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Abstract—In this paper, we present snowball-chain
(SbChain+) approach, which is an improved version of
SbChain community detection method in terms of precision
with which communities are identified in a social graph. It
exploits the topology of a social graph in terms of the connections
of a node, i.e., its degree centrality, betweenness centrality and
the number of links within its neighborhood defined by the local
clustering coefficient. Two different functions have been used
to identify neighbors for a given node. Hence, two approaches
have been discussed with their pros and cons. In general,
SbChain+ takes a social graph as an input and aims to identify
communities around the core nodes in the underlying network.
The core nodes are expected to have a high degree and have
densely connected neighbors and guides in identifying cliques
from the graph. The proposed approach takes its inspiration
from snowball sampling technique and keeps merging the nodes
with their neighboring nodes based on certain criteria to form
snowballs. One of the functions discussed (SbChain+(i)) uses
a hyperparameter, λ for merging snowballs which further leads
to the formation of communities. This hyperparameter also helps
in achieving the desired level of coarseness in the communities,
and it can be adjusted to fine tune the identified communities.
While the second function (SbChain+(ii)) uses an average
out degree function to merge snowballs. The modularity values
are calculated at each level of the dendrogram formed by
combining nodes and snowballs to decide an appropriate cut for
community determination. SbChain+ is empirically evaluated
using these two different functions over both real-world and
LFR-benchmark datasets and results are evaluated on modularity
and normalized mutual information. The aim of this study is to
improve upon the previously discussed technique (SbChain)
and to study the use of hyperparameter, i.e., the performance of
a technique with or without the hyperparameter.
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I. INTRODUCTION

Online social network is an ever-growing entity which
can be modeled in the form of graphs (aka social graphs)
with users or entities as the nodes and their interactions or
relationships as weighted or unweighted edges [1]. Community
detection is an application of studying social graphs that
provides useful information about groups that might exist due
to similar interests, occupation and so on. It is formally stated
by Girvan and Newman as the community detection problem
in [2]. Communities are expressed as a group of nodes that are
coherent and are well-connected or have similar characteristics,

and sparse connections with the other nodes or dissimilar char-
acteristics with the rest of the nodes. Identifying communities
enables an in-depth understanding of the arrangement of nodes
and edges in a social graph, because they correspond to the
entities and their respective relationships within a group or
inter-groups. Hence, it can be useful in identifying highly
cohesive sub-structures.

There are various approaches like density-based, hierarchical,
and label propagation methods for community detection. The
density-based approach aims to find core points in the net-
work that have a high number of neighbors based on a pre-
defined threshold value. It also identifies the isolated nodes
or outliers in the same manner and then grows the com-
munities. Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [3] uses two external parameters, a
minpoint threshold and a neighborhood parameter depending
on which the results may differ. A density-based approach,
called CMiner, is presented in [4] which finds overlapping
communities using a new distance function derived from the
average reciprocated interactions among nodes. The authors
also proposed another approach in [5], called OCTracker,
for finding overlapping communities using a density-based
framework and tracking the various aspects of community evo-
lution. Hierarchical approaches are another set of methods for
community detection in social networks that may work either
in a bottom-up manner or in a top-down manner. Bottom-up
approach considers each node to be a separate community and
combines nodes in an iterative manner to maximize modularity.
On the other hand, top-down approach considers the entire
network to be a single community and divides it in an iterative
manner until the desired set of communities are obtained.
However, some hierarchical approaches have found to have
very high complexities depending upon the cost function to be
optimized. In [6], the authors proposed a unified framework,
called HOCTracker, which identifies hierarchical overlap-
ping communities in social networks. Label propagation is
another approach for community detection in social networks.
The Label Propagation Algorithm (LPA) changes a node label
to the label of its majority neighbors. However, since LPA uses
local information, it gets stuck in local optima. Snowball-Chain
(SbChain) is another community finding approach which
works well when nodes find their best neighbors in the initial
few iterations.

In this paper, we present two improved versions of our previous
work Snowball-Chain (SbChain) [7], termed as Enhanced
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Snowball-Chain (SbChain+(i) and SbChain+(ii)). It
uses simple topological features of a graph, like degree central-
ity, betweenness centrality, clustering coefficient and average
out degree function for detecting communities in undirected
and unweighted social graphs, which is the major advantage
of this SbChain+ when compared with other techniques in
the current work. The idea behind SbChain+ is that the
nodes having high centrality value and cliques among their
neighbors may become good candidates to form communities.
Therefore, the technique starts with the identification of seed
nodes (i.e., the nodes having high degree and well-connected
neighbors), it aims to identify their best scoring neighbors
based on two different functions. Hence, two approaches based
on two different functions for SbChain+ are discussed in
the subsequent sections, with their pros and cons. One of
them uses common neighbor merging strategy (function-i) and
the other uses average out degree function (ODF) (function-
ii). The nodes merge to form snowballs based on one of
these functions. SbChain+(i) and SbChain+(ii) are
compared with five other well established state-of-the-art com-
munity detection techniques, including Infomap [8], LPA
[9], LPA (semi-synchronous) [10], Louvain [11], and
SbChain [7]. Approaches like LPA is based on local node
interactions and ignore the global information of nodes (like
betweenness centrality etc.) in the graph. Whereas, SbChain+
considers all the information of the node by using local
as well as global clustering coefficient. It can also be seen
that according to [12] Louvain is unable to detect outliers
unlike SbChain+. SbChain+ separates nodes with zero
degree value before the algorithm begins its processing. The
results reveal the effectiveness of the proposed SbChain+
for community detection in real-world social graphs when
compared with these techniques. In short, the major contri-
butions/enhancements in this work can be summed up by the
following points:

1) Consideration of degree, betweenness centrality and
normalized clustering coefficient for seed node iden-
tification leading to improvement in terms of com-
munity formation.

2) Two improved weight functions based on the concept
of common neighbors using a hyperparameter and
average ODF, respectively, to calculate the interaction
intensity for a pair of nodes. The pros and cons of
each of these functions is also studied.

3) An improved empirical validation of the proposed
approach over both real-world and LFR-benchmark
datasets in terms of identified number of communi-
ties, modularity (Q) and Normalized Mutual Informa-
tion (NMI) for real-world datasets.

The rest of the paper is organized as follows. Section II
presents a brief review of the existing literatures on community
detection. Section III mentions the preliminary concepts used
by the proposed approach. Section IV presents the func-
tional details of our proposed SbChain+ method. Section
V presents a discussion on hyperparameter tuning with pros
and cons of both the functions used in SbChain+. Section
VI presents details about the datasets, experimental settings,
and an analysis of the experimental results. The complexity
analysis of SbChain+ is mentioned in section VII. Finally,
section VIII concludes the paper with future directions of

research.

II. RELATED WORK

A lot of research in the field of community detection has
been conducted in the past few years. In [13] and [14], review
of existing community detection methods is presented. It
divides the detection methods into probabilistic and deep learn-
ing categories. The traditional approaches utilize probability-
based models for community identification, whereas complex
networks are converted to lower dimensional data and worked
upon by using deep learning methods. In this paper, we
consider a classical approach for community detection that
utilizes the parameters from the graph itself. Commonly used
community detection methods for connected data are mainly
based on Markov clustering algorithm, which uses a random
walk process on the given network to identify communities
in the form of clusters. The algorithm in [15] proposed a
function-modularity intensity which uses network edges along
with their weights for community evolution. Another common
approach for identifying communities is implemented using
hierarchy-based methods. The method in [16] is based on edge
removal. It proposes to eliminate the edges having a high score
calculated in terms of betweenness centrality and identifies
optimized community based on the modularity values. A
similar work is presented in [17] which combines nodes that
maximize modularity in an agglomerative hierarchical order.
It begins with assuming each node as a community and keeps
combining nodes until highest value of modularity is achieved.
Another work in [18] used spectral clustering along with global
maximization of the modularity function.

Density-based approaches like Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) [3] and Ordering
Points To Identify Cluster Structure (OPTICS) [19] have also
been proposed in literature for community detection. DBSCAN
uses two user-defined parameters called as the minimum point
threshold and neighborhood radius. OPTICS uses two distance
measures – core-distance and reachability-distance to consider
core as well as the points that lie inside the high-density clus-
ters. Inspired from DBSCAN, a Structural Clustering Algorithm
for Networks (SCAN) was proposed in [20]. It aims to detect
hubs and outliers along with the communities. However, it also
requires two parameters, namely, a minimum similarity thresh-
old parameter and minimum number of neighbors. However,
it does not provide any details about parameter settings. A
popular overlapping community detection approach is Clique
Percolation Method (CPM) which is based on growth of com-
munities using k-cliques [21]–[23], wherein communities are
defined by maximal union of adjacent k-cliques. The adjacency
of cliques is decided by the number of common nodes between
them [22].

Label Propagation Algorithm (LPA) [9] follows another com-
munity detection approach, which changes the label of each
node to the most frequently occurring label in its neighbor-
hood. The process continues until all the nodes are updated
and no more changes can be made to the labels. LPA has been
an inspiration for several other works in community detection.
For example, authors in [24] proposed CenLP (Centrality-
based Label Propagation) algorithm which considers weighted
networks for community detection. They proposed a func-
tion to calculate the centrality of a node and its similarity
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with the neighboring nodes. Another work in [25] creates
a compactness function based on a node’s weight which
is calculated based on two factors: (i) common number of
neighbors between a given node and its surrounding nodes,
and (ii) degree of node under consideration. The neighboring
communities are defined based on high degree nodes and
their high degree neighbors. Communities are identified using
weighted compactness function value between a node and its
neighboring community. An adjustment strategy is devised to
achieve an improved accuracy. Other studies in community
detection (e.g., [26]) used the score of immediate neighbors of
a node to decide its label. Evolutionary algorithm discussed in
[27] also finds the community structure based on modularity
maximization. The communities formed are merged based on
a function calculated via intra-community and intercommunity
links.

A study in [28] finds connected components that form a
preference network, leading to the formation of communities.
The preference network is formed by finding preference nodes
using their spread capabilities. It identifies the highest number
of overlapping neighbors between a given selector node and
its one-path length neighbors. This is calculated using the
gossip algorithm proposed in [29]. Another similarity-based
approach was proposed in [30] which is called Community
Detection Algorithm based on Structural Similarity (CDASS)
and works in two phases. In phase one, the edges bearing a low
similarity value are removed, leading to formation of several
disconnected components in the network. The components are
consolidated eventually to form a set of communities. The
second phase identifies optimal communities from the previous
phase to give the required results using an evaluation function.
The function used in the second phase is realized from different
structural parameters of the nodes in the given network.
Another work that uses local graph information is discussed
in [31] called Flow Propagation Algorithm (FlowPro). It can
compute the community of exactly one node by using the flow
based on edge weights. Each node stores half of the receiving
flow and the process continues until there is no flow left to be
circulated.

A few deep learning-based techniques are presented in [32],
[33]. In [32], a weighted path matrix having path length two
is created. It helps in identifying similarity among a node and
its neighbors with path length of two or less. Further, a deep
sparse autoencoder and k-means clustering algorithm is used
to identify the communities. The work in [33] uses an existing
technique to design an encoder for identification of commu-
nities and their respective nodes. It uses a dual decoder for
unsupervised community detection. Another work in [34] uses
graph compression technique for analysis of huge networks.
The probability of a node to become a seed is calculated using
two parameters, quality, and density of the nodes. Finally, the
number of communities and initial seed set is recognized using
these parameters. A work in [35] develops a framework called
Seed Expansion with generative Adversarial Learning (SEAL)
uses a graph neural network that uses sequential decision
process and is trained via policy gradient. It works on the
concept of discriminator and generator, the former identifies
fake or real communities. While the latter fits in features of
communities the real communities.

In [36], a genetic algorithm for feature selection to find

communities is discussed. Features are identified and then clas-
sified into clusters based on community detection approaches.
Next step employs a genetic algorithm that to pick up features
based on a novel operation. A local community detection
process in [37] works in two parts, where a core detection stage
identifies communities based on modularity density. The next
stage is the extension stage identifies coherent communities
based on Jaccard coefficient.

Our proposed SbChain+ method is inspired from the afore-
said similarity-based approaches which first find the seed
nodes based on certain criteria and then search for highly
connected nodes in the neighborhood. This leads to formation
of snowballs, which keep expanding until no more nodes
can join, eventually leading to the formation of communities.
SbChain+ is compared with both LPA and Infomap that
utilize the concept of random walks and decompose the
network into groups based on probability flow. It is also
compared with Louvain, in which communities are grown
in a hierarchical manner by adding nodes that lead to gain in
modularity, marking the first phase of the community iden-
tification process. Thereafter, weights of the links belonging
to a particular community are summed up to complete the
second phase. Finally, first and second phases are iteratively
repeated until the community formation process converges and
a maximum modularity value is achieved.

III. PRELIMINARIES

For a graph G(V,E) represented by V = {v1, v2, ...vn}
as a set of n nodes and E = {eij = (vi, vj)|vi, vj ∈ V&
∃ a link between vi and vj} as a set of edges, the motive
is to identify the seed or core nodes that form snowballs, and
merging the snowballs/nodes finally to form communities. The
notations used in the subsequent sections of this paper are
briefly described in Table I.

TABLE I. NOTATIONS AND THEIR BRIEF DESCRIPTIONS

Notation Description
N (vi) Set of immediate neighbors of a node vi
k(vi) Degree centrality of vi
b(vi) Betweenness centrality of vi
LCC(vi) Normalized local clustering coefficient of vi
Nbest(V) A set of best neighbors for a given set V ⊆ V , calculated

by a score function
s(n) A set of nodes of length n, called snowball
N (s(n)) Neighbor set of s(n), given by N (v1) ∪ N (v2) ∪

... N (vn)

For a graph G, the SbChain+ algorithm initiates by sorting
the nodes in non-increasing order based on their scores, which
is generated by equation (1), as explained in the following
definition.

Definition 1. (Score). The score for a given node vi is cal-
culated based on its normalized clustering coefficient, degree
and betweenness centrality, as formally presented in equation
(1).

score(vi) = (LCC(vi) + k(vi) + b(vi))/3.0 (1)

The degree, betweenness centrality and clustering coefficient
parameters are used in this study because they provide con-
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nectedness of a node with its neighboring nodes, and con-
nectedness of the neighboring nodes, respectively. The degree
centrality for a node is the fraction of nodes it is connected to
in the graph. Betweenness centrality of a node is given by the
sum of the fraction of all-pairs shortest paths that pass through
it. The clustering coefficient also provides information about
clique formation within the neighbor set of a node. All the
three parameters are normalized to bring them on the same
scale.

It should be noted that equation (1) works differently for a
seed node vi and a snowball s(n). For vi, the individual value
of all the parameters is added, while for a snowball value s(n),
the individual values for each node comprising the snowball
are picked and divided by the number of nodes in the snowball
as given by equation (2).

score(s(n)) = score(v1) + ....+ score(vn)/∥s(n)∥ (2)

The nodes are selected one at a time in non-increasing order
of their score to grow and form communities. Considering vi
be the first selected node, the approach proceeds by finding
the best neighboring node denoted by Nbest(vi) from N (vi).
This node Nbest(vi) is the one having the highest value of
score given by equation (1). After the first round of iteration,
many nodes combine with their best neighbor and their scores
are updated by equation (2). However, it should be noted that
a node vi combines with Nbest(vi) on conditions defined by
two different functions as mentioned below.

Definition 2. (Function-i) According to this function vi com-
bines with Nbest(vi) if the degree of overlap among their
neighbor set, i.e, cardinality of the overlapping set obtained
by taking the intersection of its own neighbor set and that of
the neighbor set of vi is higher than the hyperparameter λ
among all the neighbors of vi, given by equation (3).

weight =

∥∥N (vi) ∩N (Nbest(vi))
∥∥

min
{
∥N (vi)∥, ∥N (Nbest(vi))∥

} > λ (3)

Definition 3. (Function-ii) According to this function vi com-
bines with Nbest(vi) if the value of average ODF formed by the
subgraph of their neighbors is less than the individual average
ODF of vi with N (vi) and Nbest(vi) with N (Nbest(vi)) as
given by equations (4) and (5)

avgODF (S(vi)) >= avgODF (S(s(n))) (4)

avgODF (S(Nbest(vi))) >= avgODF (S(s(n))) (5)

The nodes are bound to follow non-redundant node strategy
when the process of community detection starts. According
to this strategy, a node vi merges with only its prime neigh-
bor given by Nbest(vi) in the current iteration. The same
is applicable for Nbest(vi) as well, as it cannot join other
nodes/snowballs in the same iteration, i.e., both these nodes
are not allowed to join other nodes in the same iteration. This
strategy leads to formation of mutually exclusive communities.

When nodes join with their best node from the respective
neighborhood set, they form snowballs as given by definition
4.

Definition 4. (Snowball). A snowball s(n) is set of connected
components formed by enumerating nodes contained in it,
where n is the cardinality of the set. It is formed either by
merging a node vi with Nbest(vi) or by joining two or more
snowballs.

It is pertinent to note that the superscript n signifies the
number of elements in a snowball. Hence, there can exist many
snowballs with a common value of n. Nonetheless, they can
be distinguished by the elements contained in the set, as these
elements are mutually exclusive. These snowballs (s(n)) form
a subgraph with their immediate neighbors (neighbors of the
nodes that are contained in the it).

The set of neighbors for a snowball depicted by N (s(n)) is
defined by the union of neighbor set of each node contained in
s(n), i.e., N (v1),N (v2), ...,N (vn). A snowball can combine
any of the existing snowballs by a given condition which
calculates the common nodes among the existing snowball and
the newly formed snowball (formed by merging the two snow-
balls). A snowball is allowed to join any one of the existing
snowballs, the one which has the maximum common neighbors
with the current snowball. This process keeps continuing until
no further snowballs can combine, and the final result is the
community set as mentioned in definition 5.

Definition 5. (Community set). A set of community may
comprise of a single node or snowballs or both, that cannot be
merged any further and have maximum value of (modularity)
among all the iterations.

IV. PROPOSED SBCHAIN+

The functional details of the proposed approach for finding
communities, called Enhanced Snowball-Chain or SbChain+
are presented in this section, and it is designed for a simple
graph, i.e., an undirected and unweighted graph. The inspira-
tion for the approach comes from agglomerative hierarchical
clustering which operates in a bottom-up manner, starting with
single nodes as individual communities. These nodes expand
to form snowballs by finding highly connected neighboring
nodes. Snowballs keep adding nodes to form clique-like struc-
tures. The snowballs keep expanding till the criteria is met and
until the convergence is fulfilled, i.e., the set of communities
for a given iteration are identical to the community set from
the previous iteration. The community set with the highest
value of modularity is the final set of community returned by
the algorithm, among all the calculated values from all the
iterations.

A. SbChain+ Algorithm

SbChain+ given by algorithm 4 commences by storing
the structural properties of all the nodes, like their respective
neighbors, local clustering coefficient, and degree, between-
ness centrality, each of which is represented as a set. These
sets are stored in the form of key-value pairs by the name
of N , LCC, k and b, respectively, where the key is defined
by the node and the value varies with the corresponding set
values. The loop keeps running for |V |, where V represents
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Algorithm 1: bestNeighbor(V,N (V), score)
Input : A set V ⊆ V , neighbor list N (V), score of each

node/snowball in the current iteration
Output: Best neighbor set of V i.e, Nbest(V)

1 maxScore← 0
2 V ′ ← Ø
3 if ∥N (V)∥ = 0 then
4 return ∅
5 foreach v ∈ N (V) do
6 foreach snowball in score do

// snowball is a set of nodes
7 if v is a part of snowball then
8 V ′ ← snowball

9 else
10 continue

11 if score(V ′) > maxScore then
12 maxScore← score(V ′)
13 Nbest(V)← V ′

14 return Nbest(V)

Algorithm 2: neighborApproval(i)(N (V1),N (V2), λ)

Input : Neighbor set N (V1), neighbor set
N (V2), hyperparameterλ

Output: Snowball s(n)

1 s← ∅
// s is a snowball

2 if ∥N (V1)&N (V2)∥
min(∥N (V1)∥,∥N (V2)∥)

>= λ then
3 n← ∥V1 ∪ V2∥
4 Add ⟨V1,V2⟩ to s(n)

5 return s(n)

the node set in graph G. However, it exits the loop when two
consecutive iterations result in identical set of communities.

Before the iterations start, an initial score score(1) and neigh-
bor list N is calculated for each node vi as a preprocessing step
in algorithm 4. The score is calculated as per equation (1) or
(2) and signifies the influence of a node/snowball in the graph,
and calculated using the connections among its neighbor (given
by LCC) and its own connections with the other nodes (given
by degree and betweenness centrality). The flag value for each
node is set to 0 for every iteration, so that each node can merge
once in every iteration with its best neighbor. As each iteration
i proceeds, the nodes (or snowballs) represented by the set Vj

from score(i) are arranged in non-increasing order. Each Vj

is checked for a flag value, if the value is set, it means that
the given Vj has merged with some nodes/snowball to form
another snowball in the current iteration, it is not processed

Algorithm 3: neighborApproval(ii)(N (V1),N (V2))

Input : Neighbor set N (V1), Neighbor set N (V2)
Output: Snowball s(n)

1 s← ∅
// s is a snowball

2 if avgODF (N (V1)) >= avgODF (N (V1) ∪N (V2)) and
avgODF (N (V2)) >= avgODF (N (V1) ∪N (V2)) then

3 n← ∥V1 ∪ V2∥
4 Add ⟨V1,V2⟩ to s(n)

5 return s(n)

Algorithm 4: SbChain+(G, λ)
Input : A graph G(V,E) and threshold λ
Output: Final community set C, Q, NMI

1 ∀vi, calculate N (vi), score
1(vi)

2 maxQ← −1,m← |E|, sScore← score1

3 for i← 1 to |V | do
4 Arrange scorei in non-increasing order
5 ∀vi, flag(vi)← 0
6 foreach Vj ∈ scorei.keys do

// Vj is a set of nodes or snowballs
7 if flag(Vj) = 1 then
8 continue

9 V ′ ← bestNeighbor(Vj ,N (Vj), score
i)

// V ′ is Nbest(Vj)
10 if V ′ = ∅ then
11 Add Vj to community
12 continue

13 if flag(V ′) = 1 then
14 continue

15 s(n) ← neighborApproval(i)(N (Vj),N (V ′), λ)
16 if s(n) = ∅ then
17 continue

18 maxInter ← 0, flag(Vj), f lag(V ′)← 1

19 sScore(s(n)), setflag ← 0

20 foreach s ∈ s(n) do
21 sScore(s(n))← sScore(s(n)) + sScore(s)

22 scorei(s(n))← sScore(s(n))
∥n∥

23 for j ← 1 to |comm| do
24 weight← ∥s(n)&comm(j)∥

min(∥s(n)∥,∥comm(j)∥)
25 if weight > maxInter then
26 maxInter ← weight
27 setflag ← 1, saveIndex← j
28 else
29 counter ← counter + 1

30 if j = |comm| and setflag = 1 then
31 comm(j)← comm(j) ∪ s(n)

32 sScore(comm(j))←
sScore(comm(j)) + sScore(s(n))

33 scorei+1 ← sScore(comm(j))
∥sScore(comm(j))∥ , score

i ←
sScore(s(n))

∥n∥
scorei.pop(Vj), scorei.pop(V ′), scorei+1.pop(s(n))

34 if counter = |comm| then
35 counter ← 0

36 Add s(n) to comm

37 scorei, scorei+1 ← sScore(s(n))

∥sScore(s(n))∥
38 scorei.pop(Vj), scorei.pop(V ′)

39 Copy keys from scorei to scorei+1 and comm which were
not updated

40 Q←Modularity(m, comm,E), NMI ←
NMI(comm,GT )

41 if maxQ < Q then
42 maxQ← Q,maxNMI ← NMI

43 if scorei.keys = scorei−1.keys then
44 break

45 return community,maxNMI,maxQ
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any further and the iteration continues with the next set in
the order. Hence, as per the non-redundant node strategy, the
algorithm jumps to the next best Vj . The best neighbor for a
node Vj is represented by N (Vj) is returned by the algorithm
1. It should be noted that both Vj and Nbest(Vj) are sets;
therefore, they can contain more than one node. If these sets
contain more than one node then they are called a snowball.
Hence, it is represented as a set V ′. It should be noted that if
V ′ is an empty set, therefore, Vj is a isolated node and forms
a community of its own. Next, V ′ is also verified further for
non-redundant node strategy, by checking its respective flag
value. Further, a node joins its best neighbor based on two
neighbor approval functions as discussed further.

1) neighborApproval(i): It is should be noted that we
discuss two functions for approval of the best neighbor for a
given node as given by algorithm 2 and algorithm 3. According
to algorithm 2 called neighborApproval(i), both the sets, i.e.,
N (V1) and N (V2), are checked for overlapping criteria using
the hyperparameter λ. This parameter lays the minimum value
of overlap that should exist for two snowballs to combine. If
their weight given by (1) is greater than or equal to the λ value,
then the sets merge to form a snowball s(n) which is returned
by the algorithm else it returns an empty set.

2) neighborApproval(ii): In algorithm 3
neighborApproval(ii), the average out degree function
of the original two sets given by N (V1) and N (V2) and their
union (V1 ∪ V2) is calculated as per equation (6) given by
[38].

avgODF (C) =
1

nC

∑
u∈C

|{(u, v) ∈ E : v /∈ C}|
ku

(6)

It gives the average of the number of outgoing edges for
each community node as compared to the total edges incident
on that node. Therefore, if the value of avgODF is smaller
for the combined snowball (than the initial two sets), s(n) is
returned else an empty set is returned.

Considering neighborApproval(i) in algorithm 4, if a snow-
ball s(n) is returned then the flag for all the nodes in the
snowball is set to one. Therefore, these nodes cannot combine
with other nodes in the current iteration, leading to formation
of disjoint communities. Further, the score of the snowball is
calculated by taking an average of the score of the elements in
the snowball. It should be noted that a new snowball is allowed
to merge with an existing snowball on a criteria stating that
they have maximum overlap among all the existing snowballs,
given by a parameter called weight as mentioned in step 15.
A snowball is allowed to join only one existing snowball,
i.e., the one with the maximum common nodes. scorei and
scorei+1 are updated to include the average score values for
of snowball and merged snowball, respectively. If the new
snowball does not combine with any existing snowball, then
it forms a community of its own as per step 34. The nodes
that did not merge with other nodes/snowballs are copied from
scorei to scorei+1 and comm. In every iteration, modularity
and NMI (using ground truth GT) are calculated. This process
continues till two consecutive iterations return an identical
community set. The final set of communities is returned along
with the respective modularity and NMI values, as per the

algorithm has the maximum modularity value among all the
iterations.

V. DISCUSSION

The hyperparameter (λ) used in this study determines
the limit of common nodes that should exist between two
subgroups to merge them to form a snowball. This parameter
is decided upon empirically, but it is guided by the ratio of
edges to nodes in the social graph. It is also given by half of the
average degree (kavg) of the nodes, as given in Table XI. It can
be observed from this table that kavg > 19 for all LFR datasets.
This signifies that the nodes are densely connected in the graph
and can merge on a low λ value. Setting a high value of λ
would result in joining of all the nodes, and eventually leading
towards the formation of a single community. Therefore, it is
observed that the results are best around λ ≤ 0.6. Similarly,
for lower values of average degree (i.e., kavg < 5), a higher
percentage of overlap is required because the neighbors (or
k(vi)) of two nodes/subgroups to be merged can be very low.
The low degree nodes can easily be merged at lower λ values,
leading to the formation of a single community in the entire
dataset. Hence, based on our experiments, the suitable value
for the λ hyperparameter is, λ > 0.6.

It should be noted that SbChain+(i) outperforms
SbChain+(ii) in terms of the quality of the identified
communities. The reason for this is that the λ parameter allows
a node or snowball to join other nodes or snowballs because
the overlap among them keeps increasing with each iteration.
Whereas, average ODF in case of SbChain+(ii) has stricter
rules for merging. Therefore, the overlap among snowballs
is not as much as in the case of former technique, i.e., the
growth of the communities is comparatively slower in latter.
The drawback associated with the former technique is that,
although the λ value is guided by the ratio of number of edges
to the number of nodes, there is a scope of error associated
with it. While, the shortcoming of SbChain+(ii) is that
it produces average results since it allows a node to merge
with its best neighbor based on increasing the density of edges
inside a community than outside.

SbChain+ improves upon SbChain by changing the the
seed function to include various centralities, discussing two
neighbor finding functions (with and without parameters). It
can be seen that both SbChain+(i) and SbChain+(ii)
outperform SbChain in terms of the quality of the identified
community. Although, SbChain+ shows comparable or good
results for real-world datasets, it needs to be checked for large
networks.

VI. EXPERIMENTAL SETUP AND RESULTS

This section describes the results and their analysis
obtained by applying SbChain+ approach with two different
functions, neighborApproval(i) and neighborApproval(ii)
on various datasets, namely, SbChain+(i) and
SbChain+(ii), respectively. The efficacy of these
two techniques is verified using six real-world datasets
and two sets of computer-generated Lancichinetti Fortunato
Radicchi (LFR) benchmark datasets having 1K and 5K nodes,
respectively. The details of the datasets are presented in
the following subsections. Modularity (Q) and Normalized
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Fig. 1. Visualization of the performance comparison results of SbChain+ with state-of-the-art methods over real-world datasets in terms of NMI.

Mutual Information (NMI) are used to assess the quality of
communities formed by SbChain+ and the other techniques.
It should be noted that the values marked with ∗ represent a
very small number and is rounded off to 0.00.

TABLE II. STATISTICS OF REAL-WORLD NETWORKS

Dataset #Nodes #Edges #Communities
Karate 34 78 2
Dolphin 62 159 2
Polbooks 105 441 3
Football 115 613 12
Email [39] 1005 16064 42
Polblogs [40] 1490 16715 2

A. Real-World Datasets

The real-world datasets used in our experiment are
briefly summarized in Table II1. The performance eval-
uation and comparison results of SbChain+(i) and
SbChain+(ii) with some of the state-of-the-art methods,
including Infomap [8], Label Propagation Algorithm (LPA))
[9], LPA (semi-synchronous) [10], Louvain [11], and
our previously developed SbChain, in terms of Normalized
Mutual Information (NMI), and modularity (Q) are shown in
Tables III and IV, respectively.

It can be observed from the Tables III and IV that SbChain+
performs significantly better or comparably most real-world
datasets. The average NMI produced by SbChain+(i) is
comparable to the average NMI by Infomap among all
the techniques. It is pertinent to note that both SbChain+
techniques are seen to perform better than SbChain as shown
in Fig. 1 and 2. It should also be noted that SbChain and
LPA techniques produce different result every time they are
run.

1http://www-personal.umich.edu/∼mejn/netdata/

B. Synthetic Datasets

As described in [41], Lancichinetti-Fortunato-Radicchi
(LFR) benchmark networks are used to generate synthetic
datasets by tuning different parameters. In our experiments,
LFR datasets with 1K and 5K nodes are generated using the
parameter values presented in Tables V and VI, respectively.
These datasets are denoted as LFR-1K and LFR-5K datasets,
respectively. Out of these parameters, µ is the mixing param-
eter and defines the number of connections with neighbors
in other communities. The value of µ is set within the range
of [0.1, 0.5] for LFR-1K and LFR-5K, and the step-size is
changed at an interval of 0.1 for both LFR-1K and LFR-
5K datasets. It controls the percentage of edges between
communities. By changing the µ values in the given range,
different datasets are created and accordingly named as LFR-
1K.1 – LFR-1K.5 and LFR-5K.1 – LFR-5K.5. Values upto 0.5
are considered for µ parameter as the modular structure of a
community becomes fuzzy beyond this value.

The empirical evaluation and comparison results of
SbChain+ with the aforementioned techniques in terms of
NMI, and modularity (Q) are presented in Tables VII-VIII
for LFR-1K dataset, and in Tables IX-X for LFR-5K dataset.
These tables present the varying µ in the range of [0.1, 0.5]
for LFR-1K and LFR-5K datasets, with the respective NMI,
and Q for all the approaches.

It can be seen that our technique gives average results in
most of the cases, The NMI for SbChain+ is LFR-1K as
can be seen from Table VII is seen to outperform SbChain,
LPA(SS). And, in general SbChain+(i) produces better
results than SbChain+(ii). It is also seen that modularity
values for LFR-1K from VIII are seen to be average, i.e.,
Infomap, Louvain and LPA produce a better modularity
value than SbChain+. Fig. 3 and 4 show comparison charts
for LFR-1K datasets in terms of NMI and modularity.

SbChain+(i) performs averagely in for LFR-5K
datasets in terms of NMI and modularity, as seen from Tables
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TABLE III. PERFORMANCE COMPARISON OF SBCHAIN+ WITH STATE-OF-THE-ART METHODS OVER REAL-WORLD DATASETS IN TERMS OF NMI

Datasets Community Detection Methods
Infomap LPA(SS) Louvain LPA SbChain SbChain+(i) SbChain+(ii)

Karate 0.70 0.24 0.59 0.71 0.39(0.3) 0.72(0.8) 0.43
Dolphin 0.55 0.02 0.51 0.68 0.12(0.3) 0.65(0.7) 0.39
Football 0.92 0.23 0.89 0.91 0.38(0.8) 0.73(0.7) 0.62
Polbooks 0.49 0.37 0.57 0.58 0.45(0.6) 0.63(0.7) 0.32
Email 0.65 0.03 0.60 0.03 0.47(0.4) 0.64(0.8) 0.57
Polblogs 0.33 0.44 0.37 0.39 0.26(0.8) 0.20(0.6) 0.17
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Fig. 2. Visualization of the performance comparison results of SbChain+ with state-of-the-art methods over real-world datasets in terms of modularity.

TABLE IV. PERFORMANCE COMPARISON OF SBCHAIN+ WITH STATE-OF-THE-ART METHODS OVER REAL-WORLD DATASETS IN TERMS OF
MODULARITY (MOD.)

Datasets Ground truth Community Detection Methods
Infomap LPA(SS) Louvain LPA SbChain SbChain+(i) SbChain+(ii)

Karate 0.37 0.40 0.32 0.42 0.32 0.26 0.31 0.17
Dolphin 0.37 0.51 0.46 0.50 0.41 0.28 0.32 0.26
Football 0.55 0.60 0.58 0.60 0.58 0.25 0.12 0.09
Polbooks 0.41 0.52 0.48 0.52 0.48 0.44 0.47 0.18
Email 0.29 0.39 0.00* 0.40 0.00 0.08 0.03 0.04
Polblogs 0.40 0.42 0.43 0.42 0.42 0.15 0.09 0.06

TABLE V. PARAMETERS USED TO GENERATE LFR-1K NETWORK

Parameter Value
Nodes (N) 1000
Average degree (⟨k⟩) 20
Minimum community size (cmin) 20
Maximum community size (cmax) 100
Maximum degree (kmax) 50
Community size distribution exponent (β) 1
Degree distribution exponent (γ) 2
Mixing parameter (µ) [0.1, 0.5]

TABLE VI. PARAMETERS USED TO GENERATE LFR-5K NETWORK

Parameter Value
Nodes (N) 5000
Average degree (⟨k⟩) 20
Minimum community size (cmin) 50
Maximum community size (cmax) 100
Maximum degree (kmax) 50
Community size distribution exponent (β) 1
Degree distribution exponent (γ) 2
Mixing parameter (µ) [0.1, 0.5]
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TABLE VII. PERFORMANCE COMPARISON OF SBCHAIN+ WITH STATE-OF-THE-ART METHODS OVER LFR-1K DATASETS IN TERMS OF NMI

Datasets Community Detection Methods
Infomap LPA(SS) Louvain LPA SbChain SbChain+(i) SbChain+(ii)

LFR-1K.1 1.00 0.08 1.00 1.00 0.19(0.4) 0.69(0.6) 0.47
LFR-1K.2 1.00 0.07 1.00 1.00 0.27(0.5) 0.65(0.6) 0.73
LFR-1K.3 0.08 0.08 0.08 0.08 0.27(0.4) 0.48(0.8) 0.28
LFR-1K.4 1.00 0.05 1.00 1.00 0.24(0.6) 0.59(0.6) 0.43
LFR-1K.5 1.00 0.00 1.00 0.96 0.31(0.4) 0.61(0.6) 0.48
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Fig. 3. Visualization of the performance comparison results of SbChain+ with state-of-the-art methods over LFR-1K datasets in terms of NMI.

TABLE VIII. PERFORMANCE COMPARISON OF SBCHAIN+ WITH STATE-OF-THE-ART METHODS OVER LFR-1K DATASETS IN TERMS OF MODULARITY

Datasets Community Detection Methods
Infomap LPA(SS) Louvain LPA SbChain SbChain+(i) SbChain+(ii)

LFR-1K.1 0.83 0.83 0.83 0.83 0.66 0.22 0.19
LFR-1K.2 0.74 0.74 0.74 0.74 0.38 0.14 0.11
LFR-1K.3 0.83 0.83 0.83 0.83 0.50 0.15 0.19
LFR-1K.4 0.53 0.44 0.53 0.53 0.18 0.01 0.07
LFR-1K.5 0.45 0.00 0.45 0.43 0.17 0.00 0.05

TABLE IX. PERFORMANCE COMPARISON OF SBCHAIN+ WITH STATE-OF-THE-ART METHODS OVER LFR-5K DATASETS IN TERMS OF NMI

Datasets Community Detection Methods
Infomap LPA(SS) Louvain LPA SbChain SbChain+(i) SbChain+(ii)

LFR-5K.1 1.00 0.12 1.00 1.00 0.15(0.7) 0.76(0.6) 0.55
LFR-5K.2 1.00 0.13 1.00 1.00 0.37(0.8) 0.71(0.6) 0.55
LFR-5K.3 1.00 0.13 1.00 1.00 0.38(0.7) 0.67(0.6) 0.56
LFR-5K.4 1.00 0.10 1.00 1.00 0.38(0.7) 0.66(0.6) 0.53
LFR-5K.5 1.00 0.09 0.98 1.00 0.39(0.7) 0.66(0.6) 0.53

IX and X, respectively. Although, it shows better results than
LPA(SS), SbChain and SbChain+(ii). Fig. 5 and 6
show both the NMI and modularity values produced by all
the techniques.

Therefore, it is seen that for real-world datasets SbChain+ is
seen to perform better in terms of the identified communities
as compared to the synthetic datasets. It should be seen that the
average NMI produced by real-world datasets is at par with
the other techniques results, and performs produces average
results for LFR-1K and LFR-5K.

VII. COMPLEXITY ANALYSIS

The best-case of the algorithm arises when all the nodes
join different nodes/snowballs in each iteration, i.e., no node
is left free in any iteration. This leads to a minimum of
log n iterations, where the number of nodes/snowballs also
reduces to its half from the previous iteration. Therefore, a
time complexity of O(n) defines the best-case. The worst-case
arises when only a single node joins another node/snowball
in an iteration. This leads to n − 1 iterations and the time
complexity goes to O(n2). It is also evident that SbChain+
works well on both small and large real-world datasets in terms
of the identified communities. However, on LFR datasets, it
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Fig. 4. Visualization of the performance comparison results of SbChain+ with state-of-the-art methods over LFR-1K datasets in terms of modularity.
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Fig. 5. Visualization of the averaged performance comparison results of SbChain+ with state-of-the-art methods over LFR-5K datasets in terms of NMI.

TABLE X. PERFORMANCE COMPARISON OF SBCHAIN+ WITH STATE-OF-THE-ART METHODS OVER LFR-5K DATASETS IN TERMS OF MODULARITY

Datasets Community Detection Methods
Infomap LPA(SS) Louvain LPA SbChain SbChain+(i) SbChain+(ii)

LFR-5K.1 0.88 0.88 0.88 0.88 0.39 0.23 0.09
LFR-5K.2 0.78 0.78 0.78 0.78 0.20 0.09 0.09
LFR-5K.3 0.68 0.68 0.68 0.68 0.17 0.02 0.06
LFR-5K.4 0.58 0.58 0.58 0.58 0.14 0.00* 0.06
LFR-5K.5 0.48 0.44 0.48 0.48 0.12 0.00* 0.05
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Fig. 6. Visualization of the performance comparison results of SbChain+ with state-of-the-art methods over LFR-5K datasets in terms of modularity.

TABLE XI. HYPERPARAMETER λ VALUES

Average degree λ
< 5 > 0.6
> 10 <= 0.6

is seen to give average performance when compared to the
best performing community detection methods. It should be
noted that in comparison to LPA(SS) and SbChain, both,
SbChain+(i) and SbChain+(ii) show better perfor-
mance in terms of the identified communities.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented two approaches for en-
hanced snowball-chain approach, SbChain+ for detecting
communities in social graph. In general, SbChain+ lays em-
phasis on finding nodes that have a high degree of interaction
with its neighbors and a densely connected neighborhood. This
reveals the core nodes, i.e., the nodes that may be a part
of a clique and would further contribute towards formation
of snowballs and eventually a community. SbChain+ im-
proves over SbChain in terms of cardinality of the identified
communities, NMI, and modularity. In SbChain+(i), this
is achieved by changing the weight function, which is based
on maximizing the intersection of the neighbors between two
nodes using a λ hyperparameter. The hyperparameter (λ)
which defines the minimum overlap required for two snowballs
to get merged for community formation. This parameter also
helps in refinement of the communities – the higher the
value of λ, higher is the cohesion. The low value of λ gives
higher coupling. On the other hand, SbChain+(ii) focusses
on average ODF and does not use any hyperparameter and
hence, detects better communities than SbChain. Whereas,

SbChain focussed on maximizing both the common neigh-
bors as well as the score between the nodes; by relaxing this
criteria, the results are seen to be better than those given by
SbChain.

Further, SbChain+ method can be extended and im-
proved upon by making it a generic framework for find-
ing communities closer to ground truth, in both simple and
weighted/directed social graphs. Also, the technique can ac-
commodate identifying dynamic communities based on the
time-varying functions. This can be seen as a promising future
direction of research.
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