60]–[62]: 

1) Step 1: Separates the data into clusters (train and test). 
DNN computes cluster centers and uses them as 
initialization centers to yield test datasets. The data 
attributes are structured as data points and aligned to 
meet the classes [63]. The model revises the cluster 
counts and sigma to improve its performance. The 
shortest distance between a data point and each cluster 
center is measured, and a data point's proximity to a 
cluster classifies it. DNNs use the training sets created 
by clusters as input. The number of DNNs in training 
equals the number of cliques. Each DNN consists of 5 
layers (input, 2-hidden, softmax, and output). Each 
training subset is used to train the hidden layer, and the 
top layer is a 5D output vector. Each training created 
by the kth-clique center is sent back to the kth-DNN. 

And each sub-DNN is trained, and labelled from 1 to k 
[64], [65]. 

2) Step 2: Generates a k-dataset of data via previous 
clique center obtained from clusters in Step 1. Test 
sub-datasets are represented by the letters Test-1 via 
Test-k [56]. 

3) Step 3: The test dataset is then, fed to the k-sub-DNNs 
that are trained as in step 1. Each DNN output is 
combined as the final result to analyze the positive 
detection [62]. 

 

Fig. 1. DeLClustE: deep learning cluster hidden markov model trained deep 

learning neural network) ensemble. 

Algorithm 2: The DeLClustE Algorithm 

Input: Selected Features, Output: Converted Feature Data Type 

Initialize DeLClustE with PHMM; states; 

Discrete HMM with Random multinomial draw for each step 

K-means cluster fits on k-sub DNNs 
For Each Selected Parameter do 

 Sample states using Forward Filtering 

        Compute Backward Sampling algorithm on states 
        Sample each transition parameters 

              (       )     (      ) 

End For Each 

E. Hyper-Parameter and Ensemble Optimization 

A critical issue is that of tuning the parameters with values 
beyond the ensemble. They ripple across the model as hidden 
elements (hyper-parameters) [66]–[68] to impact its behavior – 
via targeted learning to optimize. Thus, we adopt the modular 
neural network [69]. As the model learns these feats directly 
via training data, it resolves the issues of over-
parameterization, poor generalization, and model over-fitting 
[1], [70]–[72]. 

Handling these hyper-parameters is detailed in [57] thus: 

1) Learning Rate hyper-feat regulates what weight and 
how much of it on the network must be modified for 
gradient loss. A smaller value yields a slower slope. 
This feat defines how easily a network abandons learn 
beliefs, in favor of new ones. A small learning rate 
value implies that a network can quickly distinguish 
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between important feats and unimportant ones. A faster 
learning rate allows the net to adapt to change, more 
easily. To minimize over-fit and overtraining, the 
learning rate is suitably adjusted. 

2) Batch Size defines the size of training used in iteration. 
There are three-modes namely: (a) batch is when its 
iteration and epoch values are equal, (b) Mini-batch 
denotes when the iteration size is greater than its epoch 
size, and (c) stochastic is when the gradient and 
network feats, which are updated after each iteration. 

An epoch is the number of times when all training values 
were used to update a weight. A network can be trained in a 
single step. Training a network in a single pass, on a training 
dataset – implies that an epoch has been reached or exhausted. 
Training can span multiple iterations and/or eras. Thus, in 
batch training – a learning model process all samples 
simultaneously in one epoch, and update all the weights; While 
sequential training – adjusts all the weights after a training 
session. 

III. RESULTS AND FINDINGS DISCUSSION 

A. Result Findings 

We modeled the network's input layer with one neuron for 
each parameter to yield a total of 8 neurons; And used two 
neurons (to represent each possible outcome) for our output 
layer. The Deep learning parameters include the learning rate, 
our activation function, the hidden layer structure, and the 
number of epochs. We used the Rectified Linear Unit 
Activation Function with 500 epochs (optimal values reached 
100, 300, and 500 epochs) – accounting for train convergence 
time and accuracy). Also, we note that there are no best 
practices for determining the number of neurons cum hidden 
layers – and additional hidden layers will give the ensemble 
capability to undertake more sophisticated functions on the 
data. 

TABLE II. FIRST HIDDEN LAYER CONFIGURATION ANALYSIS 

Hidden 

Layers 
Precision Recall F1 Iteration 

Train 

Loss 
Epoch 

1 0.94 0.94 0.92 18 1.400 500 

2 0.86 0.53 0.63 4 2.230 500 

3 0.90 0.84 0.86 16 2.071 500 

4 0.92 0.93 0.92 18 1.140 500 

5 0.92 0.92 0.90 16 1.779 500 

6 0.88 0.91 0.89 7 2.134 500 

7 0.91 0.92 0.89 8 2.320 500 

8 0.87 0.87 0.87 13 2.006 500 

9 0.92 0.92 0.90 8 1.970 500 

10 0.92 0.92 0.90 5 1.730 500 

11 0.85 0.85 0.85 10 1.540 500 

12 0.90 0.84 0.86 15 2.320 500 

13 0.91 0.92 0.90 8 1.440 500 

14 0.92 0.93 0.90 14 2.160 500 

15 0.91 0.91 0.91 5 1.772 500 

We choose the number of neurons vis-à-vis the hidden 
layers via a trial-and-error mode that analyzes the results to 
achieve its best fit with the least amount of training error. The 
best number of layers to be used was discovered by first 
conducting experiments on a single layer with 1-to-15 neurons 
to determine which produces the highest f-score with the least 
(constant) amount of training loss time (see Table II) 

As in Table III, the addition of a second hidden layer with 
the greatest number of neurons to generate the highest f-score 
resulted in the overall best feasible hidden layer arrangement. 

TABLE III. SECOND HIDDEN LAYER CONFIGURATION ANALYSIS 

Hidden 
Layers 

Precision Recall F1 Iteration 
Train 
Loss 

Epoch 

9, 1 0.91 0.92 0.89 10 1.996 500 

9, 2 0.84 0.92 0.88 24 0.281 500 

9, 3 0.93 0.93 0.92 11 1.884 500 

9, 4 0.92 0.92 0.89 12 1.590 500 

9, 5 0.90 0.92 0.90 12 1.731 500 

9, 6 0.95 0.94 0.93 14 0.390 500 

9, 7 0.93 0.93 0.91 12 1.130 500 

9, 8 0.91 0.92 0.91 20 1.929 500 

9, 9 0.92 0.93 0.90 13 2.237 500 

9, 10 0.94 0.94 0.92 7 1.765 500 

9, 11 0.85 0.52 0.62 7 2.010 500 

9, 12 0.94 0.94 0.94 6 1.620 500 

9, 13 0.93 0.94 0.92 7 1.760 500 

9, 14 0.86 0..74 0.79 13 2.059 500 

9, 15 0.92 0.92 0.89 8 2.421 500 

B. Discussion of Findings 

To evaluate how well the ensemble performed against 
known benchmarks, a comparative result(s) is seen in Table IV 
– with detection accuracies of 0.89 for PHMM, 0.78 for 
GANN, 0.91 for MNN, 0.96 for DNN, and 0.92 PHMM-DNN 
respectively. We also have that Fig. 2 shows the mean-time 
convergence for the various ensembles. We created a total of 
22 rules. Table IV shows that rules can effectively 
identify/detect more than 60-to-82 percent of the cases in the 
dataset. 

 

Fig. 2. Mean convergence time for experimental ensemble. 
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TABLE IV. CONFIGURATION ANALYSIS 

Ensemble 
Precisio

n 

Redundanc

y 

Recal

l 
F1 

Averag

e 

Support 

Cost 

Estimat

e 

DNN 0.92 0.52 0.94 0.92 12.449 140 

PHMM 0.89 0.71 0.83 0.83 11.410 130 

MNN  0.91 0.56 0.92 
0.8

9 
11.411 140 

GANN 0.78 0.79 0.74 0.92 11.408 120 

DeLClust
E 

0.96 0.52 1.00 0.97 12.500 140 

That is, the test phase of the model with 12,500 records 
reveals that we accurately identified the majority of the models, 
11,411 benign cases as agreed by [73], [74]. The result showed 
11,410 benign threats from the test dataset are correctly 
grouped (i.e. true-positives). The result showed that 31-
detected cases were erroneously labeled and agreed with [75]–
[77] as false-positive; Also, 776 wrongly detected threats (i.e. 
false-negative) and 283-correctly recognized malicious 
instances labeled as true-negative. Thus, for true-positive cases, 
the model predicted positive (correctly) and also predicted 
negative (correctly) for true-negative cases. Conversely, 
sensitivity and specificity rates were computed with 
standardized tests for our test data [78], [79]. These proved, to 
be more efficient. 

IV. CONCLUSION 

We created a total of 22 rules, with classification accuracy 
range and fitness [0.6, 0.82] for the top rules (i.e. 60% of 
generated rules can sufficiently categorize the dataset). Thus, 
the ensemble effectively/correctly identifies fraudulent 
transactions and simultaneously improves the generality of 
rules to allow new datasets and their associated produced rules, 
to be added to the knowledgebase. Detection often filters all 
requests on a network, analyses all to separate compromised 
clients from those that are uncompromised, and also, provides 
security measures as appropriate actions. The performance of 
these ensembles may be hampered by error rates for 
erroneously classified and misidentified data points generated 
by the scheme and/or model. 

Through trade-offs between the frequency of false positives 
and false negatives, an ideal approach correctly classifies all 
requests with nearly zero error rates of false positives or false 
negatives. With the increasing trend of intrusion threats and 
activities, it is critical to develop new methods and updated 
security monitoring systems that provide a high chance of 
detection and timely warning of intruder attacks. The goal of 
this research is to adapt a hybrid ensemble to monitor card-
holder transaction flow patterns on a network, predict possible 
fraudster and adversary behaviors, and boost the effectiveness 
of banking platform (e-channel) network security when and if 
the level of threat changes. 

REFERENCES 

[1] A. A. Ojugo and R. E. Yoro, “Forging a deep learning neural network 
intrusion detection framework to curb the distributed denial of service 
attack,” Int. J. Electr. Comput. Eng., vol. 11, no. 2, pp. 1498–1509, 2021, 
doi: 10.11591/ijece.v11i2.pp1498-1509. 

[2] C. L. Udeze, I. E. Eteng, and A. E. Ibor, “Application of Machine 
Learning and Resampling Techniques to Credit Card Fraud Detection,” J. 
Niger. Soc. Phys. Sci., p. 769, Aug. 2022, doi: 10.46481/jnsps.2022.769. 

[3] M. Dadkhah, T. Sutikno, J. M. Davarpanah, and D. Stiawan, “An 
Introduction to Journal Phishings and Their Detection Approach,” 
TELKOMNIKA, vol. 13, no. 2, p. 373, Jun. 2015, doi: 
10.12928/telkomnika.v13i2.1436. 

[4] Y. Abakarim, M. Lahby, and A. Attioui, “An Efficient Real Time Model 
For Credit Card Fraud Detection Based On Deep Learning,” in 
Proceedings of the 12th International Conference on Intelligent Systems: 
Theories and Applications, Oct. 2018, pp. 1–7. doi: 
10.1145/3289402.3289530. 

[5] S. M. Albladi and G. R. S. Weir, “User characteristics that influence 
judgment of social engineering attacks in social networks,” Human-
centric Comput. Inf. Sci., vol. 8, no. 1, p. 5, Dec. 2018, doi: 
10.1186/s13673-018-0128-7. 

[6] V. Filippov, L. Mukhanov, and B. Shchukin, “Credit card fraud detection 
system,” in 2008 7th IEEE International Conference on Cybernetic 
Intelligent Systems, Sep. 2008, pp. 1–6. doi: 
10.1109/UKRICIS.2008.4798919. 

[7] A. Algarni, Y. Xu, and T. Chan, “An empirical study on the susceptibility 
to social engineering in social networking sites: the case of Facebook,” 
Eur. J. Inf. Syst., vol. 26, no. 6, pp. 661–687, Nov. 2017, doi: 
10.1057/s41303-017-0057-y. 

[8] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep Learning 
Approach Combining Sparse Autoencoder With SVM for Network 
Intrusion Detection,” IEEE Access, vol. 6, pp. 52843–52856, 2018, doi: 
10.1109/ACCESS.2018.2869577. 

[9] I. A. Anderson and W. Wood, “Habits and the electronic herd: The 
psychology behind social media‟s successes and failures,” Consum. 
Psychol. Rev., vol. 4, no. 1, pp. 83–99, Jan. 2021, doi: 10.1002/arcp.1063. 

[10] F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. Odiakaose, F. U. Emordi, and 
A. A. Ojugo, “Sentiment Analysis in Detecting Sophistication and 
Degradation Cues in Malicious Web Contents,” Kongzhi yu 
Juece/Control Decis., vol. 38, no. 01, pp. 653–665, 2023. 

[11] A. E. Ibor, E. B. Edim, and A. A. Ojugo, “Secure Health Information 
System with Blockchain Technology,” J. Niger. Soc. Phys. Sci., vol. 5, 
no. 992, pp. 1–8, 2023, doi: 10.46481/jnsps.2022.992. 

[12] I. Correia, F. Fournier, and I. Skarbovsky, “The uncertain case of credit 
card fraud detection,” in Proceedings of the 9th ACM International 
Conference on Distributed Event-Based Systems, Jun. 2015, pp. 181–192. 
doi: 10.1145/2675743.2771877. 

[13] Y. Lucas et al., “Multiple perspectives HMM-based feature engineering 
for credit card fraud detection,” in Proceedings of the 34th ACM/SIGAPP 
Symposium on Applied Computing, Apr. 2019, pp. 1359–1361. doi: 
10.1145/3297280.3297586. 

[14] S. S. Verma et al., “Collective feature selection to identify crucial 
epistatic variants,” BioData Min., vol. 11, no. 1, p. 5, Dec. 2018, doi: 
10.1186/s13040-018-0168-6. 

[15] L. De Kimpe, M. Walrave, W. Hardyns, L. Pauwels, and K. Ponnet, 
“You‟ve got mail! Explaining individual differences in becoming a 
phishing target,” Telemat. Informatics, vol. 35, no. 5, pp. 1277–1287, 
Aug. 2018, doi: 10.1016/j.tele.2018.02.009. 

[16] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, and 
H. T. Nagle, “A comparison of the noise sensitivity of nine QRS 
detection algorithms,” IEEE Trans. Biomed. Eng., vol. 37, no. 1, pp. 85–
98, 1990, doi: 10.1109/10.43620. 

[17] A. Artikis et al., “A Prototype for Credit Card Fraud Management,” in 
Proceedings of the 11th ACM International Conference on Distributed 
and Event-based Systems, Jun. 2017, pp. 249–260. doi: 
10.1145/3093742.3093912. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

99 | P a g e  

www.ijacsa.thesai.org 

[18] C. Li, N. Ding, H. Dong, and Y. Zhai, “Application of Credit Card Fraud 
Detection Based on CS-SVM,” Int. J. Mach. Learn. Comput., vol. 11, no. 
1, pp. 34–39, 2021, doi: 10.18178/ijmlc.2021.11.1.1011. 

[19] S. Goel, K. Williams, and E. Dincelli, “Got Phished? Internet Security 
and Human Vulnerability,” J. Assoc. Inf. Syst., vol. 18, no. 1, pp. 22–44, 
Jan. 2017, doi: 10.17705/1jais.00447. 

[20] T. Halevi, J. Lewis, and N. Memon, “A pilot study of cyber security and 
privacy related behavior and personality traits,” in Proceedings of the 
22nd International Conference on World Wide Web, May 2013, pp. 737–
744. doi: 10.1145/2487788.2488034. 

[21] A. A. Ojugo and O. D. Otakore, “Intelligent cluster connectionist 
recommender system using implicit graph friendship algorithm for social 
networks,” IAES Int. J. Artif. Intell., vol. 9, no. 3, p. 497~506, 2020, doi: 
10.11591/ijai.v9.i3.pp497-506. 

[22] Y. Gao, S. Zhang, J. Lu, Y. Gao, S. Zhang, and J. Lu, “Machine Learning 
for Credit Card Fraud Detection,” in Proceedings of the 2021 
International Conference on Control and Intelligent Robotics, Jun. 2021, 
pp. 213–219. doi: 10.1145/3473714.3473749. 

[23] M. Gratian, S. Bandi, M. Cukier, J. Dykstra, and A. Ginther, “Correlating 
human traits and cyber security behavior intentions,” Comput. Secur., vol. 
73, pp. 345–358, Mar. 2018, doi: 10.1016/j.cose.2017.11.015. 

[24] M. I. Akazue, A. A. Ojugo, R. E. Yoro, B. O. Malasowe, and O. 
Nwankwo, “Empirical evidence of phishing menace among 
undergraduate smartphone users in selected universities in Nigeria,” 
Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1756–1765, Dec. 
2022, doi: 10.11591/ijeecs.v28.i3.pp1756-1765. 

[25] R. E. Yoro, F. O. Aghware, M. I. Akazue, A. E. Ibor, and A. A. Ojugo, 
“Evidence of personality traits on phishing attack menace among selected 
university undergraduates in Nigerian,” Int. J. Electr. Comput. Eng., vol. 
13, no. 2, p. 1943, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1943-1953. 

[26] A. Abbasi, F. M. Zahedi, and Y. Chen, “Phishing susceptibility: The 
good, the bad, and the ugly,” in 2016 IEEE Conference on Intelligence 
and Security Informatics (ISI), Sep. 2016, pp. 169–174. doi: 
10.1109/ISI.2016.7745462. 

[27] J. R. Amalraj and R. Lourdusamy, “A Novel Distributed Token-Based 
Access Control Algorithm Using A Secret Sharing Scheme for Secure 
Data Access Control,” Int. J. Comput. Networks Appl., vol. 9, no. 4, p. 
374, Aug. 2022, doi: 10.22247/ijcna/2022/214501. 

[28] A. A. Ojugo, M. I. Akazue, P. O. Ejeh, C. Odiakaose, and F. U. Emordi, 
“DeGATraMoNN : Deep Learning Memetic Ensemble to Detect Spam 
Threats via a Content-Based Processing,” Kongzhi yu Juece/Control 
Decis., vol. 38, no. 01, pp. 667–678, 2023. 

[29] A. A. Ojugo, C. O. Obruche, and A. O. Eboka, “Quest For Convergence 
Solution Using Hybrid Genetic Algorithm Trained Neural Network 
Model For Metamorphic Malware Detection,” ARRUS J. Eng. Technol., 
vol. 2, no. 1, pp. 12–23, Nov. 2021, doi: 10.35877/jetech613. 

[30] M. Barlaud, A. Chambolle, and J.-B. Caillau, “Robust supervised 
classification and feature selection using a primal-dual method,” Feb. 
2019. 

[31] E. R. Altman, “Synthesizing Credit Card Transactions,” Oct. 2019, 
[Online]. Available: http://arxiv.org/abs/1910.03033 

[32] A. A. Ojugo and A. O. Eboka, “Empirical Bayesian network to improve 
service delivery and performance dependability on a campus network,” 
IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 623, Sep. 2021, doi: 
10.11591/ijai.v10.i3.pp623-635. 

[33] I. Benchaji, S. Douzi, B. El Ouahidi, and J. Jaafari, “Enhanced credit card 
fraud detection based on attention mechanism and LSTM deep model,” J. 
Big Data, vol. 8, no. 1, p. 151, Dec. 2021, doi: 10.1186/s40537-021-
00541-8. 

[34] M. Fatahi, M. Ahmadi, A. Ahmadi, M. Shahsavari, and P. Devienne, 
“Towards an spiking deep belief network for face recognition 
application,” in 2016 6th International Conference on Computer and 
Knowledge Engineering (ICCKE), Oct. 2016, pp. 153–158. doi: 
10.1109/ICCKE.2016.7802132. 

[35] E. Ileberi, Y. Sun, and Z. Wang, “A machine learning based credit card 
fraud detection using the GA algorithm for feature selection,” J. Big Data, 
vol. 9, no. 1, p. 24, Dec. 2022, doi: 10.1186/s40537-022-00573-8. 

[36] M. I. Akazue, R. E. Yoro, B. O. Malasowe, O. Nwankwo, and A. A. 
Ojugo, “Improved services traceability and management of a food value 

chain using block-chain network : a case of Nigeria,” Indones. J. Electr. 
Eng. Comput. Sci., vol. 29, no. 3, pp. 1623–1633, 2023, doi: 
10.11591/ijeecs.v29.i3.pp1623-1633. 

[37] M. Laavanya and V. Vijayaraghavan, “Real Time Fake Currency Note 
Detection using Deep Learning,” Int. J. Eng. Adv. Technol., vol. 9, no. 
1S5, pp. 95–98, 2019, doi: 10.35940/ijeat.a1007.1291s52019. 

[38] R. Broadhurst, K. Skinner, N. Sifniotis, and B. Matamoros-Macias, 
“Cybercrime Risks in a University Student Community,” SSRN Electron. 
J., no. May, 2018, doi: 10.2139/ssrn.3176319. 

[39] R. Brause, F. Hamker, and J. Paetz, “Septic Shock Diagnosis by Neural 
Networks and Rule Based Systems,” 2002, pp. 323–356. doi: 
10.1007/978-3-7908-1788-1_12. 

[40] T. Ma, F. Wang, J. Cheng, Y. Yu, and X. Chen, “A Hybrid Spectral 
Clustering and Deep Neural Network Ensemble Algorithm for Intrusion 
Detection in Sensor Networks,” Sensors, vol. 16, no. 10, p. 1701, Oct. 
2016, doi: 10.3390/s16101701. 

[41] A. A. Ojugo, A. O. Eboka, E. O. Okonta, R. E. Yoro, and F. O. Aghware, 
“Genetic Algorithm Rule-Based Intrusion Detection System (GAIDS),” J. 
Emerg. Trends Comput. Inf. Syst., vol. 3, no. 8, pp. 1182–1194, 2012, 
[Online]. Available: http://www.cisjournal.org 

[42] S. V. S. . Lakshimi and S. D. Kavila, “Machine Learning for Credit Card 
Fraud Detection System,” Int. J. Appl. Eng. Res., vol. 15, no. 24, pp. 
16819–16824, 2018, doi: 10.1007/978-981-33-6893-4_20. 

[43] A. Jayatilaka, N. A. G. Arachchilage, and M. A. Babar, “Falling for 
Phishing: An Empirical Investigation into People‟s Email Response 
Behaviors,” arXiv Prepr. arXiv …, no. Fbi 2020, pp. 1–17, 2021. 

[44] L. E. Mukhanov, “Using bayesian belief networks for credit card fraud 
detection,” Proc. IASTED Int. Conf. Artif. Intell. Appl. AIA 2008, no. 
February 2008, pp. 221–225, 2008. 

[45] N. Rtayli and N. Enneya, “Enhanced credit card fraud detection based on 
SVM-recursive feature elimination and hyper-parameters optimization,” 
J. Inf. Secur. Appl., vol. 55, p. 102596, Dec. 2020, doi: 
10.1016/j.jisa.2020.102596. 

[46] D. Huang, Y. Lin, Z. Weng, and J. Xiong, “Decision Analysis and 
Prediction Based on Credit Card Fraud Data,” in The 2nd European 
Symposium on Computer and Communications, Apr. 2021, pp. 20–26. 
doi: 10.1145/3478301.3478305. 

[47] A. A. Ojugo and E. O. Ekurume, “Deep Learning Network Anomaly-
Based Intrusion Detection Ensemble For Predictive Intelligence To Curb 
Malicious Connections: An Empirical Evidence,” Int. J. Adv. Trends 
Comput. Sci. Eng., vol. 10, no. 3, pp. 2090–2102, Jun. 2021, doi: 
10.30534/ijatcse/2021/851032021. 

[48] P. H. Tran, K. P. Tran, T. T. Huong, C. Heuchenne, P. HienTran, and T. 
M. H. Le, “Real Time Data-Driven Approaches for Credit Card Fraud 
Detection,” in Proceedings of the 2018 International Conference on E-
Business and Applications - ICEBA 2018, 2018, pp. 6–9. doi: 
10.1145/3194188.3194196. 

[49] A. A. Ojugo and O. Nwankwo, “Spectral-Cluster Solution For Credit-
Card Fraud Detection Using A Genetic Algorithm Trained Modular Deep 
Learning Neural Network,” JINAV J. Inf. Vis., vol. 2, no. 1, pp. 15–24, 
Jan. 2021, doi: 10.35877/454RI.jinav274. 

[50] X. E. Pantazi, D. Moshou, T. Alexandridis, R. L. Whetton, and A. M. 
Mouazen, “Wheat yield prediction using machine learning and advanced 
sensing techniques,” Comput. Electron. Agric., vol. 121, pp. 57–65, Feb. 
2016, doi: 10.1016/j.compag.2015.11.018. 

[51] A. A. Ojugo and D. A. Oyemade, “Boyer moore string-match framework 
for a hybrid short message service spam filtering technique,” IAES Int. J. 
Artif. Intell., vol. 10, no. 3, pp. 519–527, 2021, doi: 
10.11591/ijai.v10.i3.pp519-527. 

[52] G. Sasikala et al., “An Innovative Sensing Machine Learning Technique 
to Detect Credit Card Frauds in Wireless Communications,” Wirel. 
Commun. Mob. Comput., vol. 2022, pp. 1–12, Jun. 2022, doi: 
10.1155/2022/2439205. 

[53] H. Tingfei, C. Guangquan, and H. Kuihua, “Using Variational Auto 
Encoding in Credit Card Fraud Detection,” IEEE Access, vol. 8, pp. 
149841–149853, 2020, doi: 10.1109/ACCESS.2020.3015600. 

[54] A. A. Ojugo and R. E. Yoro, “Extending the three-tier constructivist 
learning model for alternative delivery: ahead the COVID-19 pandemic in 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

100 | P a g e  

www.ijacsa.thesai.org 

Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, p. 1673, 
Mar. 2021, doi: 10.11591/ijeecs.v21.i3.pp1673-1682. 

[55] D. Wang, B. Chen, and J. Chen, “Credit card fraud detection strategies 
with consumer incentives,” Omega, vol. 88, pp. 179–195, Oct. 2019, doi: 
10.1016/j.omega.2018.07.001. 

[56] A. Seleznyov, An Anomaly Intrusion Detection System Based on 
Intelligent User Recognition An Anomaly Intrusion Detection System 
Based on Intelligent User Recognition. 2002. 

[57] S. Xuan, G. Liu, Z. Li, L. Zheng, S. Wang, and C. Jiang, “Random forest 
for credit card fraud detection,” in 2018 IEEE 15th International 
Conference on Networking, Sensing and Control (ICNSC), Mar. 2018, 
pp. 1–6. doi: 10.1109/ICNSC.2018.8361343. 

[58] Maya Gopal P S and Bhargavi R, “Selection of Important Features for 
Optimizing Crop Yield Prediction,” Int. J. Agric. Environ. Inf. Syst., vol. 
10, no. 3, pp. 54–71, Jul. 2019, doi: 10.4018/IJAEIS.2019070104. 

[59] P. . Maya Gopal and Bhargavi R, “Feature Selection for Yield Prediction 
Using BORUTA Algorithm,” Int. J. Pure Appl. Math., vol. 118, no. 22, 
pp. 139–144, 2018. 

[60] M. Zareapoor and P. Shamsolmoali, “Application of Credit Card Fraud 
Detection: Based on Bagging Ensemble Classifier,” Procedia Comput. 
Sci., vol. 48, pp. 679–685, 2015, doi: 10.1016/j.procs.2015.04.201. 

[61] Q. Li et al., “An Enhanced Grey Wolf Optimization Based Feature 
Selection Wrapped Kernel Extreme Learning Machine for Medical 
Diagnosis,” Comput. Math. Methods Med., vol. 2017, pp. 1–15, 2017, 
doi: 10.1155/2017/9512741. 

[62] P. Moodley, D. C. S. Rorke, and E. B. Gueguim Kana, “Development of 
artificial neural network tools for predicting sugar yields from inorganic 
salt-based pretreatment of lignocellulosic biomass,” Bioresour. Technol., 
vol. 273, pp. 682–686, Feb. 2019, doi: 10.1016/j.biortech.2018.11.034. 

[63] A. O. Eboka and A. A. Ojugo, “Mitigating technical challenges via 
redesigning campus network for greater efficiency, scalability and 
robustness: A logical view,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 
6, pp. 29–45, 2020, doi: 10.5815/ijmecs.2020.06.03. 

[64] V. Vijayaraghavan and M. Laavanya, “Vehicle Classification and 
Detection using Deep Learning,” Int. J. Eng. Adv. Technol., vol. 9, no. 
1S5, pp. 24–28, 2019, doi: 10.35940/ijeat.a1006.1291s52019. 

[65] I. Sohony, R. Pratap, and U. Nambiar, “Ensemble learning for credit card 
fraud detection,” in Proceedings of the ACM India Joint International 
Conference on Data Science and Management of Data, Jan. 2018, pp. 
289–294. doi: 10.1145/3152494.3156815. 

[66] M. Zanin, M. Romance, S. Moral, and R. Criado, “Credit Card Fraud 
Detection through Parenclitic Network Analysis,” Complexity, vol. 2018, 
pp. 1–9, 2018, doi: 10.1155/2018/5764370. 

[67] K. Kuwata and R. Shibasaki, “Estimating crop yields with deep learning 
and remotely sensed data,” in 2015 IEEE International Geoscience and 

Remote Sensing Symposium (IGARSS), Jul. 2015, pp. 858–861. doi: 
10.1109/IGARSS.2015.7325900. 

[68] Z. Karimi, M. Mansour Riahi Kashani, and A. Harounabadi, “Feature 
Ranking in Intrusion Detection Dataset using Combination of Filtering 
Methods,” Int. J. Comput. Appl., vol. 78, no. 4, pp. 21–27, Sep. 2013, 
doi: 10.5120/13478-1164. 

[69] G. Behboud, “Reasoning using Modular Neural Network,” Towar. Data 
Sci., vol. 34, no. 2, pp. 12–34, 2020. 

[70] S. Nosratabadi, F. Imre, K. Szell, S. Ardabili, B. Beszedes, and A. 
Mosavi, “Hybrid Machine Learning Models for Crop Yield Prediction,” 
Mar. 2020, [Online]. Available: http://arxiv.org/abs/2005.04155 

[71] S. Khaki and L. Wang, “Crop Yield Prediction Using Deep Neural 
Networks,” Front. Plant Sci., vol. 10, May 2019, doi: 
10.3389/fpls.2019.00621. 

[72] S. Khaki, L. Wang, and S. V. Archontoulis, “A CNN-RNN Framework 
for Crop Yield Prediction,” Front. Plant Sci., vol. 10, Jan. 2020, doi: 
10.3389/fpls.2019.01750. 

[73] D. Nahavandi, R. Alizadehsani, A. Khosravi, and U. R. Acharya, 
“Application of artificial intelligence in wearable devices: Opportunities 
and challenges,” Comput. Methods Programs Biomed., vol. 213, p. 
106541, Jan. 2022, doi: 10.1016/j.cmpb.2021.106541. 

[74] H. J. Parker and S. V. Flowerday, “Contributing factors to increased 
susceptibility to social media phishing attacks,” SA J. Inf. Manag., vol. 
22, no. 1, Jun. 2020, doi: 10.4102/sajim.v22i1.1176. 

[75] Y. Gao, S. Zhang, and J. Lu, “Machine learning for credit card fraud 
detection,” in Proceedings of the 2021 1st International Conference on 
Control and Intelligent Robotics, 2021, pp. 213–219. doi: 
10.1145/3473714.3473749. 

[76] D. Zhang, B. Bhandari, and D. Black, “Credit Card Fraud Detection 
Using Weighted Support Vector Machine,” Appl. Math., vol. 11, no. 12, 
pp. 1275–1291, 2020, doi: 10.4236/am.2020.1112087. 

[77] O. V. Lee et al., “A malicious URLs detection system using optimization 
and machine learning classifiers,” Indones. J. Electr. Eng. Comput. Sci., 
vol. 17, no. 3, p. 1210, Mar. 2020, doi: 10.11591/ijeecs.v17.i3.pp1210-
1214. 

[78] R. E. Yoro, F. O. Aghware, B. O. Malasowe, O. Nwankwo, and A. A. 
Ojugo, “Assessing contributor features to phishing susceptibility amongst 
students of petroleum resources varsity in Nigeria,” Int. J. Electr. 
Comput. Eng., vol. 13, no. 2, p. 1922, Apr. 2023, doi: 
10.11591/ijece.v13i2.pp1922-1931. 

[79] O. Thorat, N. Parekh, and R. Mangrulkar, “TaxoDaCML: Taxonomy 
based Divide and Conquer using machine learning approach for DDoS 
attack classification,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 
100048, Nov. 2021, doi: 10.1016/j.jjimei.2021.100048. 

 


