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Abstract—Timely disease diagnosis in paddy is fundamental
to preventing yield losses and ensuring an adequate supply of rice
for a rapidly rising worldwide population. Recent advancements
in deep learning have helped overcome the limitations of unsuper-
vised learning methods. This paper proposes a novel PaddyNet
model for enhanced accuracy in paddy leaf disease detection.
The PaddyNet model, developed using 17 layers, captures and
models patterns of different disease symptoms present in paddy
leaf images. The effectiveness of the novel model is verified by
applying a large dataset comprising 16,225 paddy leaf datasets
across 13 classes, including a normal class and 12 disease
classes. The performance results show that the new PaddyNet
model classifies paddy leaf disease images effectively with 98.99%
accuracy and a dropout value of 0.4.

Keywords—Image annotation; data augmentation; deep learn-
ing; paddy leaf disease detection; paddyNet

I. INTRODUCTION

Plant disease threatens food production and disrupts food
security worldwide. It was reported, for instance, that though
rice cultivation was set to increase by 1.8 percent in 2021/22
to a new peak of 520.7 million tonnes [1], its supply was
diminished by disease. Rice is among the most widely con-
sumed foods globally, with a total consumption of 511.4 and
501.2 million tonnes in 2020-21 and 2019-20, respectively.
These statistics highlight the relentless food shortages brought
on by the devastation plant disease has wreaked on food
production, turning it into a major global problem [2]. So
then, increased agricultural productivity of up to 70% is
required to reduce paddy leaf disease and provide food for
a rapidly growing population. However, recurrent problems
with infections, the improper monitoring of rice farmlands,
and the regular occurrence of paddy leaf diseases destroy
rice yields and result in production losses. Various diseases
regularly occur in the paddy leaves, which is the reason for
the production loss. Additionally, the overuse of chemicals like
bactericides and fungicides in the agro-ecosystem has created
conflict in the fight against plant disease [3]. For a sustained
production rate, an algorithm is to be designed for predicting
paddy leaf characteristics so as to detect leaf diseases. Early
predictions of paddy leaf-related infections can help bolster the
quality and quantity of rice production. Timely interventions
help slow the rapid pace of the disease and maximize the
cultivation of healthy rice leaves [4].

Paddy leaf-related disease symptoms are typically distin-
guished by their texture, colour, and form [5][6][7]. Artificial

intelligence-based automated identification methods are cur-
rently recognized as the best for paddy leaf disease recognition.
The manual prediction of paddy leaf disease has been shown
to be erroneous, expensive, and difficult to predict in advance.
The condition is diagnosed far more accurately and simply
using computer-based procedures. As a result, an incredible
range of diseases have since been identified, the effects of
which on leaves are yet to be classified. Computer-based iden-
tification methods fail to depict the effects of environmental
factors on paddy leaf disease, and offer slow identification
speeds as well as inaccurate information metrics. Therefore,
detection techniques that identify paddy leaf diseases quickly
and accurately through leaf features have been developed to
enable the farming community to make appropriate decisions
[8][9].

Traditional techniques such as computer vision [10], pat-
tern recognition [11], support vector machines [12][13][14],
image processing [15], and convolutional neural net-
works [16][17][18] have long been used to identify diseased
paddy leaves with high detection accuracy and determine
results rapidly. A paddy disease detection framework [19] was
proposed using features from the affected parts of the leaf,
which were selected from trained leaf images and classified
using the support vector machine. Additionally, the SVM and
Naive Bayes classifiers [20] were applied to test images using
three image classes that included healthy leaves, brown spots,
and leaf blast lesions. The paddy data set was captured using a
Nikon COOLPIXP4 digital camera. The experimental results
revealed 79.5% accuracy for the SVM and 68.1% for the Naive
Bayes classifiers. The multilayer perceptron method [12] could
identify six types of paddy disease, based on the texture and
color of paddy images, with 88.56% accuracy. Furthermore,
four classes of paddy diseases were identified with high
accuracy of 92.5% using the Fractal Fourier Technique. This
technique was also used to find four types of rice disease [21].

However, real-time applications of existing techniques
across agriculture and other fields often involve the use of
small and slow models that are specifically intended for devices
with low computational power while identifying disease with
good-to-better accuracy. Further, existing techniques lack noise
sensitivity and produce reduced classification accuracy. The
proposed PaddyNet method identifies paddy diseases quickly
and classifies them from visual paddy leaf images based on
deep learning models. This system utilizes a feature extraction
technique that reduces noise and thereby magnifies the disease
spot with no resultant loss of information.
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The remaining sections of the paper are organized as
follows: Section II reviews the literature on plant disease
identification. Section III discusses the materials and method-
ologies used and describes the real-time paddy dataset in detail
in Section III-A. Section IV presents the experimental findings
used to determine the performance metrics of the proposed
solution. Finally, Section V concludes the paper with directions
for future work.

II. RELATED WORK

Several state-of-the-art outcomes have been analyzed using
image processing techniques, including computer vision and
artificial intelligence, across different fields of research. The
techniques are applied to images to make it easier to resolve
image segmentation, feature selection and extraction, and
classification using deep learning (DL) [22]. Deep learning,
a sub-section of machine learning, is widely used to recognize
input image patterns [23][24] by extracting parameters from
paddy plant images and examining crop stress. A paddy disease
identification approach was used to classify paddy image fea-
tures using convolutional neural networks [25]. Ten different
types of rice disease images were used for the experimental
results.

In addition to diagnosing paddy leaf disease, advanced
identification techniques have also been used on crops such
as wheat [26], brinjal [27], pumpkin [28], tomato [29], and
potato [30]. Two approaches were used to diagnose diseased
leaves using the GoogLeNet and Cifar10 models [8]. With
a focus on detecting disease in maize, the proposed ap-
proach achieved 98.9% and 98.8% overall accuracy for the
GoogLeNet and Cifar10 models, respectively. On the other
hand, the AlexNet model that was used [31] to diagnose
apple leaf disease obtained the highest accuracy of 97.62%.
In addition, a novel CNN was developed [32][19] to identify
cucumber leaf disease with high accuracy of 94.9%. A convo-
lutional neural network technique was used [33] for crop leaf
classification to identify leaf disease. From the experimental
results, four classes were correctly identified, including a
normal leaf class, while the remaining constituted the affected
image classes. In all, 100 images for each class were taken for
the experiment and the results showed that the model achieved
92.85% overall accuracy. The proposed method obtained ac-
curacy of 99.9%, 91%, 87%, and 93.5%, respectively, for each
class [34]. A DCNN was used to diagnose rice diseases and
pests. The proposed method considered 1426 images for the
experimental results and achieved 93.30% accuracy [35].

The paper [36] used the proposed CNN architecture on
three datasets PlantVillage, the Rice Diseases Image Dataset,
and the Cassava Leaf Disease Dataset. The method extracts
depth features from the images to reduce the computation cost
and define the number of parameters applied on the model.
This work obtained the highest performance accuracy for all
three data sets. The proposed approach used deep ensemble
neural networks [3] to diagnose 14 different types of crop
diseases with 14 classes. The images were pre-trained using
seven deep learning models such as the ResNet50, ResNet101,
InceptionV3, DenseNet121, DenseNet201, MobileNetV3, and
NasNet. The proposed ensemble model achieved higher accu-
racy than the other pre-trained models.

It is concluded from a study of the literature above that
much of the research on diseased leaf detection employed
deep learning methods to train the classifier models for high
accuracy. This paper proposes a PaddyNet neural network
model for improved leaf detection classification accuracy. The
proposed model uses a large number of data images for training
and testing, and classifies the images efficiently into their
respective classes with high accuracy. Also, to maximize the
performance of the PaddyNet model, an optimizer is developed
alongside to produce optimal results. As a result, the PaddyNet
deep learning model offers significant improvements overall
in terms of the accuracy of paddy leaf detection classification.
Real paddy plant leaf images were collected from paddy fields,
using a smartphone camera, to validate the proposed PaddyNet
deep learning model. The proposed approach addresses the
problem of paddy disease classification and its automated
identification.

III. MATERIALS AND METHODS

Fig. 1 represents an overview of the innovative method
employed for paddy leaf disease classification. An improved
novel algorithm called PaddyNet is proposed to extract leaf
image features and classify diseased leaf images much more
accurately. The proposed method includes the three steps of
dataset collection, data preprocessing, and augmentation. In
the first step, dataset collection, paddy leaves are gathered from
actual paddy fields. In the second step, data preprocessing, du-
plicate images are deleted. In the third step, augmentation, each
paddy image is annotated with the help of specific agricultural
officers. In addition, suitable image augmentation techniques
are used to expand the data. During the data splitting stage,
the final cleaned data is divided into train, validate, and test
subsets, following which the proposed PaddyNet model is
trained utilizing the train and validation sets for the model
development process. Finally, the results are evaluated after
the PaddyNet model is trained and validated using performance
metrics and confusion matrices on the test set of paddy leaf
images.

A. Data Collection and Annotation

Visual images of paddy leaves were captured using the
CAT S62 Pro smartphone in Tirunelveli district of Tamil Nadu,
India [37]. Initially, more than 25,000 images were collected
from the data set. Every sample was examined carefully
and redundant data such as noisy and out-of-focus images
were removed. Finally, following the cleaning process, 16,225
images were chosen with the assistance of agricultural officers.
The cleaned images were labeled into 12 disease categories
and 1 healthy category. Further, metadata on the age and type
of paddy were collected as well [38] and the Paddy Doctor
Dataset data gathered and annotated. The procedures used are
shown in Fig. 2.

B. Image Augmentation

Image augmentation in image analysis enhances both the
quantum of data available and the performance of the model.
This is done by generating image categories that reduce overfit-
ting issues and enhance the model’s ability for interpretation
during the training phase. By applying different image data
augmentation techniques, for instance, many more paddy leaf
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Fig. 1. An overview of the methodology for paddy disease classification using PaddyNet model.

Fig. 2. Data collection and annotation process.

images can be generated by varying image orientation and
size. Common data augmentation operations include random
rotation, width and height shift, horizontal and vertical flip,
shear, fill mode, and rescale. Sample pictures of leaves with
12 different diseases are shown in Fig. 3.

C. PaddyNet Model Architecture

The proposed PaddyNet model has 17 layers. Using visual
images, the CNN model identifies paddy leaf disease. The
proposed model has five requisite components: a convolutional
layer, a pooling layer, a dense layer, a flatten layer, and an

Fig. 3. Sample paddy disease images in our dataset.

activation function. A brief discussion of the five components
follows below.

1) Convolutional layer: This the primary and first block
of a CNN model. The proposed PaddyNet model uses seven
conv2D layers. In the convolutional block, the convolution
operation extracts related features from the input paddy image.
To perform convolution operations using backpropagation, the
model is trained using backpropagation [34] and its weight
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updated, based on the error rate revealed during the preceding
iteration. Forward propagation is marked by movement from
the origin layer to the destination layer in the network. The loss
is obtained at the end of the network, using the loss function
to avoid the error. Equations (1-5) are used to calculate
the convolution layers [36]. Seven 2D convolutional layers
are added using Conv2D in the model. Forward propagation
calculates Z based on the input value ( X

[k]
(i+r)(j+s)), weight

value (W
[k]
rs ), and (p = i+ r, q = j + s).

Z =

n∑
j=0

W [k]
rs X

[k]
(p)(q) (1)

Y
[k]
ij =

m∑
i=0

Z + b[k] (2)

Back Propagation: to calculate the error function (C) based
on the predicted value (Y

[k]
ij ) and actual value (Yact).

C = (Y
[k]
ij − Yact)

2 (3)

To calculate error function for weight (∂W [k]
rs ).
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To calculate error function for bias (∂b[k])

∂C

∂b[k]
=

p−m∑
i=0

q−n∑
j=0

∂C

∂Y
[k]
ij

∂Y
[k]
ij

∂b[k]
(5)

2) Pooling layer: When the feature in the image is too
large, the convolutional lock employs the max pooling layer
to minimize the feature map. The model uses seven max
pooling layers. The three pooling layers - max, average, and
sum pooling have the benefits of quick computing, limiting
overfitting, and using little memory. Max pooling is applied
here to determine the highest values from each region of the
feature map using formulas 6 and 7. Seven 2D max pooling
layers are added using MaxPooling2D in the model.

Yij = (0, Xpq) (6)

∂C

∂Xpq
=

∂C

∂Y
[k]
ij

∂Y
[k]
ij

∂Xpq
.....

{
∂C

∂Y
[k]
ij

(Y
[k]
ij = Xpq)

0 otherwise

}
(7)

3) Flatten: Following the application of the pooling layer,
the complete matrix of generated feature maps is converted
into a single volume using the flatten layer. The final fully
connected neural network receives and classifies it.

4) Fully connected layer: Two fully connected layers are
used after the flattening layer. The output of the previous layer
is fed in the form of values to the last dense layer to decide
which features mostly match a class. When calculating the
product of the weights, a fully linked layer yields precise
probabilities for the different paddy classes. The outputs are
categorized using the softmax activation function.

5) Activation function: The softmax function S(Z)i [39]
is utilized to predict the 13 classes shown in Equation (9).
Additionally, the ReLU activation function [40] employed as
depicted in Equation (8) provides demonstrably high accuracy
with max pooling2D: j = 1.....k and z = (zj ...zk).

ReLU(x) = (0, x) (8)

S(Z)i =
eZi∑k
j=1 e

Zj

(9)

The proposed PaddyNet model architecture is shown in
Fig. 4. The model has seven convolutional layers which include
batch normalization, ReLU, max pooling2D layers, two dense
connected layers, and a 13-way softmax activation in the
output. In order to reduce data overfitting in each convolution
block and the fully connected layer, a “dropout” method is
used. The max pooling2D layer helps reduce the parameters
used and surpasses average pooling in terms of performance.
The Adam optimizer is used to reduce the loss as efficiently as
possible and train the PaddyNet model in little time. The CNN
model combines all the layers to obtain the highest accuracy.
The novel model is trained and compared using several dropout
values ranging from 0.2 to 0.8.

The biggest challenge of all in building the proposed
PaddyNet model lay incombining all the layers, features, and
optimizer values to offer excellent prediction performance. The
novel model is tested by adding more layers, altering activation
functions, and changing the optimizer values. While categoris-
ing 10 distinct categories, for instance, a basic 13-layer CNN
model produced 88.84% accuracy. Next, the addition of an
extra conv2D layer, maxpool2D, batch normalization, dropout,
and activation to our 17-layer PaddyNet model resulted in
98.99% accuracy in identifying the 13 classes.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We implemented the proposed PaddyNet model using
Keras and TensorFlow. All experiments were conducted on
the Kaggle platform with GPU kernels to improve computa-
tional performance. The list of hyperparameters used in our
experiments is shown in Table I. In addition, batch size values
of 32, 64, 100, and 160 were used, along with a learning rate
of 0.0001. The dropout was varied from 0.2 to 0.8, and the
epoch values were 25, 50, 75, 100, 125, 150, 175, and 200.
Additionally, the performance of the proposed PaddyNet model
was compared to that of five models (the DCNN, Xception,
MobileNet, ResNet34, and VGG16), using five performance
metrics [41]. The weights of the models, except the DCNN,
were initialized based on ImageNet.

B. Results and Discussion

Table II and Fig. 5 show that the PaddyNet model’s
scores for all measures increase proportionately with the
epoch. Epoch 200 produced the highest performance in terms
of 98.99% accuracy, 98.5% precision, 98.65% recall, and
98.2% F1 score, respectively. Table III and Fig. 6 compare
the accuracy of the PaddyNet model to five existing models.
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Fig. 4. PaddyNet model architecture.

TABLE I. LIST OF HYPERPARAMETERS OF THE PADDYNET MODEL

Parameters Values

Batch Size 32, 64, 100, 160

Dropout 0.2 to 0.8

Epoch 25, 50, 75, 100, 125, 150, 175, 200

Learning Rate 0.0001

Optimizer Adam

TABLE II. COMPARISON OF PERFORMANCE METRICS OF PADDYNET
MODEL WITH DIFFERENT EPOCHS

Epoch Accuracy Precision Recall F1 Score
25 78.31 66.57 67.56 72.65
50 90.95 88.97 85.63 89.2
75 92.42 90.51 89.65 88.67

100 94.05 92.88 91.71 92.88
125 96.23 93.89 95.27 95.27
150 97.24 96.91 95.88 96.85
175 97.53 97.20 96.92 97.10
200 98.99 98.50 98.65 98.2

The PaddyNet model achieved the highest score, followed
by Resnet34 [42][41], with 97.50% accuracy, 97.52% pre-
cision, 97.50% recall, and F1 score of 97.50%. The simple
DCNN [42][41] model performed poorly with 88.84% accu-

racy, 89.22% precision, 88.84% recall, and 88.81% F score.
Fig. 7 compares the performance of PaddyNet, based on five
different dropout values (0.2, 0.4, 0.5, 0.6, and 0.8). The
highest performance accuracy was achieved with a dropout
probability of 0.4. Network weights were updated, firstly, to
boost the accuracy of error estimation when training PaddyNet
and, secondly, to improve efficiency. Fig. 8 compares the
performance of different PaddyNet batch sizes in terms of
accuracy.

Table IV and Fig. 10 show that the proposed PaddyNet
model has the highest misclassification image count of 11
for the leaf blast disease class and the lowest of 1 for the
BLS, BPB, yellow stem borer, and normal classes. When
dealing with 13 paddy leaf disease classes, the complexity
of the infected paddy images was likely to have confused
the classifiers, leading to a diminished performance being
displayed in the same class. A confusion matrix of the final
test results is shown in Fig. 9.

When dealing with 13 classes of paddy leaf diseases, classi-
fiers may be confused due to the complexity of infected paddy
images, leading to a less performance are displayed in the same
class. The final test results confusion-matrix for the paddy leaf
classes is shown in Fig. 9, with correctly predicted values
located along the diagonal and incorrectly predicted values
located elsewhere. The confusion matrix indicates that the
PaddyNet model is more successful at distinguishing certain
paddy diseases, such as leaf blast, than others. The number
of correctly identified test samples is 128 images in BLB, 99
images in BLS, 89 images in BPB, 94 images in black stem
borer, 459 images in leaf blast, 244 images in brown spot, 168
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TABLE III. ACCURACY COMPARISON OF OUR PROPOSED PADDYNET MODEL WITH EXISTING MODELS

S.No Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

1 DCNN [41] 88.84 89.22 88.84 88.81
2 MobileNet [41] 92.42 92.63 92.42 92.39
3 VGG16 [41] 93.19 93.49 93.19 93.20
4 Xception [41] 96.58 96.61 96.58 96.57
5 Resnet34 [41] 97.50 97.52 97.50 97.50
6 PaddyNet 98.99 98.50 98.65 98.2

TABLE IV. MISCLASSIFICATION IMAGE COUNT FOR EACH CLASS OF PROPOSED PADDYNET MODEL

S.No. Disease or class name Count PaddyNet Resnet34 Xception VGG16 MobileNet DCNN
1 BLB 130 2 3 5 11 20 24
2 BLS 100 1 2 3 4 14 7
3 BPB 90 1 3 4 12 9 18
4 Black-Stem-Borer 101 7 9 9 13 10 10
5 Blast 470 11 13 13 30 27 57
6 Brown Spot 253 9 10 18 20 21 43
7 Downy-Mildew 174 6 8 8 15 19 27
8 Hispa 431 9 13 23 44 35 78
9 Leaf-Roller 219 3 4 19 35 45 33

10 Tungro 390 6 10 8 12 11 41
11 White-Stem-Borer 254 2 1 3 6 15 11
12 Yellow-Stem-Borer 152 1 2 1 4 10 6
13 Normal 481 1 3 7 15 10 7

Total 3245 59 81 121 221 246 362

Fig. 5. Comparison of four performance metrics with different epoch. PaddyNet achieved the highest accuracy when using an epoch value of 200.
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Fig. 6. Comparison of performance metrics of PaddyNet with five deep
learning models.

Fig. 7. Comparison of Accuracy of five dropout values used in our
experiments. PaddyNet achieved the highest accuracy of 98.99% when the

dropout is 0.4 and the lowest accuracy of 73.74% for dropout 0.8.

images in downy mildew, 422 images in hispa, 216 images in
leaf roller, 384 in tungro, 252 images in white stem borer, 151
images in yellow stem borer, and 480 normal leaf images in
the testing set, respectively. The count of incorrectly identified
test samples is 2 images in BLB, 1 image in BLS, 1 image
in BPB, 8 images in black stem borer, 11 images in blast, 9
images in brown spot, 6 images in downy mildew, 9 images
in hispa, 3 images in leaf roller, 6 images in tungro, 2 images
in white stem borer, 1 image in yellow stem borer, and 1
normal leaf image. According to Fig. 10 and 11, which exhibit
the misclassification images for each class and their count for
each model, the misclassification may have stemmed from the
congruent feature similarities of the 13 classes. However, the
remaining predicted values are well distinguished.

Fig. 8. Comparison of accuracy of PaddyNet using different batch size.
PaddyNet achieved the highest accuracy of 98.98% when the batch size is

32.

Fig. 9. Confusion matrix of the PaddyNet model.

V. CONCLUSION

Deep learning, a fairly recent and advanced method driving
agricultural growth and development, has demonstrated that
it surpasses others at identifying plant disease. Advanced
computer vision technology is prompting further research
worldwide in paddy leaf disease identification using different
methodologies. The PaddyNet model proposed in this research
detects paddy leaf disease efficiently. The infected paddy leaf
image dataset includes images of healthy leaves alongside
images of leaves depicting twelve different diseases. The
identification process of the proposed system was improved
through the use of our own collection of previously acquired
paddy leaf images. Further, the collected dataset was en-
hanced using several image augmentation techniques to enrich
the model and benchmarked using the proposed PaddyNet
model. The experimental results reveal that the proposed
PaddyNet outperformed the other five deep learning models,
such as the simple DCNN, VGG16, MobileNet, Xception,
and Resnet34 [42][41]. The PaddyNet model demonstrated
superior performance with 98.99% accuracy, 98.50% precision,
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Fig. 10. Comparison of misclassification image counts for each class of PaddyNet and other five models.

Fig. 11. Count of misclassification images for each model. In the PaddyNet
model, only fewer images are not classified compared with the five models.

98.65% recall, and an F1 score of 98.20%, compared to the
five state-of-the-art deep learning models. In the future, the
proposed PaddyNet paradigm will be extended as a mobile
phone application incorporating a deep learning model for

using farmers in real-time in their paddy fields. Next, we plan
to capture real-time images taken by farmers in their fields and
identify leaf disease instantaneously through the said mobile
app.
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