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Abstract—This paper proposes a testcase recommendation
system (TRS) to assist beginner-level learners in introductory
programming courses with completing assignments on a learning
management system (LMS). These learners often struggle to gen-
erate complex testcases and handle numerous code errors, leading
to disengaging their attention from the study. The proposed
TRS addresses this problem by applying the recommendation
system using singular value decomposition (SVD) and the zone of
proximal development (ZPD) to provide a small and appropriate
set of testcases based on the learner’s ability. We implement this
TRS to the university-level Fundamental Programming courses
for evaluation. The data analysis has demonstrated that TRS
significantly increases student interactions with the system.
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I. INTRODUCTION

A learning management system (LMS) is an educational
tool, either in the form of an application or a website, that
facilitates interactive online learning, automates administrative
tasks, organizes educational content, and records learners’
activities [1], [2]. The author in [3] emphasizes that an LMS
should be dynamic; that is, it should be active, flexible,
customizable, and adaptable. One method to achieve this is to
improve the ability to instruct many learners in a personalized
manner. As a result, learners would increase their interaction
and satisfaction with the system. LMS can serve as a data
collection tool for automatic assessment of learning outcomes
[4], analysis of learning style [5], and evaluation of learner
satisfaction [6].

Moodle1 is an open-source LMS with a large number of
users, with almost 157,289+ registered sites in 241+ countries
[7]. Moodle offers various types of assessment questions for
learners, such as multiple choice, short answer, matching, etc.
On the other hand, programming questions are essential for
learners in programming courses. Programming questions re-
quire to source code submitted from learners on a set of inputs.
Moodle has now supported programming questions through
the plugin CodeRunner. Thanks to CodeRunner, Moodle can
deliver programming exercises to learners and automatically
grade learners’ code.

1http://moodle.org

Programming exercises usually include two types: lab and
assignment. Lab exercises are small code exercises for learners
to practice independently after learning a topic in theory. The
assignment is a complex exercise with lengthy descriptions
and many requirements. Additionally, it is used to test the syn-
thesis of problems. Through the assignment, learners practice
breaking down the problem into smaller parts to solve. At the
same time, they learn to use a combination of techniques from
different programming topics to solve complex problems. A
typical evaluation of programming exercises is to run the code
on a set of inputs and check if the output matches the expected
output that results from running the lecturer’s solution code
on the same input set. A set of inputs and the corresponding
output is called a testcase. The percentage of correct testcases
calculates the score for the programming exercise. The number
of testcases of an assignment is usually much more than those
of a lab exercise. The reason is that assignments often ask for
many problems, so many testcases are needed to check possible
cases of these problems. Therefore, grading assignments for
learners often takes a lot of time. Assignment time is usually
given for a relatively long period of about three to six weeks.
In contrast, the lab exercises are often done in one week.

An assignment implemented on Moodle can be evaluated
in different ways.

• Lecturers manually grade all submissions by looking
through the code the learner submits and marking it
based on the lecturer’s perspective.

• Lecturers leverage an automatic grading system (AGS)
to grade the submitted code. The grading tool au-
tomatically runs the learner’s code through testcases
and then checks the code’s output match. This grad-
ing method will minimize the lecturer’s perspective,
making it fairer than manual grading.

• Learners are provided with a place to test their code
on a set of sample testcases. The problem when
grading with the AGS on the lecturer’s local computer
is that some learners’ code does not run the same
results as when running the code on the learner’s local
computer. The causes may be because learners’ code
depends on the compiler and operating system. For
example, a common mistake is that when declaring
an integer variable and not initializing a value, some
compilers automatically assign the value 0 to the
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variable. However, others will not do initialization,
and the variable will have a random value. An inde-
pendent grading environment helps learners minimize
differences between the grading environment and the
one they run their code. After the learner submits
the assignment, the lecturer often uses another set of
testcases for grading.

This paper does not study the first method because it has
the teacher’s subjective opinion when grading. Meanwhile, two
remaining methods still have some drawbacks. Learners need
help to think of a set of testcases to assess their code before
submission. Coming up with testcases is a must-have skill for
programmers. In real projects, programmers are also required
to write their testcases to examine their solutions. However,
it is difficult for beginner learners to think of testcases.
Learners would not improve their programming skills when
they couldn’t think of testcases.

A straightforward method to help beginner learners is to
provide all the testcases that learners do incorrectly. However,
when there are many errors in testcases, beginner learners must
choose which testcase to correct first. Therefore, we propose
a recommendation-based method that suggests a subset of a
few incorrect testcases that have difficulty levels suitable for
the current performance of learners. The main contributions of
this paper can be summarized as follows:

• Propose a testcase recommendation system (TRS)
that engages the learners in doing assignments by
suggesting a small set of testcases adaptive to learners’
performance.

• Implement the proposed TRS to fundamental pro-
gramming courses at our university to investigate the
effectiveness in terms of students’ ability to learn in a
personalized manner and the enhancement of learner
interaction.

The rest of this paper is organized as follows. Section
II summarizes related works to clarify the scope of our
study. Then, Section III describes our proposed method. The
implementation and evaluation are presented in Section IV.
Finally, Section V provides concluding remarks and future
works.

II. RELATED WORK

A recommendation system (RS) will help suggest items
to users when there are too many items to select. Rec-
ommendation systems (RSs) have become popular and are
used extensively in e-commerce and other digital companies
[8]. Some well-known examples include Netflix’s movie RS
[9], Amazon’s product RS [10], Google’s personalized news,
Google’s advertisement search, and YouTube for videos [11].
RSs are mainly used for two main tasks: predicting how many
ratings a user would give for an item (so-called prediction
generation) and recommending a set of items to a user (so-
called recommendation generation). RSs collect information
on users’ past behavior on a set of items and use them for
the recommendation. Basically, RSs approaches can be clas-
sified into three types: Content-based filtering, Collaborative
filtering, and Hybrid one.

• Content-based filtering (CBF) provides recommen-
dations based on features of users and items, which are
usually created according to users’ consuming items.
The recommended items are those whose characteris-
tics are similar to the consuming items of the target
user.

• Collaborative filtering (CF) works on the fact that
users with similar behavior will have similar tastes or
similar buying habits [8]. CF is divided into memory
and model-based approach, based on how the data of
the rating matrix are processed [12][13]. The memory-
based approach in recommendation systems utilizes
similarity measures between users or items to identify
their relevant neighbors [8]. These neighbors are then
used for recommending or predicting items or users.
This approach is easy to implement and interpret the
results. However, it requires the entire task rating
matrix, making it less suitable for high-dimensional
and sparse data. Meanwhile, the model-based ap-
proach learns and fits a parameterized model to the
user-item rating matrix. This model is then used for
providing recommendation tasks. Matrix factorization
(MF) is a technique in the model-based approach that
gained popularity, especially after the Netflix Prize
Contest [13]. MF models are known for their rela-
tively high accuracy, scalability, and dimensionality
reduction properties [8].

• Hybrid approach combines CBF and CF to provide
high predictive accuracy than both [13].

The model-based approach learns the model’s parameters
with the user-item matrix and uses it to make suggestions.
User-item matrix contains user ratings for the items. This
rating is similar to the scores obtained by learners for test-
cases. Therefore, we utilize this method to develop a testcase
recommendation system (TRS).

In the domain of testcase recommendation system, previous
studies have specifically explored its application in the context
of software testing. The authors in [14], [15] examine the test
scripts used by automation team and recommends testcases
based on source code structural similarity for developing newer
testcases. The author in [16] builds a recommender system
to find an optimal group of tests to be executed with a
code change. The authors in [17] implement an item-based
collaborative filtering recommender system that develops a
test case prioritizing technique using user interaction data
and application modification history information. These studies
primarily focus on recommending testcases that are similar to
the ones already available for software testing. In contrast,
our study concentrates on suggesting testcases that align with
the learner’s performance. These testcases are utilized by the
learner for programming practice.

In this study, we adopt the recommendation algorithm to
the learners’ score data due to data availability. However, the
score has not shown preference as the RS model requires
preference as a user’s item rating. For example, if a learner gets
a high score on a test, they may feel bored because the test may
be too easy, leading to disengagement in continuous studying.
Therefore, we improve the recommendation algorithm on
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the learner’s score data by consulting the zone of proximal
development (ZPD) theory.

According to the ZPD, if the learning materials are too
easy or difficult, the learner will become bored or frustrated.
The optimal level of instructional material should be within the
“zone” that falls between the learner’s upper and lower limits
of ability [18]. ZPD is applied in various educational contexts,
such as adaptive quiz question recommendations [19] and nav-
igating optimized learning paths [20]. It reduces cognitive load
and improves learning outcomes without affecting the learning
experience [21]. ZPD is also utilized in specific fields like
clinical education [22], participatory scenario planning [23],
and divergent thinking [24]. Previous studies [25], [26] have
aimed to provide a clearer definition of the ZPD compared to
Vygotsky’s initial conceptualization [27]. The SZPD criterion
is proposed, where H∗ − H > DH represents the confused
zone, and H∗ − H < −DH represents the bored zone [25].
Here, H and DH respectively refer to the goal number of hints
and the allowable variation in H to determine the situation
within the ZPD.

In summary, we combine recommendation algorithm and
ZPD theory to make recommendations on learners’ score data.

III. THE PROPOSED TRS

Currently, our approach involves providing a platform to
enhance the assignment implementation process. This process
includes publishing the assignment specifications, opening a
forum for discussion, setting the deadline, providing a des-
ignated place for testing with sample testcases (which also
serves as the submission place for students’ work), and finally
opening the TRS.

The proposed approach strengthens the internal environ-
ment to suggest testcases tailored to each learner’s perfor-
mance. Fig. 1 outlines our assignment implementation process
that begins with learners completing a set of sample testcases
that are publicly available. The completion rate is determined
by the instructor (e.g., 80%). Once learners surpass the com-
pletion rate, they are prompted to request more complicated
testcases from the recommendation system. Learners practice
and debug their code using the provided testcases. Once all
testcases have been solved correctly within a limited time,
learners can request a new set of testcases. However, there is
a limitation on the number of requests per day. This measure
reduces the system load and is a basis for applying the ZPD
theory.

When a learner submits their code, the system evaluates
the correctness of each testcase’s result. There is a similar-
ity between the TRS and a typical recommendation system,
where learners are considered users, testcases are items, and
learner scores correspond to the ratings that users provide
for items. Thus, we apply the singular value decomposition
(SVD) technique from the typical recommendation system to
TRS. Furthermore, the matrix representing user scores for each
testcase is what we call learner-testcase matrix, similar to the
user-item matrix in a typical recommendation system.

However, in TRS, a higher score from a learner does not
necessarily indicate a higher preference for that testcase. A
high score could result from an easy testcase, making the

learner bored. One approach is to directly ask the learner about
their preference for the suggested testcase using explicit pro-
filing. However, this method may annoy and distract learners
from the primary assignment goal. In contrast, the implicit
profiling method captures user interactions within the system,
improving system effectiveness and avoiding the drawbacks of
explicit profiling. Combining interactive data from the system
with the SZPD allows for suggesting testcases to suit learners’
abilities.

Our proposed approach, which utilizes singular value de-
composition (SVD) technique and zone of proximal develop-
ment (ZPD) theory named SVD-ZPD, consists of four main
steps as follows:

1) Fitting SVD to predict learner scores for test-
cases. The SVD technique is applied to the learner-
testcase matrix to predict the scores for any learner.
When a learner submits their code, incorrect testcases
typically receive a score of 0. With SVD, incorrect
testcases will have a non-zero score, indicating the
extent of the error. By sorting the incorrect testcases
based on these scores, we can identify the testcases
that the learner is more likely to answer incorrectly.

2) Determining the learner’s current performance.
We determine the learner’s performance state within
the ZPD based on the number of times the learner
requests a new set of testcases from the TRS. Let R
be the goal number of new testcase requests and DR
be the allowed variation in R to consider the learner
within the ZPD. Let R∗ be the actual number of
code submissions by the learner on the previous day.
We also introduce two constraints: (a) a maximum of
requests per day, and (b) the learner must correctly
complete all testcases from the previous request to
be eligible for a new set of testcases. So, R∗ − R
represents the learner’s current performance. In this
scenario, we have:

• If R∗ − R < −DR, the learner has not
answered many testcases correctly, indicating
that the current testcases may be too difficult,
and the learner is in the confused zone.

• If R∗−R > DR, the learner quickly answers
the testcases and continuously requests new
ones, indicating that the current testcases may
be too easy and the learner is in the bored
zone.

• In other cases, the learner is in the ZPD zone.
3) Determining the appropriate difficulty level based

on the learner’s current performance. The previous
step provides a general guideline for adjusting the dif-
ficulty level: decrease the difficulty level if the learner
is in the confused zone and increase it if the learner
is in the bored zone. This step defines more detailed
rules for increasing and decreasing the difficulty level.
While there can be multiple approaches, in this initial
study, we propose the following simple rules (but we
don’t limit the approach to these rules):

• Difficulty level includes three levels: easy,
medium, and hard. It is initially set to easy.

• If the learner is in the bored zone, increase
the difficulty level by one adjacent level. If
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Fig. 1. Illustration of the proposed TRS process.

it is already at the highest level, keep it
unchanged.

• If the learner is in the confused zone, decrease
the difficulty level by one adjacent level. If
it is already at the lowest level, keep it un-
changed.

• If the learner is within the ZPD, keep the
difficulty level unchanged.

4) Selecting testcases with the same difficulty level
from the previous step in descending order of
predicted scores obtained from the first step.

IV. EVALUATION

The proposed TRS is implemented in one assignment of
the Fundamental Programming course at our university for
the second semester of the 2022–2023 academic year, where
Moodle is used as an online learning tool. The effectiveness
of TRS is examined by comparing the assignment recorded on
Moodle of the three most recent semesters of the same course:
the second semester of the 2020-2021 year (SEM-202), the
second semester of the 2021-2022 year (SEM-212), and the
second semester of the 2022-2023 year (SEM-222).

A. Features of Implementing Assignment

For each semester, we will analyze the information that
the system provides to the learners, the main features, and the
information that can be obtained for the assignment implemen-
tation process.

In SEM-202, learners will receive a set of sample testcases
and a place to allow automatic submission. Learners run these
sample testcases on their own on the local computer. Learners

compare the program’s running results with the provided
expected results to assess whether the program runs correctly.
This set of testcases usually includes only simple testcases
and has a small number of testcases. Learners will submit their
work on the system before the deadline. Then, the teacher will
grade the score on the personal computer and post the score on
the system for learners. The drawback of this implementation is
that learners can not improve their programming skills because
learners have to wait until the deadline expires to receive their
marks. While learners are doing the test, they can’t see the
scores and errors to correct them.

In SEM-212, the system still provides the same materials as
SEM-202. Moreover, the system offers an additional place for
automatic grading and instant results on sample testcases. This
place helps learners receive immediate feedback and ensures
the submission runs appropriately in the grading environment.
In addition, the interactive information of learners on the sys-
tem will be more, such as the time of submission, submission,
and grading results. The problem with this implementation is
that the system only provides one static set of simple testcases.
Beginner learners need help to think of complex testcases to
improve their programming skills.

In SEM-222, the system still provides the same materials
as SEM-212. However, through the proposed TRS, the system
offers more testcases suitable for each learner at each time.
After correcting the sample testcases, learners can request more
testcases from TRS. Then, TRS will provide a small set of
testcases that the learner is doing wrong, and these testcases
should have a difficulty level matching the learner’s current
ability. In addition, TRS requires learners to do all testcases
correctly to be given a new set of testcases, and they can only
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be asked for a maximum of five times a day. The total number
of testcases used for suggestion is 124; each request is five
testcases.

Table I summarizes the main features of the assignment
implementation process over the three semesters, including
information for learners, key features, and recorded informa-
tion. Notably, different from SEM-202 and SEM-212, the last
semester is demonstrated by 2 rows, one for sample testcases
submission and the other for TRS. As a result, we can see
from this table that the system, in addition to TRS, has more
key features and can gather more useful information.

B. Comparison

Table II compares the assignment implementation in three
semesters on four factors: supportive self-study environment
to summarize knowledge, instructional environment, learning
and development of learners, and the system’s interaction with
learners.

We analyze the following three questions regarding the
self-study support environment to summarize knowledge. The
first question is about the ability to serve a large number
of learners (all three semesters have a place to release As-
signments to learners, for learners to submit papers, and
have an automatic grading method). The second question is
how to implement a self-study support environment for many
learners (SEM-202 provides a place to submit papers and
automatically grade papers after deadlines, SEM-212 delivers
a place to submit papers and return results instantly, SEM -222
provides the same environment as SEM-212 and has additional
testcase suggestions). The last question is about the ability to
evaluate work results for many learners (all three semesters
can automatically grade learners’ codes).

In terms of the learner guidance environment, this is an
environment that provides feedback to help learners improve
their work and programming skills. We analyze the instruc-
tional environment according to two questions: Is there an
instructional environment for learners? What are the limitations
of the effectiveness of the instructional environment? In SEM-
202, a forum is provided for learners to ask questions about
Assignments. The teacher then answers these questions. The
efficacy of a forum depends on the questions posted by learners
and the responses provided by instructors and other learners.
To examine the effectiveness, appropriate data analysis tools
related to the interactive content on the forum are needed.
On the other hand, sample testcases are a set of simple
testcases for learners to test the code on their own under
personal computers. The limitation of sample testcases is
that the instructor does not know how learners have utilized
them. The completeness level and suitability of the sample
testcases for guiding learners cannot be determined. Semester
SEM-212 still provides forum and sample testcases. However,
sample testcases in SEM-212 are automatically graded and
give instant results to learners. The improvement in this method
is that the instructor knows whether learners have studied
and worked with testcases through their submission attempts.
After completing the assignment and grading, the instructor
can determine whether the sample testcases are comprehensive
enough to guide the learners. Semester SEM-222 not only
provides the same environment as SEM-212 but also provides

TRS. The challenge is establishing a diverse testcases bank
that can be divided into smaller sets to provide appropriate
hints based on the learners’ abilities at different stages.

Regarding the learning and development of learners, we
analyze according to three questions as shown in Table II.
Does the system keep track of the learning process: SEM-202
is not recorded because only the last submission is submitted.
At the same time, SEM-212 and SEM-222 are recordable at
the time of submission and submission code.

We analyze the interaction with learners according to a
question about how the system interacts with learners, as
shown in the table. The answer consists of two lines describing
the information the system receives from the learner and the
information the system gives to the learner. The information
obtained from the learners was the same over the three
semesters. However, the information brought to learners has
increased gradually over three semesters. The final semester
has the most information for learners. As more information
reaches learners, learners can personally practice and improve
their programming skills.

C. Statistical Results and Findings

The statistical results after implementing the assignment
over three semesters (SEM-202, SEM-212 and SEM-222) are
summarized in Table III. The important points of this table
should be taken into account as follows.

• This table contains seven information fields includ-
ing information provided to learners, total number
of learners, number of learners who submitted code,
number of days having submissions, number of sub-
missions, average number of submissions per learner,
and average number of submissions per day.

• The information provided to learners may be sample
testcases or information provided from TRS. Note that
the information provided by TRS is only available
from SEM-222.

• The number of days with submissions in SEM-202
is marked as N/A (not available) since the system
does not record individual submission instances. Each
learner is only permitted to submit one work for
the assignment, so the total number of submissions
equals the number of learners. The average number
of submissions per day cannot be calculated because
the number of days is not recorded.

The following analyses compare SEM-212 with SEM-202
and SEM-222 with SEM-212 regarding sample test cases.
Then, the most appropriate context among the three semesters
will be identified. Finally, the information from TRS will be
analyzed to better understand the system’s value.

Considering two semesters, SEM-212 and SEM-202, al-
though the number of learners in SEM-212 is smaller than in
SEM-202, the number of submissions is higher. The reason is
that SEM-212 can record the information of learners’ multiple
attempts. In other words, the process implemented in SEM-
212 improves the interaction between learners and the system
compared to SEM-202. This also serves as an example to
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TABLE I. FEATURES OF THE ASSIGNMENT IMPLEMENTATION PROCESS IN THREE SEMESTERS: SEM-202, SEM-212, AND SEM-222

Semester Provided information
for learners

Key features Recorded Information

SEM-202 Sample testcases - Automated submission platform for learners.
- Learners receive grading results after the dead-
line.

- Overall grading score.

SEM-212 Sample testcases - Automated submission platform for learners.
- Learners receive grading results after the dead-
line.
- Automated grading and immediate feedback on
sample testcases submissions.

- Overall grading score.
- Submission history: submission time
and grading results for sample testcases.

SEM-222 Sample testcases - Automated submission platform for learners.
- Learners receive grading results after the dead-
line.
- Automated grading and immediate feedback on
sample testcases submissions.

- Overall grading score.
- Submission history: submission time
and grading results for sample testcases.

Various sets of testcases
sent based on individual
learners and timing.

- Submissions and requesting testcases for incor-
rect answers.
- Testcase sets tailored to learners’ abilities
through the TRS system.

- Submission history: submission time
and grading results for recommended
testcase sets.

TABLE II. COMPARISON OF ASSIGNMENT IMPLEMENTATION IN 3 SEMESTERS

Factor Related questions SEM-202 SEM-212 SEM-222

Self-study support
environment
to summarize
knowledge

Is there an environment that
supports self-study and auto-
matic grading to serve a large
number of learners?

Yes Yes Yes

How to implement a self-
study support environment for
learners?

The site to submits codes; codes
are automatically graded after the
deadline

The site to submits codes and re-
turns results instantly on sample
testcases; codes are automatically
graded after the deadline

The site to submits codes and
returns results instantly on sam-
ple testcases; the site suggests
testcases; codes are automatically
graded after the deadline

Can the learner’s work results
be assessed?

Yes Yes Yes

Instructional
environment

Is there an environment that
instructs learners?

- Forum
- Sample testcases for self-
evaluation by learners

- Forum
- Sample testcases with instant
grading

- Forum
- Sample testcases with instant
grading
- TRS

What are the limitations of the
instructional environment’s
effectiveness level?

- Forum: relies on learner questions
and instructor and peer responses
- Sample testcases for self-
evaluation by learners: challenge
to assess the level of completeness
and suitability of these testcases in
guiding learners.

- Forum likes on the left
- Sample testcases with instant
grading: can track learners’ en-
gagement with testcases through
their submissions; the level of com-
pleteness and suitability of the test-
cases can be assessed on submis-
sions

- Forum and sample testcases with
instant grading like on the left
- TRS: challenge to establish a di-
verse testcases bank.

Learners’ learning
and development

Is it possible to keep track of
the learning process?

No (only the last submission is
recorded)

Possible (when the learner submits
the code)

Possible and enhanced by TRS

Is there a way to keep track of
learner development?

No (only the last submission is
recorded)

Possible Possible and enhanced by TRS

Is there a way to sup-
port learners’ problem-solving
skills development?

No Yes (returns results of grading sam-
ple testcases)

Yes (returns results of grading sam-
ple testcases; provides testcases
hints according to learner’s ability)

Interaction with
learners

How is the interaction? - Allow multiple submissions
- Grading is done for only the last
submission.

- Allow multiple submissions
- Grading is done for the final
submission; intermediate scores on
sample testcases are provided for
each submission.

- Allow multiple submissions
- Grading is done for the final
submission; intermediate scores on
sample testcases are provided for
each submission; suggested test-
cases and scores are provided for
each submission on the TRS sys-
tem.

support the question in Table II regarding the existence of a
method to keep track of the learning process.

The number of learners in SEM-222 (1484) increased
by 1.7 times compared to the number of learners in SEM-
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TABLE III. STATISTICAL RESULTS AFTER IMPLEMENTING ASSIGNMENT IN 3 SEMESTERS

Semester Information pro-
vided to learners

Total number
of learners

Number of learners
who submitted code

Number of
days having
submissions

Number of
submissions

Average number
of submissions
per learner

Average number
of submissions
per day

SEM-202 Sample testcases 933 852 (91.32%) N/A 852 1.0 N/A

SEM-212 Sample testcases 864 723 (83.68%) 15 5463 7.56 364.2

SEM-222 Sample testcases 1484 1332 (89.76%) 27 25009 18.78 926.26

TRS 1484 1082 (72.91%) 14 11427 10.56 816.21

212 (864), and the number of learners participating in code
submission increased by 1.8 times. The participation rate in
submissions increased (89.76% compared to 83.68%), or in
other words, the non-participation rate decreased. Therefore,
can it be inferred that the submission system in SEM-222
better supports learners? The number of days with submissions
in SEM-222 is nearly double that of SEM-212. So, could
the longer submission time in SEM-222 allow learners to
have more opportunities to complete their assignments? The
number of submissions in SEM-222 (25009) is significantly
higher than in SEM-212 (5463). Thus, is this due to the longer
allowed submission time or better learner support? The average
number of submissions per learner in SEM-222 (18.78) is
2.5 times higher than in SEM-212 (7.56). This indicates that
the SEM-222 system supports better interaction compared to
SEM-212. Furthermore, if we compare the average number
of submissions per day between SEM-222 and SEM-212, the
ratio is 2.5 (926.26/364.2), which is higher than the ratio
between SEM-222 and SEM-212 (1.7). This suggests that the
SEM-222 system provides better support to learners than the
SEM-212 system.

The above results indicate that SEM-212 performs better
than SEM-202, and SEM-222 performs better than SEM-212.
Overall, SEM-222 has the best implementation. The level
of system interaction, based on the number of submissions,
is 29.4 times higher in SEM-222 (25009/852) compared to
the semester with the lowest number of submissions (SEM-
202), even though the ratio of the number of learners between
these two semesters is only 1.6 (1484/933). Considering only
the information regarding sample testcases, SEM-222 displays
a significantly higher interaction level than SEM-212 and
significantly outperforms SEM-202.

If we consider the additional information from TRS in
SEM-222, the number of submissions increases by 45.7%
(11427/25009) compared to the number of submissions in the
sample testcases. Based on the total number of submissions
in SEM-222 (including TRS), the system’s interaction level is
42.8 times higher than the semester with the least collected
interaction (SEM-202). Although this is the first implemen-
tation of TRS, the participation rate is quite impressive at
72.91%. However, it is still lower than the percentage of people
who submitted on the sample testcases (89.76%). From this,
we can see that students tend to resubmit their assignments
on the sample testcases every time they improve their code
on TRS. The reason could be that students want to ensure
their submitted version is evaluated on the sample testcases.
Alternatively, it is possible that students do not trust the
consistency between the solutions of the two systems.

To examine the detailed impact of TRS on the sample
testcases, the group of learners who submitted assignments
in SEM-222 needs to be divided into two smaller groups:
the group that used the TRS system (Use TRS) and the
group that did not use the TRS system (Not-use TRS). Fig.
2(a) shows the percentage distribution of learners between the
Use TRS and Not-use TRS groups. And Fig. 2(b) illustrates
the percentage distribution of submissions between the Use
TRS group (22082) and the Not-use TRS group (2927) on
the system of sample testcases. Let’s consider the index that
measures the level of interaction through submissions on the
system referred to as the average interaction index. It is
calculated by dividing the number of submissions by (the
number of people who submitted multiplied by the number
of days of submission).

• The average interaction index of the group of learners
on the sample testcases in SEM-212: 5463 / (723 *
15) = 0.5.

• The average interaction index of the group of learners
on the sample testcases in SEM-222: 25009 / (1332 *
27) = 0.70.

• The average interaction index of the group of learners
on TRS in SEM-222: 11427 / (1082 * 14) = 0.75.

• The average interaction index of the Use TRS group
on the sample testcases in SEM-222: 22082 / (1082 *
27) = 0.76.

• The average interaction index of the Not-use TRS
group on the sample testcases in SEM-222: 2927 /
(250 * 27) = 0.43.

Fig. 2. Comparison between Use and Not-use TRS in SEM-222.

The average interaction score on the TRS system (0.75) is
higher than the average interaction score on the sample test-
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cases system during the same semester (0.70). This indicates
that the TRS group has a higher level of interaction with the
sample testcases in SEM-222.

Subsequently, let’s examine the level of interaction between
the Use TRS group and the Not-use TRS group on the sample
testcases in SEM-222. The data collected in Table III shows
that the number of students using TRS is 1082, and the number
of students not using TRS is (1332 - 1082) = 250. The ratio
of the number of people between the two groups is 1082 /
(1332 - 1082) = 1082 / 250 = 4.3, while the submission ratio
on the sample testcases between these two groups is 22082
/ 2927 = 7.5 (1.7 times higher than the ratio of students in
the two groups). This indicates that the Use TRS group has
nearly twice the interaction with the sample testcases compared
to the Not-use TRS group. We can also calculate similar
results by determining the ratio between the average number
of submissions of the Use TRS group (22082 / 1082) and the
Not-Use TRS group (2927 / 250).

The average interaction score of the student group on the
sample testcases in SEM-212 (0.5) is lower and approximately
equal to the average interaction score of the Not-use TRS
group on the sample testcases in SEM-222 (0.43) - meaning
0.5/0.43 = 1.16 times higher. This indicates that the Not-use
TRS group in SEM-222 has a slightly lower interaction level
than the student group in the semester without TRS support
(SEM-212). This is a less active group in the exercise process
and does not actively utilize the support from the teaching
environment.

The average interaction score of the Use TRS group on
the sample testcases in SEM-222 (0.76) is significantly higher
(about 1.5 times) than the average interaction score in SEM-
212 (0.5). This indicates that the Use TRS group in SEM-222
interacts more actively than the other groups (Not-use TRS in
SEM-222 and the student group in SEM-212). In other words,
this is the contribution of the TRS system.

V. CONCLUSION

This paper proposed a testcase recommendation system
(TRS) for assisting learners in completing assignments in
introductory programming courses. TRS provides a small set of
testcases adaptive to the learner’s current level of proficiency.
Using learners’ performance data, we propose a new testcase
recommendation process based on the SVD model and the
ZPD theory.

TRS was implemented and deployed in the university-level
fundamental programming course in the second semester of the
2022-2023 year. Then, we investigated TRS’s effectiveness by
conducting a comparison with two previous semesters (SEM-
202 and SEM-212) without using TRS. The statistical results
have shown that SEM-222 had the highest level of interaction
with learners among the three semesters (2.5 times higher
than SEM-202). Additionally, the proposed TRS received
acceptance and significant interaction from learners during its
initial semester.

Our future work is to examine the effectiveness of TRS
for learners in greater depth and make more comparisons with
other testcase recommendation methods. Moreover, we aim
to identify strategies for gathering information on learners’

satisfaction, particularly in a new environment that supports
additional testcase suggestions for assignments. We will also
explore the integration of automated techniques that generate
testcases using a formal descriptive language. Furthermore,
our investigation will involve developing a testcase bank to
provide diverse and differentiated recommendations. Lastly,
the solution will be packaged as a module for seamless
integration into various learning management systems (LMS),
specifically focusing on Moodle LMS.
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