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Abstract—In cloud computing environments, task completion
time and virtual machine load balance are two critical issues that
need to be addressed. To solve these problems, this paper proposes
a Multi-objective Optimization Mutate Discrete Bat Algorithm
(MOMDBA) that improves upon the traditional Bat algorithm
(BA). The MOMDBA algorithm introduces a mutation factor and
mutation inertia weight during the global optimization process
to enhance the algorithm’s global search ability and convergence
speed. Additionally, the local optimization logic is optimized
according to the characteristics of cloud computing task scenarios
to improve the degree of load balancing of virtual machines. Sim-
ulation experiments were conducted using CloudSim to evaluate
the algorithm’s performance, and the results were compared with
other scheduling algorithms. The results of our experiments in-
dicate that when the cost difference between algorithms is within
4.47%, MOMDBA can significantly outperform other methods.
Specifically, compared to PSO, GA, and LBACO, our algorithm
reduces makespan by 56.26%, 59.87%, and 25.26%, respectively,
while also increasing the degree of load balancing by 93.87%,
75.92%, and 39.13%, respectively. These findings demonstrate the
superior performance of MOMDBA in optimizing task scheduling
and load balancing.
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I. INTRODUCTION

Cloud computing has become a ubiquitous infrastructure
in various fields, providing users with convenient access to
computing resources and services through the internet [1].
Task scheduling is a crucial problem in cloud computing
that aims to allocate multiple tasks to available computing
resources to optimize system throughput, response time, re-
source utilization, and other performance metrics. However,
as cloud computing systems become increasingly complex
and diverse, task scheduling problems often involve multiple
conflicting optimization objectives, such as reducing system
energy consumption and costs, improving task completion
rates and reliability. Traditional single-objective optimization
algorithms are often ineffective in solving these multi-objective
optimization problems because they focus on a single objective
and ignore the impact of other objectives.

To address this challenge, it is crucial to explore multi-
objective optimization algorithms for cloud computing task
scheduling. Multi-objective optimization algorithms can simul-
taneously optimize multiple objective functions and find a set
of optimal solutions by balancing and trading off different
objectives. These algorithms can provide more comprehensive

and accurate decision support, helping cloud computing sys-
tems achieve more efficient, reliable, and sustainable operation.
Additionally, they can facilitate the comprehensive evaluation
and analysis of system performance, providing a more com-
prehensive reference for optimizing the overall performance of
cloud computing systems.

The task scheduling problem is a combinatorial optimiza-
tion problem that is typically considered as NP-hard [2]. There-
fore, it is necessary to find an effective optimization algorithm
to solve it. Traditional static task scheduling algorithms, such
as Min-Min algorithm [3], Max-Min algorithm [4], and Round-
Robin algorithm [5], have limitations in handling large-scale
scheduling problems. Meta-heuristic algorithms [6], on the
other hand, have demonstrated good robustness and feasibility
in task scheduling optimization. Researchers have explored
various meta-heuristic algorithms, including genetic algorithm
(GA) [7], ant colony algorithm (ACO) [8], bat algorithm (BA)
[9], and particle swarm optimization (PSO) algorithm [10],
among others, achieving promising results [11–15].

Compared to other metaheuristic algorithms, the bat al-
gorithm has been shown to possess strong global search
capability, fast convergence speed, high search efficiency, and
simple parameter settings. However, there has been limited
research on the use of BA in cloud computing task scheduling,
particularly with regard to multi-objective optimization. This
research can effectively fill this research gap and contribute to
the advancement of knowledge in this field.

Bat algorithm is a heuristic search algorithm proposed
by Professor Yang in 2010[16], which is based on swarm
intelligence. It is an effective method for searching the global
optimal solution. The algorithm simulates the behavior of
bats in nature, using a type of sonar to detect prey and
avoid obstacles. This means that the bats use ultrasound to
simulate the most basic detection and positioning capabilities
of obstacles or prey and associate it with the optimization
target function.

The bionic principle of the bat algorithm maps individual
bats with the population number to NP feasible solutions in the
d-dimensional problem space. The optimization process and
search are simulated as the movement process of the individual
bats and the search for prey. The fitness function value of
the problem being solved is used to measure the quality of
the position of the bat. The individual survival of the fittest
process is compared to the iterative process of replacing the
poor feasible solution with the good feasible solution in the
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optimization and search process.

The optimization principle of the bat algorithm shows that
the algorithm’s optimization ability primarily depends on the
interaction and influence between bat individuals. However,
the individuals themselves lack a mutation mechanism, which
makes it difficult for them to escape from a local extreme value
once they are constrained by it. Moreover, during the evolution
process, super bats in a population may quickly attract other
individuals to gather around them, resulting in a substantial
decline in population diversity. As bat individuals get closer
and closer to the optimal individuals in the population, the
convergence rate is greatly reduced, or even evolutionary
stagnation occurs. This causes the population to lose the ability
to further evolve.

In the context of cloud computing task scheduling, this
paper proposes an improved bat algorithm. By considering
makespan, degree of load balancing, and cost[6] as opti-
mization objectives, a multi-objective optimization mutation
discrete bat algorithm (MOMDBA) is proposed. Building on
the standard bat algorithm, the population position and velocity
are discretized, and the mutation factor and mutation inertia
weight are introduced to effectively balance the global search
and local search ability of the algorithm, resulting in faster
convergence rates. Additionally, the local optimization logic is
optimized to obtain better load balancing performance based
on the characteristics of the task scheduling problem.

The rest of the paper is organized as follows. Section II
provides a literature review of previous works. In Section III,
we model the task scheduling problem and optimization targets
in the cloud computing environment. Sections IV and V intro-
duce the bat algorithm and the proposed improved algorithm.
Section VI presents the experimental results. Finally, Section
VII concludes the paper.

The symbols utilized in this paper are presented in the table
(Table I) below, along with their corresponding definitions.

TABLE I. DEFINITION OF SYMBOLS USED

Symbol Definition

Exetimeij
The execution time of the ith task (Ti)

executed on the jth VM (VMj )

lengthi The length of the ith task

sizei The size of the ith task

mipsj Processing capacity of the jth VM

bwj Bandwidth of the jth VM

EV Mj
The total execution time of VMj

D The degree of load balancing

f Fitness function

xt
i The position of the ith bat at time t

vt
i The speed of the ith bat at time t

pi Mutation factor

ω Mutation inertia weight

II. RELATED WORK

Chen et al.[17] proposed an advanced approach called
Improved WOA for Cloud task scheduling (IWC). They first

mapped the task scheduling scheme to the whale foraging
model to obtain an approximately optimal solution. Then,
IWC was used to further improve the optimal solution search
capability. The experiments demonstrate that, compared to
other meta-heuristic algorithms, the proposed method has a
better convergence speed and accuracy in searching for the
optimal task scheduling plans.

Natesan et al.[18] proposed a modified mean grey wolf
optimization algorithm that uses a variant algorithm to increase
the accuracy and performance of the GWO[19]. In the pro-
posed method, the encircling equation and hunting equation
were modified to improve the efficiency of the motion, and
a suitable path for each wolf was present in the searching
area. The modifications to the GWO algorithm led to improved
convergence speed and accuracy in solving the task scheduling
problem in cloud computing.

Jacob et al.[20] combined two optimization algorithms,
Cuckoo Search and Particle Swarm Optimization, to reduce
the makespan, cost, and deadline violation rate. The newly
proposed hybrid algorithm is called CPSO. From the simula-
tion results, the proposed method outperforms PBACO, ACO,
MIN-MIN, and FCFS in terms of minimizing the makespan,
cost, and deadline violation rate.

Jing et al.[21] proposed a QoS-aware cloud task scheduling
algorithm called QoS-DPSO, which aims to satisfy the QoS
requirements in cloud computing systems. They took into
account the user’s preference for QoS requirements and consid-
ered enough QoS parameters. The proposed method obtained
superior performance by incorporating QoS requirements into
the task scheduling process.

Kumar et al.[22] proposed a hybrid multi-objective op-
timization algorithm called HGA-ACO. They combined Ant
Colony Optimization (ACO) algorithm with the Genetic al-
gorithm (GA) to obtain better performance in task allocation.
ACO is used to assist GA in avoiding local optimal solutions,
while GA is used to enhance the ACO solutions. The proposed
hybrid algorithm exhibits better performance in terms of task
allocation compared to other existing algorithms.

Hamad et al.[23] proposed a Genetic-Based task scheduling
algorithm to minimize the completion time and cost of tasks,
and to maximize resource utilization. According to the exper-
iments, the completion time and cost for the proposed method
were reduced by 41.83% and 3.6%, respectively, compared
to the standard GA. Additionally, the resource utilization was
improved by 47%. The proposed algorithm shows potential for
improving the efficiency of task scheduling in cloud computing
systems.

Wei et al.[24] proposed an improved ant colony algorithm
to solve the problem of unbalanced task scheduling load
and low reliability in cloud computing environments. They
improved the pheromone update and pheromone volatilization
methods for the ant colony algorithm to speed up the conver-
gence speed and introduced the load weight coefficient of VM
in the update process of local pheromone. Experimental results
verify the feasibility of the proposed method, which reduces
the task scheduling completion time and convergence time
while ensuring load balancing. The proposed method shows
potential for improving the performance of task scheduling in
cloud computing systems.
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From previous studies, it can be concluded that the im-
provement of meta-heuristic algorithms can be generally di-
vided into two types: one is to improve on the basis of classical
algorithms, and the other is to combine two algorithms to
form a new algorithm. The proposed method belongs to the
first type, which is based on the bat algorithm and finds the
optimal task scheduling scheme by mutation while randomly
initializing the bat population position. Additionally, the local
optimization logic of the bat algorithm is optimized to improve
the algorithm’s load balancing performance.

III. RESOURCE SCHEDULING MODEL IN CLOUD
ENVIRONMENT

The resource scheduling model in the cloud environment
is shown in Fig. 1. In this model, resource scheduling is
divided into two levels. The first level is task to virtual
machine scheduling, and the second level is virtual machine
to host scheduling, which assigns virtual machines to different
physical hosts in the data center. This paper mainly focuses
on the task scheduling process at the first level. In the task
scheduling process, the scheduling algorithm first segments
the tasks submitted by users, which is a complicated process
in actual operation. For the convenience of research, this
process is idealized in this paper, where tasks are assumed
to be independent of each other. Tasks are executed in no
particular sequence, and cannot be interrupted or migrated.
The computing capacity of all computing resources is known.
In this paper, makespan, degree of load balancing, and cost
are taken as optimization objectives of the algorithm.

A. Makespan

Makespan defines the total time required from submitting
a task to the completion of the task by the user[25].

With m tasks, Task = {T1, T2, . . . , Tm} and n VMs,
VM = {VM1, V M2, . . . , V Mn} where m > n, assuming
that a subtask can run on only one VM, the mapping between
a subtask and a VM is by TVmap.

TVmap =


T1V1 T1V2 . . . T1Vn

T2V1 T2V2 . . . T2Vn

...
...

...
TmV1 TmV2 . . . TmVn

 (1)

The execution time of the ith task (Ti) executed on the jth

VM (VMj) is denoted by Exetimeij , and can be calculated
as follows:

Exetimeij =
lengthi

mipsj
+

sizei
bwj

(2)

where lengthi and sizei represents the length and the size
of the ith task, and mipsj and bwj refer to the processing
capacity and bandwidth of the jth VM. If EVMj is the total
execution time of VMj , then:

EVMj =
∑
i∈I

Exetimeij (3)

where I is the set of subtasks executed on VMj . Then, the
makespan (E) is defined as the maximum total execution time
among all VMs:

E = max {EVM1
, EVM2

, . . . , EVMn
} (4)

Therefore, one goal of the task scheduling problem is
to minimize the makespan, which represents the total time
required for all tasks to complete their execution.

B. Degree of Load Balancing

The degree of load balancing is an essential indicator
that describes the current working status of VMs in a cloud
computing system. It measures the degree to which the avail-
able resources of VMs are utilized. A higher degree of load
balancing indicates that the resources of VMs are fully utilized,
and the workload is distributed equally among all VMs. In
contrast, a lower degree of load balancing indicates that some
VMs are overloaded, while others are underutilized. Therefore,
achieving a high degree of load balancing is crucial for
enhancing the efficiency and performance of cloud computing
systems.

In a task scheduling scheme, the execution time of VMj

is denoted by EVMj , and the maximum execution time of all
VMs is denoted by EVMmax .

The degree of load balancing in this task allocation scheme
can be expressed as follows:

D =
1

n

n∑
j=1

EVMj

EVMmax

(5)

This equation represents the average ratio of the execution
time of each VM to the maximum execution time among all
VMs. A higher value of the degree of load balancing indicates
that the workload is evenly distributed among all VMs and that
the available resources are fully utilized. Therefore, one goal
of task scheduling is to maximize the degree of load balancing,
which ultimately improves the efficiency and performance of
the cloud computing system.

C. Cost

Cost is the sum of the costs used by VMs to execute tasks
in a task scheduling scheme. It can be calculated as follows:

Cost =

n∑
j=1

EVMjCj (6)

where EVMj
is the total execution time of VMj and Cj is

the cost per second of VMj . This equation represents the
total cost incurred by all VMs in the task scheduling scheme.
The cost per second of each VM is determined by various
factors, such as the processing power, memory capacity, and
network bandwidth. Therefore, minimizing the cost is also
an important objective of task scheduling, as it leads to the
efficient utilization of resources and reduces the overall cost
of the cloud computing system.

D. Multiobjective Fitness Function

In this paper, the linear weighting method is used to trans-
form the multi-objective optimization problem into a single
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Fig. 1. Task schedule model in cloud environment.

objective optimization problem. Since the different optimiza-
tion objectives have different dimensions, it is necessary to
normalize them. The normalization process is shown below:

Ts =
Es

m
(7)

fT =
Ts − Ts,min

Ts,max − Ts,min
(8)

Cs =
Costs
nEsDs

(9)

fC =
Cs − Cs,min

Cs,max − Cs,min
(10)

Here, fT represents the normalized task execution time
indicator, where Es is the maximum execution time using
the current task scheduling scheme, Ts represents the average
execution time of one task. fC represents the normalized task
cost indicator, where Ds is the degree of load balancing using
the current task scheduling scheme, Costss is the cost using
the current task scheduling scheme, and Cs is the average cost
per second per virtual machine.

The fitness function used in this paper is defined as follows:

f = αfT + βfC (11)

where α ∈ [0, 1], β ∈ [0, 1], and α+ β = 1. The optimization
objective of this paper is to minimize the fitness function,
which is a linear combination of the normalized task execution
time indicator and the normalized task cost indicator. The
weights α and β can be adjusted to give different importance

to the two objectives based on the requirements of the cloud
computing system.

Overall, the goal of the task scheduling problem is to
find the optimal task allocation scheme that minimizes the
makespan, maximizes the degree of load balancing, and min-
imizes the cost of the system. By transforming the multi-
objective optimization problem into a single objective opti-
mization problem and using the fitness function, this paper
provides a framework for achieving these goals through task
scheduling.

IV. STANDARD BAT ALGORITHM

The bat algorithm is a swarm intelligence optimization
algorithm that mimics the echolocation behavior of bats in
nature to find the optimal solution in a given search space.
The optimization process is completed through a series of
iterations, where the positions of the bats in the population
are updated to improve the quality of the candidate solutions.

In the bat algorithm, each bat is represented by a position
vector in a d-dimensional search space, and is randomly ini-
tialized with an initial position and velocity. At each iteration,
the bats adjust their positions based on their current location
and the global best solution found so far. The update formula
for the position and velocity of each bat is:

fi = fmin + (fmax − fmin)β (12)

vt+1
i = vti + (xt

i − x∗)fi (13)

xt+1
i = xt

i + vt+1
i (14)
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where β is a random number between 0 and 1, and x∗ is the
current optimal population solution.

The bat algorithm also includes a local search mechanism
to promote exploration of the search space. In the local search,
each bat generates a new position by randomly walking around
the current global best solution. The new position is calculated
using the formula:

xnew = xold + δAt (15)

where xold is the current global best solution, xnew is the new
local solution, and δ is a randomly generated d-dimensional
vector in the range [−1, 1]. At represents the current average
pulse loudness of the entire population.

The bat algorithm also introduces randomness in the search
process by allowing each bat to choose between a global search
and a local search with a certain probability. The probability
of choosing a global search is controlled by the parameter ri,
which is initialized to a small value and gradually increases
during the search process. If a bat generates a random number
R greater than ri, it performs a local search near the global
best solution, and if R is less than ri, it performs a global
search.

Finally, the bat algorithm updates the pulse loudness and
pulse rate of each bat based on its performance in the search
process. If a bat finds a better solution, its pulse loudness
decreases, and its pulse rate increases, which increases the
bat’s ability to exploit the promising regions of the search
space. The updated pulse loudness and pulse rate are then used
in the next iteration to adjust the frequency and loudness of
the bat’s pulse. The update formula for the pulse loudness and
pulse rate is:

At+1
i = αAt

i (16)

rt+1
i = r0i (1− exp(−γt)) (17)

where α and γ are constants with 0 < α < 1 and γ > 0. The
parameter Ai represents the pulse loudness of the ith bat, and
ri represents the pulse rate. The pulse loudness is decreased
by multiplying it with the constant α when a better solution
is found, and the pulse rate is updated based on the current
iteration number t using the formula given in Eq. (17).

In summary, the bat algorithm is a powerful optimization
algorithm that combines global and local search strategies
to efficiently explore the search space and find the optimal
solution. The algorithm has been successfully applied to a wide
range of optimization problems in various fields, including
engineering, finance, and computer science. Its effectiveness
and robustness make it a popular choice among researchers
and practitioners in optimization and swarm intelligence.

V. MOMDBA-MULTI-OBJECTIVE MUTATED DISCRETE
BAT ALGORITHM

Similar to other meta-heuristic algorithms, bat algorithm
also has the problem that it is easy to fall into local optimiza-
tion and the global search ability is insufficient.

According to the characteristics of task scheduling prob-
lem, this paper introduces mutation factor, mutation inertia

weight and optimization of local optimization logic to opti-
mize the standard bat algorithm and improve the algorithm
performance.

A. Discretization Coding

The MOMDBA algorithm uses the position of each bat
to represent a feasible task scheduling scheme, which is
a viable solution to the optimization objective. It assumes
that the number of available virtual machines in the cloud
platform is fixed, and the number of cloud tasks that need
to be processed is constant. Therefore, the position of the
ith bat at time t can be expressed as an m-dimensional
vector xt

i = (VMtask1, V Mtask2, . . . , V Mtaskm), where
VMtaski indicates the virtual machine that executes the ith

task.

The speed of each bat vi = (vi1, vi2, . . . , vim) represents
the change in the virtual machines assigned to each cloud
task from the current schedule scheme to the new schedule
scheme. The dimension of vti is the same as the dimension of
the position, and its update formula is given by:

vti = f(xt
i − x∗) (18)

where x∗ is the best solution found so far, and f(vik) is
a function that determines the direction of change for the
kth dimension of the speed. Specifically, f(vik) is defined as
follows:

f(vik) =

{
1 if vik > 0

0 if vik = 0
(19)

Here, vik refers to the speed of the bat in the kth dimension,
where k ∈ (0,m].

B. Mutation Factor and Mutation Inertia Weight

The standard bat algorithm updates the bat’s optimization
direction based on the current bat position and the current
optimal solution. However, this approach is not suitable for
the task scheduling problem because there is no correlation
between different virtual machines. To address this issue,
this paper introduces a mutation method to optimize the
task scheduling scheme, which includes a mutation factor
pi = (pi1, pi2, . . . , pim) and a mutation inertia weight ω.

In the proposed method, the bat’s position is updated
randomly, and the probability of position update is determined
by the mutation factor and the speed of the bat. Specifically,
the probability of selecting a random virtual machine for the
task is given by:

P (xt+1
ik = Random) = pik (20)

The probability of selecting the current optimal solution
for the task is given by:

P (xt+1
ik = x∗

k) = θvtikpik (21)

And the probability of keeping the current position is given
by:

P (xt+1
ik = xt

ik) = 1− pik − θvtikpik (22)
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Here, xt
ik refers to the position of the bat in the kth

dimension at time t, k ∈ (0,m], and pik is the mutation factor
of the kth dimension, with values in the range of (0, 0.5). θ
is a constant and 0 < θ < 1.

To balance the local and global optimization ability of
the bats, the mutation probability is adjusted after a bat finds
a better solution, using the mutation inertia weight ω. The
mutation factor pik is updated as follows:{

pt+1
ik = ptikω if xt+1

ik = xt
ik

pt+1
ik = ptik if xt+1

ik ̸= xt
ik

(23)

The mutation inertia weight ω is a function of time, and its
value decreases as the number of iterations increases, helping
the algorithm to converge quickly. Specifically, ω is given by:

ω = ω0(1− exp(−λt)) (24)

Here, λ is a constant parameter with values in the range
of (0, 1), ω0 is the initial value of the mutation inertia weight,
and ω is constrained to the range of (0, 1). When the number
of iterations is small, the mutation probability of bats is large.
In this case, the global search ability of the algorithm is strong,
which is conducive to jumping out of the local optimal solution
and obtaining the global optimal solution. When the number of
iterations is small, the mutation probability of the bats is high,
which enhances the global search ability of the algorithm and
helps it to jump out of local optimal solutions. When a bat finds
a better solution and the new solution in the kth dimension
is the same as the old solution, the mutation factor pik is
updated based on the mutation inertia weight ω. However,
if the new solution is different from the old solution, the
mutation factor remains unchanged. By adjusting the mutation
probability using the mutation inertia weight, the proposed
method can balance the exploration and exploitation phases
and improve the overall performance of the bat algorithm for
task scheduling problems.

C. Local Optimization Logic

In the proposed method, the execution time
of each virtual machine (VM) is denoted by
T = {EVM1

, EVM2
, . . . , EVMn

}, where EVMmax
and

EVMmin
are the maximum and minimum execution times,

respectively. Let Exetimekmax and Exetimekmin be the
execution times of the cloud task k on VMmax and VMmin,
respectively. During local optimization, the following update
rules are applied:

Et+1
VMmax

= Et
VMmax

− Exetimekmax (25)

Et+1
VMmin

= Et
VMmin

+ Exetimekmin (26)

xnewk = VMmin (27)

Here, xnewk is the kth dimension position of the current
global optimal solution. The goal of local optimization is to
improve the degree of load balancing by reassigning the task
k from VMmax to VMmin.

Before updating the bat population, a random number in
the range of [0, 1] is generated. If the random number R is
greater than the pulse emission rate ri of the ith bat, then

local optimization is performed; otherwise, global optimization
is performed. The pulse emission rate of each bat is updated
using the same formula (Eq.(17)) as in the standard bat
algorithm.

D. The steps of MOMDBA

The proposed method consists of the following steps:

• Step 1: Initialize the bat population by randomly
scheduling m tasks to n virtual machines. The dimen-
sion of the bat location xi is the number of cloud tasks
m.

• Step 2: Generate a random number R. If R < ri, go
to Step 3; otherwise, go to Step 4.

• Step 3: Update the bat positions according to mutation
factors. The position of each bat is updated based on
the current position, the current optimal solution, and
the mutation probability. If a better solution is found,
update ri and pi; otherwise, keep them unchanged. Go
to Step 5.

• Step 4: Update the bat locations according to a local
optimization logic. Calculate the execution times of
the tasks on each virtual machine and reassign the
tasks to achieve load balancing. Go to Step 5.

• Step 5: Check if a better solution is found. If yes,
update ri and pi based on the current mutation prob-
ability and the mutation inertia weight. If no, keep ri
and pi unchanged. Go to Step 6.

• Step 6: If the current iteration times are less than the
maximum number of iterations, go back to Step 1 and
repeat the process; otherwise, go to Step 7.

• Step 7: Output the optimal bat location as the best
task schedule scheme.

VI. EXPERIMENT AND RESULT

To verify the effectiveness of MOMDBA in solving cloud
computing task scheduling problems, the proposed method is
simulated using CloudSim and compared with other existing
algorithms, including PSO, GA, and LBACO[26], using the
publicly available GoCJ dataset proposed by Hussain et al.[27].
The performance of the proposed algorithm is evaluated based
on four criteria: fitness function value, makespan, degree of
load balancing, and cost.

The GoCJ dataset consists of 19 text files containing task
lengths ranging from 100 to 1000. Each line in the text file
corresponds to the task length of a task, and the tasks are
classified into five types based on their length: small, medium,
large, extra-large, and huge. The distribution of each task in
the dataset is shown in Table II.

The basic steps of CloudSim simulation are as follows:

• Step 1: Initialize CloudSim.

• Step 2: Instantiate the DataCenter, DataCenterBroker,
and virtual machines.

• Step 3: Create a list of virtual machines and register
them with the DataCenter. Then, submit the list of
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virtual machines to the DataCenterBroker for further
management and scheduling.

• Step 4: Generate a set of tasks and assign them
to the DataCenterBroker for further processing. The
DataCenterBroker is responsible for managing and
scheduling the tasks on available virtual machines in
the data center.

• Step 5: Start the simulation.

• Step 6: Analyzing the simulation results.

TABLE II. JOB TYPES OF GOCJ

Job type MI range Distribution

Small 15,000 - 55,000 20%

Medium 59,000-99,000 40%

Large 101,000-135,000 30%

Extra large 150,000-337,000 6%

Huge 525,000-900,000 4%

A. Experimental Environment Setting

The experiments in this paper were conducted on a personal
computer environment. The detailed configurations of the
software and hardware environments are shown in Table III.

The number of virtual machines used in the experiments
was set to 15, divided into three groups of low, medium, and
high performance, with five virtual machines in each group.
The information of the virtual machines is shown in Table
IV. The parameter settings of each algorithm used in the
experiments are shown in Table V.

TABLE III. SIMULATION ENVIRONMENT

Parameter Configuration

CPU AMD Ryzen5 5600X

Memory 16GB

Hard disk 1TB

IDE IntelliJ IDEA 2022.03

TABLE IV. VIRTUAL MACHINE INFORMATION

VM group VM ID VM performance/MIPS Cost per sec

low performance 0-4 800-1200 0.02

medium performance 5-9 1800-2200 0.06

high performance 10-14 3800-4200 0.13

TABLE V. PARAMETERS SETTING

Algorithm Parameter Value

MOMDBA

Population size 50

Maximum iterations 200

λ 0.01

θ 0.8

γ 0.08

r0 0.8

ω0 0.7

PSO

Population size 50

Maximum iterations 200

ω 0.9

c1 2.0

c2 2.0

GA

Population size 50

Maximum iterations 200

pc 0.8

pm 0.01

LBACO

Population size 50

Maximum iterations 200

ρ 0.5

α 2.0

β 1.0

Q 100

B. Result

In order to evaluate the performance of MOMDBA, algo-
rithm simulation was conducted on the GoCj data set, with
the number of cloud tasks ranging from 100 to 500, and
analyzed from four aspects of fitness, makespan, degree of load
balancing and cost, and compared with other meta-heuristic
algorithms.

The fitness function used in the experiments is defined as
Eq. (11), which represents the comprehensive evaluation index
of multi-objective optimization. The lower the fitness value, the
better the solution found by the algorithm. Fig. 2 shows that the
fitness value of MOMDBA is significantly lower than that of
other meta-heuristic algorithms under different circumstances.

Table VI shows a reduction in fitness using GoCJ dataset.
The data show that MOMDBA is up to 80% less fitness than
PSO, 84% less fitness than GA, and 70% less fitness than
LBACO. he introduction of mutation factor and mutation iner-
tia weight enables the proposed algorithm to jump out of local
optimal solutions and obtain better optimization capability.

Fig. 3 and Fig. 4 show the makespan and cost of each
algorithm under different number of cloud tasks, and the
specific values are detailed in Tables VII and VIII. It can be
seen that with the increase in the number of cloud tasks, the
makespan and cost of the algorithms also increase gradually.

Regarding makespan, MOMDBA achieves significantly
less makespan than the other algorithms, with a maximum
reduction of 56.26% compared to PSO, 59.87% compared
to GA, and 25.26% compared to LBACO. This indicates
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Fig. 2. Fitness based experimental results.
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Fig. 3. Makespan based experimental results.

that MOMDBA can significantly reduce makespan, which can
improve the efficiency of the cloud platform and can handle
more tasks in less time.

For cost, there is no significant difference between
MOMDBA and the other algorithms. Except for reducing the
cost of LBACO by a maximum of 4.47%, MOMDBA is 8%
higher than GA and 5.52% higher than PSO, respectively. This
is acceptable compared to the significant reductions made by
makespan.

Regarding the degree of load balancing. Fig. 5 and Table IX
show how MOMDBA differs from other algorithms. According
to the data in the table, the degree of load balancing of
MOMDBA is up to 93.87% higher than PSO, 75.92% higher
than GA, and 39.13% higher than LBACO. MOMDBA has
excellent load balancing, which benefits from the improved
local optimization logic. It allows MOMDBA to maintain a
high degree of load balancing even when facing a large number
of cloud tasks.

In summary, MOMDBA has stronger optimization perfor-
mance, less makespan, and higher degree of load balancing
than other meta-heuristic algorithms. The introduction of mu-
tation factor and mutation inertia weight enables MOMDBA to
achieve better optimization capabilities by jumping out of local
optimal solutions. These results demonstrate the effectiveness
of the proposed algorithm in solving cloud computing task
scheduling problems.
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Fig. 4. Cost based experimental results.
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Fig. 5. Degree of load balancing based experimental results.

VII. CONCLUSION

This paper proposes an improved bat algorithm for task
scheduling. Based on the original bat algorithm, the mutation
factor and mutation inertia weight are introduced, and the logic
of local optimization is enhanced. The proposed method is
simulated using CloudSim and compared with other meta-
heuristic algorithms on a public dataset. The performance
of the proposed method is analyzed from four perspectives:
fitness, makespan, cost, and degree of load balancing. Ex-
perimental results demonstrate that the proposed algorithm
has stronger optimization ability and can consistently achieve
lower fitness scores. In the case of similar costs, the proposed
algorithm outperforms other algorithms in terms of makespan
and load balancing.

While MOMDBA performs well in terms of makespan
and load balancing, it does not provide a significant cost
advantage over other algorithms. In our future studies, we
plan to further optimize the objective function and explore
more effective approaches to solving cloud computing task
scheduling problems in complex scenarios. This may involve
considering additional factors such as memory and bandwidth
constraints. Additionally, we aim to investigate the potential
benefits of combining MOMDBA with deep reinforcement
learning techniques to further enhance the algorithm’s perfor-
mance.

By addressing these challenges, we hope to improve the
overall service performance of cloud systems and provide
more efficient and cost-effective solutions for cloud computing
applications.
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TABLE VI. FITNESS BASED EXPERIMENTAL RESULTS.

Cloudlets LBACO GA PSO MOMDBA Reduction in Fitness using MOMDBA

Over LBACO Over GA Over PSO

100 0.12 0.24 0.13 0.07 41.66% 70.83% 46.15%
150 0.14 0.27 0.15 0.07 50.00% 74.07% 53.33%
200 0.11 0.29 0.19 0.05 54.54% 82.75% 73.68%
250 0.10 0.25 0.16 0.06 60.00% 76.00% 62.50%
300 0.11 0.25 0.20 0.04 63.63% 84.00% 80.00%
350 0.11 0.21 0.21 0.06 45.45% 71.42% 71.42%
400 0.10 0.20 0.20 0.07 70.00% 65.00% 65.00%
450 0.10 0.20 0.19 0.05 50.00% 75.00% 73.68%
500 0.10 0.17 0.18 0.05 50.00% 70.58% 72.22%

TABLE VII. MAKESPAN BASED EXPERIMENTAL RESULTS

Cloudlets LBACO GA PSO MOMDBA Reduction in Makespan using MOMDBA

Over LBACO Over GA Over PSO

100 577 975 513 441 23.57% 54.77% 14.03%
150 886 1552 1047 697 21.33% 55.09% 33.42%
200 1003 1978 1620 811 19.14% 58.99% 49.93%
250 1151 2470 1972 991 13.90% 59.87% 49.76%
300 1596 2826 2522 1251 21.61% 55.73% 50.39%
350 1829 3026 3014 1367 25.26% 54.82% 54.64%
400 1750 3366 3374 1562 10.74% 53.59% 53.70%
450 1901 3801 3686 1612 15.20% 57.59% 56.26%
500 2216 3878 3868 1919 13.40% 50.51% 50.38%

TABLE VIII. COST BASED EXPERIMENTAL RESULTS

Cloudlets LBACO GA PSO MOMDBA Reduction in Cost using MOMDBA

Over LBACO Over GA Over PSO

100 415 375 399 405 2.40% -8.00% -1.50%
150 684 632 658 667 2.48% -5.53% -1.37%
200 837 773 786 816 2.50% -5.56% -3.82%
250 919 850 851 898 2.29% -5.64% -5.52%
300 1274 1201 1186 1217 4.47% -1.33% -2.61%
350 1458 1352 1356 1418 2.74% -4.88% -4.57%
400 1586 1510 1473 1555 1.95% -2.98% -5.27%
450 1715 1608 1602 1668 2.74% -3.73% -4.12%
500 1997 1856 1870 1936 3.01% -4.31% -3.53%

TABLE IX. DEGREE OF LOAD BALANCING BASED EXPERIMENTAL RESULTS

Cloudlets LBACO GA PSO MOMDBA Improvment in degree of load balacing using MOMDBA

Over LBACO Over GA Over PSO

100 0.67 0.53 0.68 0.87 29.85% 64.15% 27.94%
150 0.71 0.52 0.57 0.90 26.76% 73.07% 57.89%
200 0.69 0.53 0.56 0.96 39.13% 44.79% 71.42%
250 0.73 0.54 0.51 0.88 20.54% 62.96% 72.54%
300 0.72 0.53 0.57 0.84 14.28% 58.49% 47.36%
350 0.69 0.59 0.51 0.85 23.18% 44.06% 66.67%
400 0.71 0.55 0.49 0.95 33.80% 72.72% 93.87%
450 0.74 0.54 0.54 0.95 38.34% 75.92% 75.92%
500 0.70 0.60 0.59 0.91 30.00% 51.67% 54.23%
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