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Abstract—Cancer is often caused by missense mutations, 

where a single nucleotide substitution leads to an amino acid 

change and affects protein function. This study proposes a novel 

machine learning (ML) approach to calculate missing values in 

the tp53 database for three computational methods: SIFT, 

Provean, and Mutassessor scores. The computed values are 

compared with those obtained from the imputation method. 

Using these values, an ML classification model trained on 80,406 

samples achieves an accuracy of 85%, while the impute method 

achieves 75%. The scores and statistics are used to classify 

samples into five classes: Benign, likely pathogenic, possibly 

pathogenic, pathogenic, and a variant of uncertain significance. 

Additionally, a comparative analysis is conducted on 58,444 

samples, evaluating six ML techniques. The accuracy obtained by 

each of these is mentioned alongside the algorithm: logistic 

regression (89%), k-nearest neighbor (99%), decision tree (95%), 

random forest (99.8%), support vector machine with the 

polynomial kernel (91%), support vector machine with RBF 

kernel (84%), and deep neural networks (98.2%). These results 

demonstrate the effectiveness of the proposed ML approach for 

pathogenicity prediction. 
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missense mutations; Mutassessor; pathogenicity; Provean; random 

forest (RF); SIFT; support vector machine (SVM) 

I. INTRODUCTION  

Years of research have identified the tp53 gene, a tumor 
suppressor gene that encodes the tumor protein p53 (tp53), as 
a significant barrier in cancer development [1][2][3]. The tp53 
protein acts as a tumor suppressor by regulating cell division, 
growth, and apoptosis processes. It has been found that 
approximately 90% of cancer cases exhibit tp53 mutations [4]. 
Notably, the mutations commonly occur between positions 
102-292, resulting in approximately 190 mutated codons, with 
over 60% of them being missense mutations [5]. Studies by 
Fiamma Montovani et al. discuss the role of mutant p53 
proteins in supporting malignant cell survival and cancer 
evolution, as well as therapeutic opportunities related to tp53 
missense mutations [6]. Gaoyang Zhu et al. explore 
therapeutic options targeting the Gain-of-Function (GOF) 
feature of full-length p53 mutant proteins [7]. Additionally, 
Alvarado-Ortiz E et al. investigate the impact of mutp53 on 
metabolic reprogramming and the Warburg effect observed in 
cancer cells, highlighting chemo-resistance and the role of 
autophagy in survival [8]. Xiang Zhou et al. identify tp53 
hotspots as potential barriers for novel cancer therapies and 

study the mechanisms underlying GOF for p53 [9]. 
Furthermore, cancer cells employ various strategies to disarm 
p53 and promote their growth and survival [10]. One approach 
involves mutating the tp53 gene itself, removing the protective 
function and allowing unmonitored cell activities [11]. 
Nonsynonymous Single-Nucleotide Variants (nsSNVs) are 
considered a primary reason for cancer, as they alter proteins 
with a single residue change in the amino acids [12][13]. 
Yong Li et al. demonstrate the predictive value of tp53 in the 
untranslated region (UTR) of cancer specimens, highlighting 
the impact of germline SNVs on tp53 protein levels and cell 
apoptosis [14]. Oliver Poirion et al. propose using expressed 
SNVs (eSNVs) from RNA sequences to locate tp53 variations 
in tumor subpopulations [15]. Computational procedures have 
been developed to assess the influence of amino acid 
substitutions and the frequent occurrence of missense variants 
in cancer patients [16] [17]. Understanding the effect of 
missense mutations is crucial for clinical use, especially in 
distinguishing pathogenic and infectious variants among 
numerous missense variants. 

II. RELATED WORK  

With the rapid development of Machine Learning (ML) 
and its applications in various fields, ML has emerged as a 
potential solution for cancer research [19][20]. Efforts have 
been made to apply ML/AI-based diagnostics for cancer using 
vast genomic data. Techniques such as REVEL, CADD, 
FATHMM, and PolyPhen employ ML algorithms like 
Random Forest (RF), Naïve Bayes (NB), and Logistic 
Regression (LR) to predict pathogenicity [21][22]. Jiaying Lai 
et al. introduce LYRUS, a machine-learning tool that predicts 
pathogenicity based on missense variants [23]. LYRUS 
utilizes an XGBoost classifier incorporating sequence, 
structure, and dynamic features. The tool is evaluated using F-
scores and specificity metrics, outperforming alternative 
methods. However, LYRUS estimates pathogenicity based on 
the actual protein structure and does not consider the mutated 
protein. It is also limited to proteins with available structures 
in the Protein Data Bank (PDB). Hua Tan et al. differentiate 
cancer-causing driver mutations from normal ones using SVM 
classification based on distinguishing features [24]. Their 
approach demonstrates higher efficiency compared to existing 
methods. In clinical research, computational techniques such 
as SIFT, Mutassessor, and Provean are used to predict the 
pathogenicity of missense mutations. However, there is a lack 
of ML-based methods to calculate these scores. Therefore, the 
present study proposes a novel approach to calculate SIFT, 
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Provean, and Mutassessor scores using K-nearest neighbors 
(KNN) regression. The study also focuses on classifying 
samples into pathogenicity classes based on the guidelines 
suggested by the American College of Medical Genetics and 
Genomics (ACMG) [25]. Section III of the paper delves into 
the materials and methods utilized in the research study. 
Following this, Section IV elaborates on the implementation 
of the algorithms employed. The subsequent section, Section 
V, presents the results and output obtained from the study, 
providing a detailed analysis. Finally, in Section VI, the paper 
concludes by summarizing the main findings and implications, 
offering a comprehensive conclusion to the research. 

III. MATERIALS AND METHODS 

A. Computational Techniques for Pathogenicity Prediction 

1) SIFT score: The SIFT (Sorting Intolerant from 

Tolerant) method is a prediction tool that assesses the 

relationship between amino acid substitutions and protein 

functions [26]. It is based on the hypothesis that amino acids 

tend to be conserved within a protein family. Therefore, any 

changes at well-conserved amino acid positions are likely to 

be damaging. SIFT also considers the presence of hydrophilic 

amino acids, such as valine, and checks if the substituted 

amino acid is another hydrophilic amino acid, like isoleucine 

or leucine. In such cases, the changes are predicted as 

tolerated. However, substitutions to other types of amino acids 

are assumed to result in functional changes. The SIFT method 

takes the protein sequence as input and aligns it with related 

proteins. It calculates the probability of amino acid occurrence 

at each position during the alignment. If the probability falls 

below a certain threshold, SIFT predicts the substitution as 

deleterious, otherwise, it is considered tolerated. The threshold 

value typically ranges from 0.0 to 1.0, where scores between 

0.0 and 0.05 are considered deleterious, and scores greater 

than 0.05 are considered tolerated.  

2) Provean score: The Provean (Protein Variation Effect 

Analyzer) score operates similarly to the SIFT method [27]. It 

calculates an alignment score for each protein sequence. A set 

of closely related sequences, typically the top 30 clusters, is 

selected as a supporting sequence set. The scores within each 

cluster are averaged, resulting in a Provean score. This score is 

then compared to a predefined threshold, typically set as -2.5. 

If the score is equal to or lower than the threshold, the protein 

variant is considered deleterious; otherwise, it is considered 

"neutral." 

3) Mutassessor score: The Mutassessor score (Mutation 

Accessor) predicts the functional impact of an amino acid 

change based on the evolutionary conservation of the affected 

amino acid among protein homologs [28]. The default 

threshold for pathogenicity classification is set to -1.93, 

distinguishing high or medium functional impact variants 

from low or neutral predicted variants. 

Note: These scores, namely SIFT, Provean, and 
Mutassessor, are utilized in computational techniques to 
predict the pathogenicity or functional impact of missense 
mutations in proteins. 

B. The Proposed ML-based Method to Calculate the Missing 

Values of SIFT, Provean, and Mutassessor Scores 

In this section, two algorithms related to the present 
research study are discussed. Algorithm-1 presents the 
proposed ML-based approach for calculating missing values 
of three different computational scores. Algorithm-2 outlines 
the process of classifying each sample into pathogenicity 
classes. The classification results are compared using six 
different ML techniques. 

 

Algorithm – 1: Proposed algorithm for predicting the 
missing values of Sift, Provean, and Mutassessor Scores in 
tp53 database 

Input: tp53 mutation samples (80346, 133) → 80346 rows X 

133 columns; Output: Predicted scores for the missing values 

in Sift, Provean, and Mutassessor scores 

 

Step 1: Preprocess the tp53 original dataset. 

Step 2: Perform feature selection to select the features 

required for the proposed task. 

Step 3: Separate rows with and without Sift scores. 

Step 4: Consider the rows that have Sift scores. 

  i. Create a dataframe (x_train) to store the features. 

  ii. Create another dataframe (y_train) to store the 

corresponding labels. 

  iii. Use the KNN regressor model to predict values of 

y_train, and save the predictions as y_predict. 

  iv. Compute the Mean Absolute Error (MAE) score of 

y_train and y_predict for each 'k' value from 2 to 20. 

  v. Determine the 'k' value with the minimum MAE score 

among all the MAE scores. 

  vi. Train a new model using this 'k' value and save it as 

final_model. 

Step 5: Use final_model to calculate the missing values of 

Sift scores from step 3 using the KNN regressor technique: 

  i. Consider the complete feature set of missing and 

present Sift values. 

  ii. Calculate the Euclidean distance (ED) for each feature 

set where Sift scores are present and where Sift scores are 

missing. 

  iii. Tabulate all ED values in ascending order. 

  iv. Select the top 'k' values (from step 4.vi). 

  v. Calculate the average of these scores and save it as the 

new predicted Sift score. 

  vi. Return the new predicted Sift score. 

Step 6: Predict Sift scores using all the features selected in 

step 2 with the help of the impute method. 

Step 7: Compare the final predicted values from steps 5 

and 6. 

Step 8: Repeat steps 3-5 to determine Provean scores. 

Step 9: Repeat steps 3-5 to determine Mutassessor scores. 

Step 10: Stop. 
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Algorithm – 2: Classification of samples into five 
classes of pathogenicity using different ML techniques 

Input: tp53 mutation samples. 

Output: Pathogenicity classification. 

 

Step 1: Choose features and labels from the tp53 database (features 

computational scores + stat scores). 

Step 2: Remove samples with null values. 

Step 3: Perform the classification of each sample into pathogenicity 

classes using the following ML techniques: 

  i) Logistic regression, 

  ii) KNN, 

  iii) SVM, 

  iv) Decision tree, 

  v) Random forest, 

  vi) Feedforward neural network. 

Step 4: Compare the results of each technique using evaluation 

metrics. 

Step 5: Tabulate the results. 

Step 6: Stop. 

C. ML Techniques used in the Proposed Research Study  

 

 To predict the computational scores  

1) K-Neighbors Regressor: This technique is a regression 

method derived from the KNN model. It calculates values 

based on the representation of the 'k' nearest neighboring 

target values from the training dataset. The values present in 

the training class are stored, while those that are missing are 

later calculated using similarity scores such as Euclidean, 

Manhattan, or Hamming distance. The accuracy of the 

calculated values relies on the selection of a primary measure, 

'k'. Choosing an appropriate 'k' value is crucial, as a large 'k' 

value can potentially exploit the distance boundaries and result 

in overfitting or blurring of the feature space. Conversely, a 

low 'k' value can lead to underfitting of the model [29]. Hence, 

an optimal 'k' value is determined by discarding the missing 

values from the target variable field and predicting the target 

variable values using different 'k' values. These predicted 

values are then compared with the actual target values, and the 

difference is evaluated using the Mean Absolute Error (MAE) 

score. The 'k' value that yields the lowest MAE score is 

selected as the final 'k' value for the K-Neighbors Regressor. 

Table I provides a tabular representation of the procedure. 

TABLE I. THE KNN REGRESSOR METHOD WAS USED TO CALCULATE 

THE MISSING VALUES. THE TABLE SHOWS THE SAMPLE VALUES TAKEN 

FROM THE TP53 DATABASE. IT CONTAINS A COMBINATION OF VALUES 

PRESENT AND ABSENT INDICATED WITH DIFFERENT COLORS 

data_pretrain_X, train_y, data_absxdim ,ydim,  
L_sta

t 

C_sta

t 

T_sta

t 

G_sta

t 

S_sta

t 

Sm_sta

t 

Sift_scor

e 
ED 

0.01 0.08 0.05 0.44 0.71 0.331 0.19 0.34 

2.84 2.80 2.87 2.77 1.40 2.107 0 5.83 

0 0.00 0.00 0.91 0 0.01 ? 0.34 

0.02 0.03 0.03 0 0.03 0.083 0.89 
0.915

5 

Note: L: Leukaemia, C: Cell_line, T: Tumor, G: Germline, S: Solid_state, Sm: Somatic, ED: Euclidean 

Distance 

Calculating ED individually for rows (i), (ii), and (iv) 
containing SIFT score values and SIFT score=? Different 
arrows indicate this in Table I. Below is the ED calculation for 
row (i).  

                           +               
          +              = 0.342 

Likewise, EDs for all the rows (ii and iv) w.r.t data_pre 

Sort ED: 0.34, 0.91, 5.83. Consider, k=2, so pick the first 2 
points and take the average. 

         

 
        

The new sift_score predicted is 0.625 

D. To Classify Samples into Various Pathogenicity Classes 

 Feature selection: With the help of data visualization 
and pre-processing using principal component analysis 
(PCA), the dataset was prepared for the training phase 
[30]. With PCA, highly correlated features (both 
positive and negative) were removed from the original 
dataset. For the strongly correlated features, only one of 
the features is retained. To decide this, the following 
aspects were identified; if two features are to -1, they 
are negatively correlated, and if the values are closer to 
+1, they are positively correlated. After performing the 
feature reduction process, the dataset had 58444 X 10 
records that were finally used for the classification 
process using six different ML techniques. In the end, 
each ML technique is compared to study the best 
method for classifying a sample. The model was 
evaluated using F-score and parameter tuning to ensure 
robustness. Finally, the models are evaluated on the test 
set for full and reduced features. Feature reduction, 
indeed, has an impact on the overall algorithm 
performance of these ML techniques. Fig. 1 depicts the 
framework of this modeling process. The implications 
of these methods are described below. 

 

Fig. 1. The proposed schematic hybrid framework of the modelling process 

to predict the pathogenicity of a sample using tp53 database and various ML 

algorithms such as Logistic Regression (LR), K-nearest neighbors (KNN), 
Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) 

and lastly, Feed-Forward Neural Network (NN). 
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 Logistic regression: The LR is, by default, a regression 
model whose prediction is based on the logistic function 
[31]. The decision is asso iate  wit  t e pro a ility t at 
a  iven  eature  elon s to some  ate ori al  lass, say, 
1  I  a si moi  lo isti   un tion is use  to make t e 
pre i tion, t en i  si moi   un tion ( ) resorts to an 
in inite value w en t e pre i tion varia le ( ) will 
become one an    will  e 0 i  „ ‟ is a ne ative value, 
given by Eq. 1 

        
 

              (1) 

A crucial parameter in logistic regression for the present 
classification task is multinomial data distribution since the 
categories of the classes (5 pathogenicity classes) are without 
any specific ordering. The classification of a sample is 
performed base  on t e t res ol     e t res ol  value is vital 
in estimatin  t e pro a ility t at a sample  elon s to one out 
o  t ese  ive  lasses   ay i    ran es  etween 0-0 2, t en t e 
sample is  lassi ie  as „0 -  eni n‟,  or    etween 0 2 – 0.4, 
the sample will  e  lassi ie  as „1-LP‟, wit  a ran e  etween 
0.4 - 0 6 t e  lass will  e „2-P‟, 0 6 – 0 8  or  lass „3-PP‟ an  
finally 0.8 – 1 0  or  lass „4-VU ‟    is is usually t e  irst ML 
algorithm to be used for any classification task.  

 K-Nearest Neighbors: This is the simplest of all the ML 
techniques that intend to classify a record (unlabelled) 
based on the class of the neighbouring data points 
(labelled) [32]. Using a distance measure, say ED, the 
distance between the features of the unlabelled and 
labelled re or s is  al ulate   Usin  an optimal „k‟ 
value, t e nearest top „k‟ nei   ours are   osen  
Finally, the class label with the highest number is 
tagged for the unlabelled data point. The main idea 
behind this intuition is that similar points tend to be 
close to each other. As this is a multi-class classification 
problem, a sample will be classified into one of the five 
 lasses    e  est „k‟ value o taine  on t e  ataset is 5  
Thus, k=5 was used to train the final model.  

 Support Vector Machine (SVM): SVM is a versatile 
algorithm used for classification and regression tasks. It 
aims to find an optimal hyperplane, or decision 
boundary, that maximizes the separation between 
different classes [33]. When classes are not linearly 
separable, SVM employs the kernel trick, using 
functions like linear, polynomial, RBF, or sigmoid. 
Data points close to the hyperplane are called support 
vectors. For multi-class classification, SVM utilizes the 
one-vs.-one approach, explicitly indicated by 
defined_function_shape=ovo. By default, it uses the 
one-vs.-rest approach (defined_function_shape=ovr), 
where data points of one class are compared with the 
rest [33]. In our case with five pathogenicity classes, 
SVM is applied using both 'rbf' and 'poly' kernels, with 
specified parameters such as gamma=0.5, C=0.1, and 
degree=3 for 'rbf', and C=1 for 'poly'. 

 Decision Tree: This rule-based classifier resembles a 
tree-like structure and makes decisions based on a series 
of questions. At each node, a question is asked, and 
depending on the answer (yes or no), the algorithm 

progresses to other nodes at subsequent levels, similar 
to an if-else structure. Decision trees consider one 
feature at a time from the input data (X) to create 
branches. The feature can be categorical or continuous, 
using categories or thresholds as decision criteria. 
Different criteria, such as Gini impurity and Entropy, 
can be used to determine the root node and subsequent 
decision-makers. Gini impurity calculates the frequency 
at which a sample in the dataset will be incorrectly 
labeled, while Entropy measures the disorder of features 
(X) with respect to the target label (y) [34]. 

                 ∑   
 

              (2) 

          ∑            (3) 

W ere Pi is t e pro a ility  or  lass „i‟ su   t at i=1 to 5. 
In t e present stu y, t e question woul   e: „is t e 
leukemia_stat greater than a threshold value, say, x? Or is 
leukemia_stat less than or equal to the threshold value? Thus, 
the DT will traverse each node and evaluate the condition 
before deciding which branch to proceed with until the leaf 
node (last) is hit. Here, there will be a total of five leaf nodes 
for each pathogenicity class. Both entropy and Gini impurities 
are used separately in the present study with max_depth=3.   

 Random Forest: It is based on the concept of ensemble 
algorithms, which combines multiple classifiers, and 
decision trees, solves the problem independently, and 
combines the results in the last step [35]. With this 
approach, the overall performance is improved. The 
model with correct prediction is retained, and incorrect 
predictions are pruned. The prediction rules are not 
visible to the user, thus enforcing a black-box concept. 
The multiple final DTs are combined, and the class with 
a majority vote will be assigned to the sample. With 
multiple DTs, the model obtains a higher accuracy and 
eliminates the problem of overfitting. RF will achieve 
the best accuracy compared to the previous models 
discussed here. The following parameters are used in 
the present study; n_estimators=100 (overall trees the 
forest has), bootstrap = True (randomize the samples in 
t e  ataset), max_ eatures = „sqrt‟ (takes t e square root 
of the total features present in the dataset. Total features 
= 10 (computational scores+stat values + pathogenic 
class)  √10 ~ 3, so t ree  eatures are trie  ran omly  or 
each tree).  

 Artificial Neural Network: ANN represents the working 
of a real human brain where the brain will generate 
outputs based on the past information trained earlier in 
life. ANN is suitable for any function, especially 
datasets that exhibit non-linear relationships. 
Feedforward neural network is a variation of ANN with 
three layers, an input layer, one or more hidden layers, 
and an output layer. Every layer has multiple 
nodes/neurons to process the input. The neural networks 
learn when fed with input and propagate to subsequent 
layers; hidden and output. This is called the 
learning/training phase. At each node at every layer, the 
network calculates the product of input values and 
weights, and the sum of these product terms along with 
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a bias value is calculated at every hidden node and 
sends the value to the next layer. That is, the network 
 al ulates a  un tion, say „ ‟,  or a pre etermine  input 
 eature in „X‟ an  results in a trainin  pair (X,y) such 

that f(X)  (y). The actual and predicted values are 
calculated to understand the loss incurred by the 
network [36]. At the output layer, an activation function 
is used to obtain the result. The activation functions are: 
Sigmoid (the output value ranges between 0 and 1), 
tanh (ranges between -1 and +1), Rectified Linear Unit 
(ReLU) (returns the max (0, X)), softmax (return the 
probability of belonging to each output class, such that, 
when the values are added, we get 1). In the present 
study, a simple sequential model is trained using Keras 
that uses TensorFlow objects. The input_dim was set to 
9, matching the number of input parameters 
(computational scores + stat values), and the activation 
was ReLU with 16 neurons in the input layer. Two 
hidden layers were used, each with 32 and 64 neurons 
and the same activation function. The output layer has 
five neurons as there were five pathogenicity classes 
with softmax activation. The loss function was 
"sparse_categorical_crossentropy", optimizer='adam', 
metrics were set to accuracy with 100 epochs.  

IV. IMPLEMENTATION  

A. Dataset Collection 

The dataset used in this study was collected from the 
UMD-tp53 database (Universal Mutation Database). The 
database, which initially had only 360 mutations in 1992, has 
now grown to contain over 80,000 mutation samples [37]. It 
consists of two files: variant and mutation. The mutation 
database includes samples of all patients with a tp53 mutation, 
while the variant database contains unique tp53 variants found 
in these patients. For this study, the mutation database with 
80,406 samples (TP53 Mutated data, 2017 Release R2, 
available at https://p53.fr/the-database) was utilized. The 
database includes various variant classifications for mutant 
types, such as missense (58,517), nonsense (8,460), Frame-
shift-del (5,212), splice-site (2,348), synonymous (2,016), 
frame-shift-ins (1,701), Indel (1,194), Ins (290), and others 
(668). The database was downloaded in CSV format. 

B. Data Pre-Processing Phase 

The initial mutant database downloaded from the tp53 
website consisted of 80,406 rows and 133 columns. The 
prediction scores were based on various statistical values and 
computational scores present in the database. However, when 
the features start_DNA and end_DNA had a value of '?', most 
of the remaining features also had '?' (119 columns), and the 
pathogenicity class was labelled as 'no prediction.' Therefore, 
the rows with values start_DNA and end_DNA = '?' were 
removed as the first step in the pre-processing phase. This 
resulted in 80,346 rows and ten columns. Additionally, the 
start and end_DNA features were not used in the prediction or 
classification process, so they were dropped from the feature 
set, resulting in a final dataset size of 80,346 X 8. The next 
step in pre-processing was to handle null values. Although 
there were no null values, three features (Sift, Mutassessor, 
and Provean scores) contained string values such as 'No data,' 

'No protein,' 'Not known,' and 'Inframe.' As part of data 
cleaning, these string values were replaced with '?', as these 
values would be calculated using the proposed algorithm. 
Furthermore, the pathogenicity feature consisted of categorical 
data such as benign, likely pathogenic, pathogenic, possibly 
pathogenic, and VUS. To handle this, a label encoder was 
used to transform the string values into integer values. The 
respective classes were assigned the numbers 0, 1, 2, 3, and 4. 

C. Data-Splitting: 

The new DataFrame (new_df) with a size of 80,346 X 8 
was further divided into two DataFrames: data_abs, which 
contained rows where the Sift_score was '?', with a size of 
21,902 X 8, and data_pre, which included rows with available 
Sift_score values, with a size of 58,444 X 8. From data_pre, 
the features and labels were separated and named 
data_pre_temp and 'y', respectively. The '.values' function was 
used to convert the DataFrame data_pre_temp into a list 
named Xin. The KNeighborsRegressor class was then 
employed to train the model using Xin as the input features 
and y as the target labels in an 80:20 ratio. To find an ideal 'k' 
value, the 'k' value was varied from 2 to 20, and the Mean 
Absolute Error (MAE) was calculated for each 'k' value. The 
MAE represents the mean absolute difference between the 
actual and predicted values. The 'k' value that yielded the 
lowest MAE value was considered the optimal 'k' value for  
training the final model to predict the missing values. The 
DataFrame data_abs was split into data_abs_temp (features) 
and ydim (labels). The '.values' of data_abs_temp were stored 
in Xdim as features, with ydim representing the labels. A new 
DataFrame named data_predict was created with a column of 
the same name, Sift-score, to store the predicted values of 
ydim. This DataFrame was then joined with data_abs_temp 
and renamed as 'dataframe_1'. The values of Sift_score were 
extracted from data_pre and stored in a new DataFrame called 
df_join, which was further joined with data_pre_temp and 
renamed as 'dataframe_2'. Finally, dataframe_1 and 
dataframe_2 were concatenated to form a new DataFrame 
named 'dataframe' with a size of 80,346 X 8, which matched 
the original size of the initial DataFrame new_df. The 
DataFrame 'dataframe' now contained values that originally 
had missing values (21,902) 

V. RESULTS 

The predicted values obtained using the proposed 
algorithmic approach were compared with the state-of-the-art 
ML library method called Impute. KNNImputer was utilized 
with the same 'k' value as in the previous method. The values 
calculated by both methods were compared, and it was found 
that they were 85% similar. Additionally, two KNN models 
were trained separately, one using the proposed method and 
the other using the imputer method. The proposed model 
demonstrated superior accuracy compared to the built-in 
method. 

A.  Evaluation of Computational Scores Prediction using the 

Proposed Method and Built-In Method 

The objective is to develop an ML-based approach to 
calculate missing values in three important pathogenicity 
prediction methods based on amino acid substitutions in 
protein sequences. In the tp53 database, certain values for 



(IJACSA)  International Journal of Advanced Computer Science and Applications 

Vol. 14, No. 6, 2023 

1043 | P a g e  

www.ijacsa.thesai.org 

these three features were missing. Instead of using existing 
algorithms, this study employs the KNN regressor, an ML 
technique, for estimating these values. Additionally, each 
method requires a threshold, which can be adjusted based on 
user requirements. Hence, the threshold value was redefined to 
align with the existing value range. Table II presents the 
threshold used in this study to classify the scores into their 
respective variant classes. Fig. 2(a) to 2(c) shows the graphical 
illustration of the values computed for all three computational 
scores from both methods impute and code-based.  

TABLE II. THE THRESHOLD VALUES ARE USED FOR DIFFERENT 

COMPUTATIONAL METHODS IN THE PATHOGENICITY CLASSIFICATION TASK 

Computational 

Methods 
Threshold values: Class type 

Sift 
<=0.05: 

Harmful 

>0.05: 

Tolerated 
-- 

Provean 
<=2.5: 

Deleterious 
>2.5: Neutral -- 

Mutassessor <=1.0: Neutral 
>1.0 &<=2.0: 

Low 

>2.0 &<=4.0: 

Medium 

Note: Shown in bold letters are the category labels used for each of the threshold values 

Do the values computed by the proposed procedure 
outperform the reference method? - A Case study: 

As depicted in Fig. 2, the computed missing values from 
both methods closely align, with minor variations observed at 
the beginning and end of the graph. However, the question 
arises whether these slight differences hold any predictive 
significance. Therefore, a case study was conducted to 
demonstrate that the proposed method exhibits superior 
classification performance for tp53 mutation samples. After 
calculating the missing values, an SVC classifier was 
employed to classify the samples based on pathogenicity 
variants using the computational methods. To further assess 
the results, the impute method, an ML library method for 
calculating missing values, was employed, and the same 
process was repeated. The trained SVC classifier effectively 
classified the samples using both the code-based and impute 
methods. The code-based approach achieved higher 
classification accuracy compared to the existing impute 
method for all three computational techniques. Additionally, 
the match percentage for each variant class was also 
calculated. The proposed and built-in methods achieved a 
match rate of over 81%. The significance of this evaluation is 
summarized in Table III. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. (a) SIFT scores computed using code-based and reference methods 

(impute)., (b) Mutassessor scores computed using code-based and reference 

methods (impute)., (c) Provean scores computed using code-based and 

reference methods (impute). 

TABLE III. THE NUMBER OF SAMPLES CLASSIFIED TO EACH 

PATHOGENICITY LABEL FOR BOTH PROPOSED AND BUILT-IN METHODS. THE 

CLASSIFICATION ACCURACY IS THE MEASURE CALCULATED FOR THE 

CLASSIFIED DATA IN COLUMN-WISE, REPRESENTED IN BLUE COLOUR. THE 

GREY COLOUR FIELD REPRESENTS THE PERCENTAGE OF A MATCH IN THE 

VALUES CALCULATED BY BOTH APPROACHES 

Computation
al Method 

 
ML-based 
proposed 

approach 

Built-in 
impute 

method 

% of a match 

between 
proposed and 

built-in method 

Sift Damaging 74761 73092 
85.32 

 Tolerated 5585 7254 

 

Classificati

on 

Accuracy 

0.879 0.764  

Provean Deleterious 72733 71838 
81.91 

 Neutral 7613 8508 

 

Classificati

on 
Accuracy 

0.875 0.781  

Mutassessor Medium 73810 73894 

84.89  Low 4539 4203 

 Neutral 1997 2249 

 
Classificati
on 

Accuracy 

0.872 0.783  

SIFT Score 

Code-based Impute

Mutassessor Score 

Impute Code-based

Provean Score 

Code-based Impute
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B. Evaluation Metrics to Assess ML Model Performances 

TABLE IV. THE NUMBER OF SAMPLES IN EACH PATHOGENICITY CLASS 

FOR THE TRAINING AND TEST DATASET 

 0:BENIGN, 1:LIKELY PATHOGENIC, 2: PATHOGENIC, 3: POSSIBLY 

PATHOGENIC, 4:VUS 

 
Data split 

80:20 

Class # 

0 1 2 3 4 

No. of 

training 

samples 

46755 80% 50 5146 30509 7981 3069 

No. of test 

samples 
11689 20% 11 1303 7636 1998 741 

Total 58444 100% 61 6449 38145 9979 3810 

Table IV gives the number of samples in each 
pathogenicity class for the training and test dataset. 

Confusion Matrix (CM) is a tabular representation of the 
performance in the classification task [38]. It contains the true 
values along the y-axis and estimated values along the x-axis. 
The number of rows and columns depends on the number of 
classification classes. 

TABLE V. A CONFUSION MATRIX FOR A RANDOM FOREST ALGORITHM 

FOR MULTI-CLASS CLASSIFICATION OF PATHOGENICITY LABELS 

N REPRESENTS A CLASS NAME; CM IS THE CONFUSION MATRIX C. A GREEN 

COLOUR ROW REPRESENTS AN FN, AND THE YELLOW COLUMN REPRESENTS 

AN FP, AND PINK IS THE ACTUAL TRUE POSITIVE FOR THE CLASS N=1. 

ACTUAL CLASS : AC 

C

M 
(C

) 

 Prediction Class  

 
N 

class

es 

N=0 N=1 N=2 N=3 N=4 Total 

A
C

 

N=0 
CC00=

11 
0 0 0 0 11 

N=1 0 
CC11=1

293 
0 0 10 

AN=2=1

303 

N=2 0 0 
CC22=7

636 
0 0 7636 

N=3 0 0 0 
CC33=1

994 
4 1998 

N=4 0 4 0 0 
CC44=

737 
741 

 
Tota

l 
11 

PN=2=12

97 
7636 1994 751 

T=1168

9 

Table V describes a CM matrix of the RF algorithm, 
illustrating the different numbers obtained from the ML 
model. Here, CCNN indicates the correctly classified samples, 
T is the count of test samples, AN is the total times a sample is 
correctly classified to its actual class, and PN represents the 
number of times a sample is predicted. The main components 
of a CM are as follows: A true positive (TP) is when a true 
class 0 (benign) is predicted as 0 (benign). A true negative 
(TN) is when an actual class is not 0 and is predicted correctly 
as not class 0. A false positive (FP) is when a true class 0 is 
wrongly predicted as class 1 or any other class, and lastly, a 
false negative (FN) is when a true class is not 0 but is 
mispredicted as class 0. Further, the standard performance 
metrics derived from CM are described in Eq. [4 – 7]. Those 
are i) A recall is a measure of all positive samples that the 

model predicted correctly for the class; this indicates how 
much the model correctly predicted for the total samples of 
class 0. ii) A precision indicates the quality of the prediction, 
i.e., how many times the model correctly predicted a sample 
as class 0 out of all the total number of class 0 true samples. 
iii) F-Score is the average of both recall and precision. iv) 
accuracy is the actual number of samples that the model 
correctly classifies over the total number. v) The macro 
average scores are calculated by considering the weighted 
mean for each R, P, and F for every predicted class without 
 onsi erin  ea   la el‟s proportion. vi) The weighted average 
score is calculated by taking the product of the sum of 
individual recall, precision, and f-score and each classified 
sample over the actual number of samples for the 
classification class. This is similar to the macro score except 
that the weighted score considers the proportion of individual 
labels. vii) The micro average considers the total TP, FP, and 
FN irrespective of the prediction made by the model for each 
class 

           
  

     
  (4) 

              
  

     
  (5) 

           
  

   
  (6) 

         
     

           
  (7) 

Table VI illustrates the performance achieved for each of 
the ML techniques on the test dataset. 

TABLE VI. THE TABULATION OF VARIOUS EVALUATION METRICS ON THE 

TEST DATASET FOR EACH ML METHOD. THE RF RESULTED IN THE HIGHEST 

ACCURACY, CLOSELY FOLLOWED BY KNN AND DL METHODS 

Method 

C

l
a

s

s 

P R F  
Macr

o 

Mi

cro 

Weigh

ted 
Accuracy 

K
N

N
 

0 
1.0
0 

1.0
0 

1.0
0 

P 0.99 
0.9
9 

0.99 

0.994 1 
0.9

9 

0.9

9 

0.9

8 
R 0.98 

0.9

9 
0.99 

2 
1.0
0 

1.0
0 

1.0
0 

F 0.98 
0.9
9 

0.99 

3 
0.9

7 

1.0

0 

0.9

9 
 

4 
0.9
6 

0.9
5 

0.9
5 

S
V

M
 

0 
1.0

0 

1.0

0 

1.0

0 
P 0.86 

0.9

1 
0.91 

Poly: 

0.910 
RBF: 0.84 

1 
0.7

8 

0.7

4 

0.7

6 
R 0.84 

0.9

1 
0.91 

2 
0.9

9 

0.9

9 

0.9

9 
F 0.85 

0.9

1 
0.91 

3 
0.7

4 

0.8

5 

0.7

9 
 

4 
0.8

0 

0.6

1 

0.7

0 

L
R

 

0 
1.0

0 

1.0

0 

1.0

0 
P 0.85 

0.8

9 
0.89 

0.891 1 
0.8

4 

0.4

8 

0.6

1 
R 0.79 

0.8

9 
0.89 

2 
0.9

9 

0.9

9 

0.9

9 
F 0.81 

0.8

9 
0.89 
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3 
0.6

7 

0.8

9 

0.7

6 
 

4 
0.7

7 

0.6

0 

0.6

7 

D
T

 

0 
1.0

0 

1.0

0 

1.0

0 
P 0.72 

0.9

5 
0.95 

Gini:0.95
4 

Entropy:0.

952 

1 
0.9

2 

0.8

7 

0.9

0 
R 0.72 

0.9

5 
0.95 

2 
1.0

0 

1.0

0 

1.0

0 
F 0.72 

0.9

5 
0.95 

3 
0.8

8 

0.9

0 

0.8

9 
 

4 
0.7
8 

0.8
1 

0.8
0 

R
F

 

0 
1.0

0 

1.0

0 

1.0

0 
P 0.99 

1.0

0 
1.00 

0.998 1 
0.9
9 

0.9
9 

0.9
8 

R 1.00 
1.0
0 

1.00 

2 
1.0

0 

1.0

0 

1.0

0 
F 1.00 

1.0

0 
1.00 

3 
1.0

0 

1.0

0 

1.0

0 
 

4 
0.9

8 

0.9

9 

0.9

9 

D
L

 

0 
1.0
0 

1.0
0 

1.0
0 

P 0.96 
0.9
8 

0.98 

0.982 1 
0.9

7 

0.9

6 

0.9

6 
R 0.97 

0.9

8 
0.98 

2 
1.0
0 

1.0
0 

1.0
0 

F 0.96 
0.9
8 

0.98 

3 
0.9

7 

0.9

5 

0.9

6 
 

4 
0.8
8 

0.9
2 

0.9
0 

Cross-validation is the most famous evaluation metric to 
estimate the actual prediction of an ML model [39]. This 
method splits the entire dataset into ten folds (k-cross fold 
where k=10) to form a training and test set with 0-9 folds 
consisting of 0 - 5844 samples and the 10

th
 fold containing 

5845 - 5848 samples. After executing the final model 10 
times, all ten folds accuracy scores were obtained using 
cross_val_score (Table VII). The average scores for all 10-
folds are obtained using cross_val_predict. 

TABLE VII. TABULATION OF ACCURACY FOR EACH ML METHOD FOR 

EACH FOLD IN CROSS-VALIDATION APPROACH. THE K VALUE IS 10, WHERE 0-
9 FOLDS RANDOMLY SERVE AS THE TRAINING SET, AND THE REMAINING ONE 

FOLD ACTS AS A TEST SET 

 1 2 3 4 5 6 7 8 9 10 

KN

N 

0.9

93 

0.9

92 

0.9

92 

0.9

88 

0.9

92 

0.9

94 

0.9

92 

0.9

91 

0.9

88 

0.9

94 

LR 
0.8

92 

0.8

80 

0.8

94 

0.8

86 

0.8

81 

0.8

96 

0.8

89 

0.8

90 

0.8

83 

0.8

89 

SV

M 

0.9

15 

0.8

99 

0.9

14 

0.9

12 

0.9

07 

0.9

24 

0.9

09 

0.9

16 

0.9

06 

0.9

17 

DT 
0.9

55 

0.9

52 

0.9

51 

0.9

53 

0.9

50 

0.9

54 

0.9

50 

0.9

57 

0.9

51 

0.9

61 

RF 
0.9

98 

0.9

96 

0.9

97 

0.9

96 

0.9

97 

0.9

98 

0.9

97 

0.9

98 

0.9

96 

0.9

98 

DL 
0.9

81 

0.9

79 

0.9

78 

0.9

82 

0.9

82 

0.9

81 

0.9

82 

0.9

83 

0.9

82 

0.9

81 

C. Discussions 

So far, the pathogenicity of cancer types has been studied 
using computational scores calculated using various statistical 
approaches. However, the rapid growth of machine learning 
applications has sparked interest in designing an ML-based 

strategy for calculating these scores. In the first approach of 
this research study, three computational scores were calculated 
based on the data available in the tp53 database. The 
thresholds for these scores were kept unchanged, consistent 
with those used in the tp53 repository. The results were 
compared with the existing ML library's impute method. 
Subsequently, a separate KNN model was trained using the 
calculated scores from the code and the built-in approaches. It 
was observed that the code approach outperformed the built-in 
method in terms of accuracy. This process was repeated for all 
three computational techniques used to calculate the scores. 
Furthermore, when three or more statistical scores were equal 
to zero, the predicted Sift score was always zero. However, 
when these values were utilized for the classification task, the 
model achieved only 78% accuracy. Consequently, input 
features with a high number of zero values were dropped, and 
the remaining samples were considered for the classification 
task. In the second part of the study, six different ML 
techniques were evaluated to classify tp53 samples into 
pathogenicity classes. The investigation revealed that ML 
algorithms efficiently classified the data with very high 
accuracy in most models. Among the six algorithms, the RF 
algorithm yielded the best results, achieving an F-score of 1 in 
many cases. As mentioned in the introduction, missense 
mutations are highly prevalent in approximately 80% of 
cancer samples. Scientists worldwide dedicate their valuable 
time to understanding the significance of these mutations and 
devising novel techniques to combat cancer. Therefore, the 
present research study offers practical solutions in 
significantly less time compared to manual evaluation. In 
terms of clinical significance, clinicians can utilize these 
techniques to swiftly obtain computational scores and classify 
records into pathogenicity classes without the need for clinical 
tools or equipment intervention. Moreover, RF and NN 
techniques could be adopted for risk analysis and the design of 
predictive diagnostic procedures. Although this hypothesis 
was not proven in the present study, literature reports suggest 
that NN techniques could outperform other ML algorithms in 
such tasks. 

1) Drawbacks: The present study has several limitations. 

Firstly, the proposed prediction strategy heavily relies on the 

existing dataset values. It can only predict missing values in a 

feature column, assuming that the column already contains 

some pre-processed values. Consequently, the predictive 

ability of ML models is contingent upon the values present in 

the database, which may result in sampling errors when 

applying feature selection techniques. Furthermore, the study 

compares the classification accuracy of six prominent ML 

algorithms. However, without any specific reason, other 

efficient ML models were not investigated. For instance, deep 

neural network-based models could have potentially addressed 

the problem of feature selection in a more effective manner. 

The omission of such efficient algorithms limits the 

comprehensive exploration of potential solutions for feature 

selection. These limitations should be taken into consideration 

when interpreting the results and implications of the study. 

Future research should aim to overcome these drawbacks and 

explore the application of additional ML models to improve 



(IJACSA)  International Journal of Advanced Computer Science and Applications 

Vol. 14, No. 6, 2023 

1046 | P a g e  

www.ijacsa.thesai.org 

feature selection and enhance the predictive performance of 

the proposed approach. 

2) Future work: There are several potential areas for 

further extension in this research study. First, it involves 

locating the actual disease-causing missense variants among 

all gene-specific mutations in a patient's sample. Typically, a 

single cancer patient may have approximately 500 missense 

mutations. However, only a few of these mutations exhibit 

cancer-related symptoms, while the majority may be non-

cancerous or benign. ML-based models can assist in 

narrowing down the candidate mutations based on predictive 

scores, thereby reducing the time required for pathogenicity 

prediction and minimizing diagnostic costs. Second, a 

prediction model can be developed for pathogenicity 

classification based on different types of mutations, such as 

missense and frameshift mutations. Such a model can utilize 

amino acid sequences as input features and forecast the 

functional domains of genes and proteins involved in causing 

these deleterious mutations. Third, the focus could be on 

identifying the pathogenic components within a gene and 

searching for symptoms associated with similar diseases. This 

knowledge can aid in determining appropriate treatment 

approaches, potentially using similar strategies employed for 

identical diseases. It may also facilitate the process of target 

identification for prospective drug development. Fourth, it is 

important to identify the proteins involved in each malignant 

mutation, analyze their characteristics, and identify drugs that 

target these proteins in both Gain-of-function and Loss-of-

function situations. For instance, in the case of tp53, Loss-of-

function is considered. Fifth, incorporating patient-specific 

gene information can help assess interactions between 

genomic variants. This approach could provide a likelihood 

ratio for disease-causing genes and enable the targeting of 

these genes for effective drug interventions, further supported 

by in-vitro methodologies. Lastly, creating a multi-layer 

neural network model can enhance understanding of clinical 

carcinogenesis and evolutionary conservation by analyzing 

amino acids conserved throughout the progression. The gene 

and protein information obtained from previous steps can be 

leveraged for this prediction task. 

VI. CONCLUSION 

The present research study focused on two key aspects: 
estimating the missing scores using a novel ML method and 
comparing and analyzing different ML algorithms for a 
classification task. The proposed ML-based approach for 
calculating missing values in three pathogenicity prediction 
computational scores has two strong points for medical use. 
First, there haven't been any such algorithms to calculate these 
scores using an ML technique that exhibits high accuracy 
compared to the built-in ML library method. The other point is 
leveraging this idea to classify the samples from the tp53 
database into their appropriate pathogenicity class, as defined 
by ACMG guidelines. Furthermore, missing values in 
databases are a common hindrance to achieving high 
accuracy. Thus, the proposed technique could calculate these 

missing values in a diverse range of databases. Additionally, 
the research used six different ML techniques to classify the 
tp53 database based on the pathogenicity class. It was found 
that RF and DL outperformed other methods in terms of 
various performance metrics. The study also suggested that 
logistic regression performed poorly with an accuracy of 89% 
compared to other techniques. The features used in this study 
could help unravel effective biomarkers related to the tp53 
database. Clinicians may perform complementary analyses in 
terms of validation and clinical trials by adopting the proposed 
framework. The best-performing model could further be 
enhanced by training it on a different dataset. Once approved 
by standard authorities, the ML-based clinical tool may collect 
blood samples from patients, predict the values of 
computational scores, and provide the likelihood of 
pathogenicity. Overall, this research study offers promising 
insights into addressing missing values and improving 
classification accuracy in the field of pathogenicity prediction. 
The proposed ML-based approach has the potential to enhance 
diagnostic capabilities and facilitate personalized treatment 
decisions in clinical settings. 
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