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Abstract—Image segmentation is considered one of the essen-
tial tasks for extracting useful information from an image. Given
the brain tumor and its consumption of medical resources, the
development of a deep learning method for MRI to segment the
brain tumor of patients’ MRI is illustrated here. Brain tumor
segmentation technique is crucial in detecting and treating MRI
brain tumors. Furthermore, it assists physicians in locating and
measuring tumors and developing treatment and rehabilitation
programs. The residual U-Net++ encoder-decoder-based architec-
ture is designed as the primary network, and it is an architecture
that is hybridized between ResU-Net and U-Net++. The proposed
Residual U-Net++ is applied to MRI brain images for the most
recent and well-known global benchmark challenges: BraTS
2017, BraTS 2019, and BraTS 2021. The proposed approach is
evaluated based on brain tumor MRI images. The results with
the BraST 2021 dataset with a dice similarity coefficient (DSC) is
90.3%, sensitivity is 96%, specificity is 99%, and 95% Hausdorff
distance (HD) is 9.9. With the BraST 2019 dataset, a DSC is
89.2%, sensitivity is 96%, specificity is 99%, and HD is 10.2.
With the BraST 2017 dataset, a DSC is 87.6%, sensitivity is
94%, specificity is 99%, and HD is 11.2. Furthermore, Residual
U-Net++ outperforms the standard brain tumor segmentation
approaches. The experimental results indicated that the proposed
method is promising and can provide better segmentation than
the standard U-Net. The segmentation improvement could help
radiologists increase their radiologist segmentation accuracy and
save time by 3%.

Keywords—Brain tumor segmentation; medical image segmen-
tation; BraTS; U-Net; U-Net++; residual network

I. INTRODUCTION

Brain tumors are growing in the cells of the human brain
abnormally. They are divided into two main types, which are
malignant and benign, and malignant is more widely spread
than benign. They have a significant impact on people and
society. Gliomas, either high-grade gliomas (HGG) or low-
grade gliomas (LGG), comprise the majority of malignant
brain tumors. Because it enables medical professionals to find
and quantify tumors and develop strategies for their treatment
and recovery, brain tumor segmentation is crucial for diagnos-
ing and treating brain tumors. Medical image segmentation
divides a medical image into different regions and separates
anatomical structures. These are called “regions of interest”
and are appropriate for a specific medical application [1], [2].

There are two main medical image segmentation tech-
niques: manual and auto segmentation. Manual segmentation
is the gold standard approach that still consumes time and
effort, not only time and effort but also needs experts. Auto
segmentation techniques are divided into many techniques:

region-based, edge-based, thresholding, atlas-based, clustering,
and deep learning.

It is used in clinical studies to guide and monitor disease
progression. It also has many uses, such as diagnosing diseases,
planning treatments, studying anatomy, finding the problem,
figuring out how much tissue there is, and doing computer-
integrated surgery.

According to all of these usages, medical image seg-
mentation has many challenges. These challenges are noise,
different colors, patterns, orientations, textures, and insufficient
resolution. Furthermore, the medical image is heterogeneous
in shape, volume, and texture. These challenges make the
segmentation task more complex and require multiple pre-
processing approaches.

Recently, it has been suggested that deep learning methods
could be used to make different applications for segmenting
and classifying medical images. Deep Learning networks can
segment and pull out features so that segmentation can be done
with just one prediction model [3].

The deep learning model for medical images is classified
into two main categories: 2D Fully Convolution Networks,
such as U-Net architecture, and 3D Fully Convolutional Net-
works, where 2D convolutions are covered with 3D convolu-
tion.

Image segmentation is one of several deep learning-based
applications being researched in the medical field. Conse-
quently, there are several techniques and numerous network
architectures. Based on its attributes, such as network design,
training procedure (supervised, semi-supervised, unsupervised,
and transfer learning), and input size (patch-based, whole
volume-based, 2D, and 3D), segmentation techniques based
on deep learning may be subdivided into several categories
according to network design, training procedure, and input
size. Therefore, depending on its architecture, it may be
split into six categories: convolutional neural networks, fully
convolutional networks; regional convolutional networks; auto-
encoders; generative adversarial networks; and hybrid deep
learning-based approaches.

The proposed Residual U-Net++ pipeline with the whole
phases is shown in Fig. 1 and illustrated step by step for each
phase as an overview.

This paper’s main contributions are summarized as follows:

• A new hybridization approach based on U-Net++ and
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Fig. 1. Proposed residual U-Net++ pipeline.

ResU-Net is introduced, which combines the advan-
tages of both architectures to improve the accuracy of
brain tumor segmentation.

• A novel combination of pre-processing techniques
and loss functions is proposed, further enhancing the
hybrid approach’s performance.

• The proposed Residual U-Net++ architecture is ap-
plied to three global benchmark challenges in brain
tumor segmentation, including BraTS 2017, BraTS
2019, and BraTS 2021, and outperforms several state-
of-the-art methods in all challenges, thus contributing
significantly to the field.

• A discrete version of Residual U-Net++ is presented,
specifically designed to address multi-level segmenta-
tion problems, and evaluated on a public benchmark
real abdominal MRI images dataset of the brain as a
case study.

• Several evaluation metrics, including the Dice Sim-
ilarity Coefficient (DSC), Sensitivity (SEN), Speci-
ficity (SP), and 95% Hausdorff Distance (HD), are
used to comprehensively assess the performance of
the proposed approach, thus contributing to the stan-
dardization of evaluation methods in medical image
segmentation research.

The rest of the paper is structured as follows: Section II
represents the related work, Section III explains the details
used in the model, which are dataset, pre-processing, architec-
ture, loss function, and evaluation metrics. Section IV shows
the results, followed by a discussion of the results in Section
V. Finally, Section VI presents the conclusion.

II. RELATED WORK

Zhang et al. [4] examine the significance of a newly created
attention gate for tasks involving segmenting brain tumors as
an attention module. They use datasets from BraTS, which are
BraTS 2017, BraTS 2018, and BraTS 2019. They focus on
investigating the efficacy of attention gates for tasks involving
segmenting brain tumor images. They propose a model called
the Attention Gate Residual U-Net, or AGResU-Net, which
combines attention gates and residual modules within a fun-
damental and singular U-Net architecture to accomplish this
purpose.

Neural Architecture Search (NAS) makes good progress in
improving image accuracy. Accordingly, it has been extended

to be used recently in image segmentation. Weng et al. [5]
use NAS with U-Net as U-Net is applied a lot in different
medical image segmentation with successful results. Therefore,
both are used by Weng et al. [5] to design and develop three
primitive operations that make search space that find two cell
architectures, DownSC and UpSC, useful in medical image
segmentation especially. Their dataset without pre-training was
PASCAL VOC2012 which consisted of Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), and ultrasound.
It gets better performance and fewer parameters than U-Net
when evaluated on the three datasets [5].

Li et al. [6] proposed Residual-Attention U-Net++ as an
extension of the U-Net++ model with a residual unit and
attention mechanism. In angiography, they used three medical
image datasets, skin cancer, cell nuclei, and coronary artery.
Their results with the skin cancer dataset were an Intersection
over Union (IoU) was 82.32% and a dice coefficient was
88.59%, and with the cell nuclei dataset, an IoU was 87.74%.
The dice coefficient was 85.91%, and with the angiography
dataset, an IoU was 66.57%, and a dice coefficient was
72.48%.

III. MATERIALS AND METHOD

A. Dataset

BraTS stands for Brain Tumor Segmentation, collected and
prepared as a challenge per year. It is the most commonly used
dataset for brain tumor segmentation as it is public [7], [8],
[9], [10], [11], [12], [13], [14], [15]. It consists of a collection
of MRI brain images, and all brain images are stripped of
the skull and oriented similarly. Four MRI modalities exist for
each patient, including Flair, T1, T1ce, and T2. The experts
and the organizers of BraTS were labeling the training dataset
ground truths. The example MRI brain image and associated
ground truth are shown in Fig. 2.

On three benchmarks (BraTSraTS 2017, BraTS 2019, and
BraTS 2021), we evaluate the effectiveness of ResU-Net++.
Table I contains detailed information about the three datasets
used for each year’s challenge.

The BraTS 2017 dataset provides 285 glioma patients as
a training dataset, consisting of 210 HGG cases and 75 LGG
cases. There are 46 patients of uncertain grades included as
validation dataset.

The BraTS 2019 dataset provides 335 glioma patients as
a training dataset, consisting of 259 HGG cases and 76 LGG
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Fig. 2. Example of the brain MRI image with its ground truth from the BraTS 2019.

TABLE I. PUBLIC DATASETS THAT ARE USED FOR BRAIN TUMOR SEGMENTATION.

Name Total Data Size Training Data Validation Data Testing Data
BraTS 2017 477 285 46 146
BraTS 2019 653 335 127 191
BraTS 2021 2000 1251 219 530

cases. There are 127 patients of uncertain grades included as
validation dataset.

The BraTS 2021 dataset provides 1251 glioma patients
as a training dataset, which contains more patient cases than
the previous two. There are 219 patients of uncertain grades
included as validation dataset.

BraTS 2017 is used the most often because it is the first
release to include training, validation, and test data. It is
used in benchmarks and can be used with low computational
power, in contrast to BraTS 2021. BraTS 2021 needs high
computational power, takes more time, and gives high accuracy
due to extensive data.

B. Proposed Residual U-Net++ Pre-processing

As discussed before, MRI brain tumor segmentation is
a problem that is challenging due to noise, different col-
ors, patterns, orientations, textures, and heterogeneous shapes,
volumes, and textures. Data processing is still an essential
and crucial stage, even if deep learning-based techniques are
more noise-resistant. Furthermore, we use multimodal 3D MRI
brain scan datasets, specifically BraTS 2017, BraTS 2019,
and BraTS 2021, in this study. The normal region takes up
98.5% of the pixels in the multilabel brain tumor segmentation,
whereas the abnormal area only makes up 1.5% of the pixels.
Each 3D MRI image data set in the BraTS database has a
volume size of 240 x 240 x 155. That image of the axial brain
has the highest resolution, and the plane of the axial generates
most of the volume in the dataset. We employ a 3D axial brain
image to construct multiple 2D image slices for each 240 ×
240. To create a sequence of 2D slice images, we remove
the 3D image’s 1% highest voxel intensities and 1% lowest
voxel intensities. While this is happening, we use a patching
technique to process these 2D image slices, cropping each slice
into many tiny patches with a size of 128 × 128 to handle the
class imbalance issue.

Furthermore, we use z-score normalization on 2D images.
Moreover, Gaussian regularisation also on 2D images to limit

the device noise effect, improve the contrast of an image,
and relieve the overfitting problem. The Z-score normalization
technique transforms each picture using the intensity’s mean
value and standard deviation, and it is calculated as follows:

z’ =
z − µ

σ
(1)

Where z is the input image, z’ is the normalized image, µ
is the input image mean, and σ is the input image standard
deviation.

In addition, Gaussian regularisation also involves adding
Gauss noise to images to increase model training accuracy.
It efficiently reduces over-fitting during the model training
phase by penalizing interference objects produced by noise for
lowering the weighted square, which has an equivalent impact
as L2 regularisation. These images of 2D patches are used
in the network for segmenting brain tumors as input after data
pre-processing for balancing data voxels. This data preparation
step could improve the segmentation performance, normalizing
the data and successfully handling the class imbalance issue.

C. Proposed Residual U-Net++ Architecture

This paper introduced ResU-Net++, an integrated neural
network for medical image segmentation that uses the benefits
of U-Net++ and residual units. Its general layout is shown
in Fig. 3. As we can see, the suggested architecture uses
redesigned skip paths to connect the encoder and decoder
networks, with U-Net++ as the primary network structure.
The encoder network’s feature map was sent to the decoder
network through dense convolution blocks. According to the
above-mentioned method, the feature graph semantic levels in
the encoder and decoder are almost identical.

The skip pathway was constructed as follows: The node’s
output is represented by xi,j . According to the encoder sub-
network, the downsampling layer is indexed by i, and the
dense block’s convolution layer is indexed by j along the skip
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Fig. 3. Proposed residual U-Net++ architecture.

pathway. The mathematical equation that follows can be used
to determine xi,j :

xi,j =


CR{xi−1,j}, j = 0.

CR

{[∫ k=0

i−1

xi,k, U(xi+1,j−1)

]}
, j > 0.

(2)

Where [.] signifies the concatenation layer, U(.) stands for
the upsampling operations, and CR{.} represents a convolu-
tion operation followed by a ReLU activation. The first skip
pathway in Residual U-Net++ is further explained in Fig. 4.

The following applied equations illustrate the detailed
analysis of the first skip pathway of Residual U-Net++:

x0,1(conv 01) = CR{[x0,0, U(x1,0)]} (3)

x0,2(conv 02) = CR{[x0,0, x0,1, U(x1,1)]} (4)

x0,3(conv 03) = CR{[x0,0, x0,1, x0,2, U(x1,2)]} (5)

x0,4(conv 04) = CR{[x0,0, x0,1, x0,2, x0,3, U(x1,3)]} (6)

This pairing has two advantages: first, U-Net++ reduces
the semantic gap between the feature maps of the encoder and
decoder subnetworks; second, the residual unit makes network
training easier and solves the degradation issue, increasing the
accuracy of Residual-Attention U-Net++.

D. Loss Function

The MRI brain tumor segmentation challenge displays a
significant class imbalance, with healthy voxels making up
98.46% of the total voxels, necrosis and non-enhancing voxels
accounting for 0.23% of voxels, edema accounting for 1.02%
of voxels, and enhancing tumors accounting for 0.29% of
voxels. Generalized dice loss (GDL) [16] is a loss function

often used and resistant to data imbalance. It helps bridge the
gap between evaluation metrics and training samples. Weighted
cross entropy (WCE) [17] has also been used to solve class
imbalance and multi-task training problems. As a result, we
developed a union loss function L that combined generalized
dice loss LGDL and weighted cross entropy loss LWCE to give
improved supervision for model training [18]. Loss function
L is represented as follows:

L = LGDL + λ.LWCE (7)

where LGDL represents the generalized dice loss is defined
as Eq. 8 and LWCE represents the weighted cross entropy loss
is defined as Eq. 9

LGDL = 1− 2

∑N
i=1 ωi

∑
k gikpik∑N

i=1 ωi

∑
k(gik + pik)

(8)

LWCE = −
∑
k

N∑
i=1

ωigik log(pik) (9)

Where N is the total number of labels, and ωi is the weight
for the ith label. For generalized dice loss, ωi is set to

ωi =
1

(
∑

k gik)
(10)

pik represents the ith and kth pixel of the segmented binary
image value.

gik represents the ith and kth pixel of the binary ground
truth image value.

E. Evaluation Metrics

There are four evaluation metrics used in measuring seg-
mentation performance for Residual U-Net++ approach. These
metrics are examined by comparing the segmented image P to
the manually segmented image T.
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Fig. 4. The first skip pathway of residual U-Net++.

1) Dice Similarity Coefficient (DSC): The dice similarity
coefficient is a metric to measure the performance of the seg-
mentation that is used to evaluate it based on the intersection
between both segmented images, manual and predicted, given
as

DSC = 2
|T ∩ P |
|T |+ |P |

(11)

Where T represents the manually segmented image as
several elements, and P represents the predicted segmented
image sets as several elements. Zero is the worst DSC value,
and one is the best [19].

2) Sensitivity (SEN): Sensitivity is a metric to measure the
performance of true positives of the correct detection ratio,
given as

SEN =
|TP |

|TP |+ |FN |
100 (12)

Where TP is the number of correctly detected positive
pixels (a “true positive”), FP is the number of incorrectly
detected negative pixels (a “false positive”), and FN is the
number of incorrectly detected positive pixels (a “false nega-
tive”) [19].

3) Specificity (SP): Specificity is a metric to measure the
performance of true negatives of the correct detection ratio,
given as

SP =
|TN |

|TN |+ |FP |
100 (13)

Where TN is the number of correctly detected negative
pixels (a “true negative”), and FP is the number of incorrectly
detected negative pixels (a “false positive”) [19].

4) Ninety-Five Percentage Hausdorff Distance (HD):
Ninety-five percent Hausdorff distance is a performance metric
that measures the 95th percentile of the maximum distance of
the reference image set to the nearest point in the predicted
image set, given as

HD(P, T ) = max[d(T, P ), d(P, T )], (14)

Where T represents the number of elements in the man-
ually segmented image, and P represents the number of
elements in the predicted segmented image sets. Both are a
finite set [19].

Regarding all of these performance metrics that we used,
each one of them is used according to need. DSC is the most
accurate performance metric due to evaluating the intersection

between manual and predicted segmented images, and it is the
most commonly used. Also, HD is the second performance
metric that is frequently used. SEN is used when the true
positives are the attention point, and SP is used when the true
negatives are the attention point.

IV. RESULTS

As mentioned above, our experiments use three datasets:
BraTS 2017, BraTS 2019, and BraTS 2021.

A. BraTS 2017

Fig. 5. Box plot for the DSC of results from the BraTS 2017 dataset.

Fig. 6. Box plot for the HD of results from the BraTS 2017 dataset.

B. BraTS 2019

Fig. 7. Box plot for the DSC of results from the BraTS 2019 dataset.

Fig. 8. Box plot for the HD of results from the BraTS 2019 dataset.
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TABLE II. COMPARED SEGMENTATION RESULTS WITH DIFFERENT DSC METHODS FOR BRATS 2017

Author Method Whole Core Enhancing
Zhang et al. [4] U-Net 0.852 0.759 0.698
Zhang et al. [4] ResU-Net 0.862 0.774 0.732
Zhang et al. [4] AGResU-Net 0.870 0.777 0.709
Proposed Residual U-Net++ 0.876 0.862 0.833

TABLE III. COMPARED SEGMENTATION RESULTS WITH DIFFERENT DSC METHODS FOR BRATS 2019

Author Method Whole Core Enhancing
Zhang et al. [4] AGResU-Net 0.870 0.777 0.709
Aboelenein et al. [20] MIRAU-Net 0.885 0.879 0.818
Sheng et al. [21] ResU-Net 0.881 0.796 0.707
Proposed Residual U-Net++ 0.892 0.892 0.853

C. BraTS 2021

Fig. 9. Box plot for the DSC of results from the BraTS 2021 dataset.

Fig. 10. Box plot for the HD of results from the BraTS 2021 dataset.

Fig. 11. Samples of segmentation results from the BraTS 2021 dataset.
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TABLE IV. COMPARED SEGMENTATION RESULTS WITH DIFFERENT DSC METHODS FOR BRATS 2021

Author Method Whole Core Enhancing
Yan et al. [22] U-Net 0.870 0.870 0.800
Ahmed et al. [23] MS UNet 0.919 0.862 0.824
Raza et al. [24] dResU-Net 0.866 0.835 0.800
Proposed Residual U-Net++ 0.903 0.896 0.857

TABLE V. MEAN SCORES OF TESTING DIFFERENT MODELS ON BRATS 2017, BRATS 2019, AND BRATS 2021 DATA FOR DSC, SENSITIVITY,
SPECIFICITY, AND HAUSDORFF DISTANCE

Dataset DSC Sensitivity Specificity HD
BraTS 2017 0.876 0.94 0.99 11.2
BraTS 2019 0.892 0.96 0.99 10.2
BraTS 2021 0.903 0.96 0.99 9.9

V. DISCUSSION

The results show that the proposed Residual U-Net++
model uses three datasets: BraTS 2017, BraTS 2019, and
BraTS 2021. We present the results for each dataset separately
and evaluate it using four evaluation metrics: DSC, Sensitivity,
Specificity, and HD.

Section IV-A shows the results for BraTS 2017. Table II,
Regarding the DSC value of the whole tumor, core tumor, and
enhancing tumor, Residual U-Net++ performs better than U-
Net, ResU-Net, and AGResU-Net stand-alone approaches. Fig.
5 shows the box plot for the DSC results to observe that the
almost results are above 80% from the first quartile and are at
most 95%. To get a sense of them, its values representing HD
are concluded in a box plot, as shown in Fig. 6.

Section IV-B shows the results for BraTS 2019. Table III,
Regarding the DSC value of the whole tumor, core tumor, and
enhancing tumor, Residual U-Net++ performs better than other
approaches, especially ResU-Net as a stand-alone approach
without nested U-Net. Fig. 7 shows the box plot for the DSC
results to observe that the almost results are above 86% from
the first quartile and are at most 94%. To get a sense of them,
its values representing HD are concluded in a box plot, as
shown in Fig. 8.

Section IV-C shows the results for BraTS 2021. Table IV,
In terms of the DSC value of the core tumor and enhancing tu-
mor, Residual U-Net++ performs better than other approaches.
Also, it is slightly different from other top values of the whole
tumor. Fig. 9 shows the box plot for the DSC results to observe
that the almost results are above 87% from the first quartile and
are at most 94%. To get a sense of them, its values representing
HD are concluded in a box plot, as shown in Fig. 10.

From Table V, We get the complete results for all evalu-
ation metrics: DSC, Sensitivity, Specificity, and HD, and for
all datasets. We observe that BraTS 2021 gets more accurate
results than BraTS 2019 and BraTS 2017, which is regarding
the amount of data because BraTS 2021 is the largest dataset
compared with BraTS 2019 and BraTS 2017. Also, BraTS
2019 gets more accurate results than BraTS 2017 for the same
reason. Furthermore, the large amount of data gets more variant

cases for the tumor.

This proposed model enhances the results compared with
other approaches by 0.23 for the DSC value of the core tumor
and 0.05 for the DSC value of the enhancing tumor. Fig. 11
shows samples of segmentation results for BraTS 2021.

VI. CONCLUSIONS

In this research, we proposed the Residual U-Net++ model,
which combined ResU-Net modules and U-Net++ with a sin-
gle U-Net design. Small-scale brain tumor segmentation was
improved using ResU-Net++. We comprehensively evaluated
the Residual U-Net++ model using three reliable BraTS 2017,
BraTS 2019, and BraTS 2021 brain tumor standards. The
results of the experiments demonstrated that Residual U-Net++
outperformed U-Net and ResU-Net. On all three datasets, the
experimental results indicated that the suggested Residual U-
Net++ model performed better in segmentation tasks when
compared with other approaches, including UNet++ and other
models. Due to the 2D U-Net model’s limitations, Residual
U-Net++ significantly lost local characteristics and context
information across various slices. We will investigate 3D
network design in the future to enhance Residual U-Net++
segmentation Net’s performance and expand the enhanced ar-
chitecture to other datasets to demonstrate its generalizability.
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