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Abstract—Driver-assistance systems have become an indis-
pensable component of modern vehicles, serving as a crucial
element in enhancing safety for both drivers and passengers.
Among the fundamental aspects of these systems, object detection
stands out, posing significant challenges in low-light scenarios,
particularly during nighttime. In this research paper, we propose
an innovative and advanced approach for detecting objects
during nighttime in driver-assistance systems. Our proposed
method leverages thermal vision and incorporates You Only
Look Once version 5 (YOLOv5), which demonstrates promising
results. The primary objective of this study is to comprehensively
evaluate the performance of our model, which utilizes a combi-
nation of stochastic gradient descent (SGD) and Adam optimizer.
Moreover, we explore the impact of different activation functions,
including SiLU, ReLU, Tanh, LeakyReLU, and Hardswish, on the
efficiency of nighttime object detection within a driver assistance
system that utilizes thermal imaging. To assess the effectiveness
of our model, we employ standard evaluation metrics including
precision, recall, and mean average precision (mAP), commonly
used in object detection systems.

Index Terms—Driver-assistance systems; object detection;
nighttime object detection; thermal vision; YOLOv5

I. INTRODUCTION

The rise of self-driving cars represents a significant mile-
stone in the automotive industry, promising a paradigm shift
in transportation as we know it. With the introduction of
autonomous vehicles, there is a pressing need to address the
alarming number of fatalities that occur in traffic accidents
each year. Road traffic injuries pose a significant threat to the
lives of children and young adults aged 5-29 years, making
it the leading cause of death within this age group. It is
worth noting that a staggering 93% of these fatalities occur in
low- and middle-income countries [1]. These tragic incidents
have prompted researchers and engineers to explore innovative
solutions to improve road safety using machine learning (ML)
and deep learning (DL) algorithms [2], [3], [4], [5]. The safety
of autonomous vehicles relies on the ability to detect and clas-
sify objects correctly. Object detection algorithms need to be
robust enough to differentiate between pedestrians, bicycles,
cars, and other relevant entities on the road. This distinction
is crucial for autonomous vehicles to assess potential risks
and determine appropriate responses, such as slowing down,
changing lanes, or stopping altogether. Detecting objects on
the road is a crucial task for autonomous vehicles to ensure
the safety of both passengers and other road users. However,

the challenge becomes even more pronounced when it comes
to detecting objects at night or in low light conditions. Reduced
visibility conditions make it difficult for sensors, such as
cameras to capture clear and detailed information about the
surrounding environment. Traditional object detection systems
heavily rely on visual cues, which can be compromised in
low light conditions. This poses a considerable challenge for
autonomous vehicles navigating roads at night or in poorly
lit environments. To address these challenges [6], [7], [8],
researchers have turned to Convolutional Neural Networks
(CNNs), a powerful deep learning technique that has revo-
lutionized various fields, including computer vision. CNNs
have shown great promise for object detection, providing a
robust framework for training models that can learn and extract
meaningful features from image data. By incorporating CNN
modeling in Driver-Assistance Systems, autonomous vehicles
can navigate complex environments more effectively, reducing
the risk of accidents and ultimately saving lives.

The objective of this article is to provide an innovative strat-
egy for nighttime object detection in driver-assistance systems
using thermal vision and incorporating the YOLOv5 model.
The primary objective is to comprehensively evaluate the
model’s performance by investigating the influence of different
activation functions and optimizers. The findings demonstrate
the efficiency of the proposed method in enhancing nighttime
object detection. The results contribute to the understanding
of the role of optimizers and activation functions in training
the YOLOv5 model for object detection tasks. The insights
gained from this research can guide future endeavors aimed
at improving the efficiency and accuracy of driver-assistance
systems, ultimately enhancing safety for both drivers and
passengers.

The structure of this paper is outlined in the following
manner: Section II provides an extensive review of the relevant
literature. In Section III, we elaborate on the methodology
utilized for Advanced Nighttime Object Detection, covering
aspects such as Dataset and Data Preparation, Data anno-
tations/labeling, Activation Functions, and Model Evaluation
Metrics. The experimental system and results, accompanied
by a comprehensive discussion, are presented in Section IV.
Finally, Section V provides concluding remarks to wrap up
the paper.
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II. RELATED WORKS

Ramesh Simhambhatla et al. (2019) [9] undertook a practi-
cal examination of three up-to-date meta-architectures, namely
SSD, R-CNN, and R-FCN. The aim was to gauge their
efficiency and precision in recognizing road objects, including
vehicles, pedestrians, and traffic lights, across varying driving
scenarios: daytime, nighttime, rainy, and snowy conditions.
This research paper was carried out by Ruturaj Kulkarni et
al. (2018) [10] introduces a robust deep neural network model
that employs transfer learning for the accurate detection and
recognition of traffic lights. To facilitate object detection in
self-driving cars using deep learning, P Prajwal et al. (2021)
[11] have selected the SSD model in conjunction with the Mo-
bileNet neural network as the foundational architecture due to
its ability to produce results rapidly while maintaining a mod-
erate level of accuracy. VD Nguyen et al. (2018) [12] presents
a comprehensive framework that combines deep learning
techniques, multiple local patterns, and depth information to
identify, classify, and monitor vehicles and walkers on the
road. Utilizing a deep CNN, H Yu et al. (2013) [13] employ
a sophisticated architecture that effectively detects obstacles
in complex scenes by leveraging rich and powerful learned
features. P Salavati et al. (2018) [14] presents a novel approach
that utilizes Deep Neural Networks (DNN) to detect obstacles
using a single camera, employing unsupervised DNNs for
extracting global image features and extracting local image
features. P Aswathy et al. (2018) [15] explores the influence
of deep convolutional layer features within an object tracking
framework, showcasing the novel utilization of GoogLeNet
CNN architecture’s deep layer features for effective object
tracking. The primary emphasis of this paper [16] is on the
application of a CNN algorithm for computer vision-based
object detection. The paper [17] presents a novel real-time
approach for object detection in images captured by self-
driving vehicles, using a unified neural network that models
object detection as a regression problem on predicted bounding
boxes and class probabilities, enabling simultaneous prediction
of bounding boxes and class probabilities for the entire image.
AA Cervera-Uribe et al. (2022) [18] introduces U19-Net, a
deep encoder-decoder model designed for the detection of
vehicles and pedestrians. This paper [19] introduces a novel
and efficient deep learning-based detecting technique called
DW-YOLO, which addresses the challenge of detecting objects
in images with limited visual cues. G Rjoub et at. (2021) [20]
presents a novel object detection system for autonomous vehi-
cles, utilizing the You Only Look Once (YOLO) convolutional
neural network (CNN) approach and a Federated Learning
(FL) framework to enhance real-time detection accuracy, par-
ticularly in challenging weather conditions. This paper [21]
demonstrates the utilization of the YOLOv5 model for real-
time identification of cars, traffic lights, and pedestrians under
different weather conditions, showcasing its effectiveness in
typical vehicular environments. The purpose of the paper
[22] is to develop a DL model, trained on the YOLOv5s
and YOLOv7 architectures, to correctly classify and identify

traffic signs in diverse adverse environments. VD Nguyen el
at. (2023) [23] introduces an effective feature-based approach
that utilizes a sigmoid function based on a triangle pattern to
encode and establish strong features of neighboring pixels in
local regions, which is then integrated into advanced object
detection methods to evaluate its performance.

The purpose of this article is to present an innovative and
advanced approach for nighttime object detection in driver-
assistance systems. The study focuses on leveraging thermal
vision and incorporating YOLOv5 as the proposed method.
The primary objective is to comprehensively evaluate the
performance of the model, which combines SGD and Adam
optimizer. Additionally, the research investigates the impact
of different activation functions, such as SiLU, ReLU, Tanh,
LeakyReLU, and Hardswish, on the efficiency of nighttime
object detection using thermal imaging within a driver assis-
tance system. Standard evaluation metrics, including precision,
recall, and mean average precision (mAP), are employed to
assess the effectiveness of the model.

III. METHODOLOGY

A. Dataset and Data Preparation

The FLIR Thermal Images Dataset consists of a collection
of 10,228 thermal images, each hand-labeled with precise
bounding boxes. The images have a resolution of 640x512
pixels. Within the dataset, there are a total of 10,228 images,
and these images contain a comprehensive set of 79,297
annotated bounding boxes. The dataset focuses on three main
categories, namely Person, Bicycle, and Car. In the training set,
which includes 8,862 images, there are 67,618 hand-labeled
bounding boxes. Specifically, the Person category has 22,372
annotated bounding boxes, the Bicycle category has 3,986
annotated bounding boxes, and the Car category has 41,260
annotated bounding boxes. In the validation set, which consists
of 1,366 images, there are 11,679 hand-labeled bounding
boxes. The Person category has 5,778 annotated bounding
boxes, the Bicycle category has 470 annotated bounding boxes,
and the Car category has 5,431 annotated bounding boxes.
Details of the distribution of the data set can be seen in Fig.
1 to Fig. 4.

B. Data Annotations/Labeling

Annotation of your training images To ensure the effective
training of our object detector, it is imperative to provide
supervision during the training process by employing bound-
ing box annotations. The procedure entails outlining a box
around each specific object that we intend the detector to
detect, and subsequently assigning a corresponding object
class label to each box, indicating the desired prediction for the
detector. This crucial step allows us to train the object detector
accurately. Additional details can be incorporated to provide a
comprehensive understanding of the topic. The YOLO labeling
format Fig. 6. utilizes a unique approach where a .txt file is
generated for every image file in the directory, sharing the
same name. These .txt files serve as containers for annotations
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Fig. 1. (a) Total number of images and annotated bounding boxes (b) The annotations are distributed across the three main categories.

Fig. 2. Example of thermal image (left) and bounding boxes manually labeled with class person (right).

Fig. 3. Example of thermal image (left) and bounding boxes manually labeled with class Person, bicycle and car (right).
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Fig. 4. Flowchart for the overall experiment conducted to train the YOLOv5 model with optimizers and activation functions.

Fig. 5. Non-linear activations.
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Fig. 6. (a) An example of a bounding box and (b) YOLO annotation format.

Fig. 7. Precision and recall.

related to the corresponding image file, encompassing object
class, object coordinates, height, and width information.

C. Activation Functions

To conduct a comprehensive assessment of the accuracy of
the transfer learning network models mentioned earlier, we
employ five widely recognized and extensively used activa-
tion functions: SiLU (Sigmoid Linear Unit), ReLU (Rectified
Linear Unit), Tanh (Hyperbolic Tangent), LeakyReLU (Leaky
Rectified Linear Unit), and Hardswish [24]. These activation
functions play a crucial role in deep learning methodologies.
Each function’s corresponding mathematical representation is
presented Fig. 5, providing a complete understanding of their
functional behavior. The selection of an appropriate activation
function depends on a variety of factors, such as the specific
requirements of the task at hand and the desired performance
outcomes. Each activation function possesses unique charac-
teristics that can influence the learning capabilities and overall
performance of the transfer learning network models. By com-
paring the results obtained from employing these activation
functions, we will be able to draw meaningful insights and
make informed decisions regarding their suitability for the
given task. The findings of this comparative analysis will
be shared in detail in the subsequent section, offering a
comprehensive evaluation of their effectiveness.

D. Model Evaluation Metrics

This study examined the efficiency of DL models using a
range of metrics, including Precision, Recall and mAP in Fig.
7 and in equations (1), (2), and (3). Precision measured the
ratio of accurate positive outcomes to all positive predictions,
while recall measured the proportion of correctly predicted
to all instances of positive outcomes in the dataset. mAP
measures the similarity between the ground-truth bounding
box and the detected box, resulting in a numerical score.
This score serves as an indicator of the model’s accuracy in
detecting objects. A higher score signifies greater accuracy in
the model’s detections. By employing multiple evaluation met-
rics, we gained a comprehensive understanding of the model’s
performance and made well-informed judgments regarding its
effectiveness.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

mAP =
1

n

n∑
k=1

AP k (3)

In which, TP: True Positive, TN: True Negative, FP: False
Positive, FN: False Negative, n: the number of classes, AP k:
the average precision of class k.

IV. RESULTS

This section describes the training and validation results
obtained for the YOLOv5 model using the SGD and Adam
optimizers, along with various activation functions. The ex-
periments were conducted using a learning rate of 0.01 and a
momentum value of 0.937. Fig. 8 and Fig. 9 present the results
of training the YOLOv5 model using two different optimizers,
namely SGD and Adam, along with various activation func-
tions. The performance of the model was evaluated using three
key metrics: Precision, Recall, and mAP@0.5 (mean Average
Precision at an IoU threshold of 0.5). Precision measures
the accuracy of the model in correctly identifying positive
instances, while Recall indicates the model’s ability to find
all positive instances. The mAP@0.5 calculates the average
precision across different IoU thresholds.

For the SGD optimizer, the activation functions evaluated
were SiLU, ReLU, Tanh, LeakyReLU, and Hardswish. Among
these, the SiLU activation function achieved the highest
Precision of 0.85247, Recall of 0.73373, and mAP@0.5 of
0.79985. However, other activation functions such as ReLU,
LeakyReLU, and Hardswish also demonstrated competitive
performance, with Precision ranging from 0.82512 to 0.83494
and mAP@0.5 ranging from 0.79074 to 0.79363. Similarly,
for the Adam optimizer, the model was trained with the
same set of activation functions. The SiLU activation func-
tion yielded the highest Precision of 0.80156, Recall of
0.70725, and mAP@0.5 of 0.77294. The performance of the
other activation functions, including ReLU, LeakyReLU, and
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Fig. 8. Training results of YOLOv5 with SGD optimizer and various activation functions (a) The mAP@0.5 scores (b) Training precision, and (c) Training
recall.

Hardswish, ranged from Precision values of 0.78057 to 0.7942
and mAP@0.5 values of 0.75974 to 0.77761.

Validation results of YOLOv5 with SGD and Adam opti-
mizer and various activation functions are presented in Table 1.
This table shows the evaluation metrics for precision, recall,
and mAP@0.5. Each row corresponds to a specific combi-
nation of optimizer and activation functions. For the SGD
optimizer, the SiLU activation function achieved the highest
precision of 0.835, followed by Hardswish with a precision of
0.826. The highest recall was obtained with ReLU at 0.724,
closely followed by SiLU at 0.722. The highest mAP@0.5
was achieved with SiLU at 0.800. For the Adam optimizer, the
SiLU activation function again obtained the highest precision
of 0.801, while ReLU achieved a precision of 0.782. The high-
est recall was obtained with ReLU at 0.703, closely followed
by SiLU at 0.693. The highest mAP@0.5 was achieved with
Hardswish at 0.777. Precision-Recall Curve of yolov5 model
with SGD optimizer and SiLU activation function is presented
in Fig. 10. These results demonstrate the performance of the
YOLOv5 model with different combinations of optimizers and

activation functions (see Fig. 11). These outcomes indicate the
impact of different optimizers and activation functions on the
YOLOv5 model’s performance. The SiLU activation function
consistently exhibited strong performance across both optimiz-
ers, while ReLU, LeakyReLU, and Hardswish also showed
competitive results. These findings can guide researchers and
practitioners in selecting the most effective configuration for
training the YOLOv5 model in object detection tasks.

V. CONCLUSION

In conclusion, this research paper presented an innovative
approach for object detection during nighttime in driver-
assistance systems, utilizing thermal vision and incorporating
the YOLOv5 model. The primary objective was to comprehen-
sively evaluate the performance of the model by exploring the
impact of different activation functions and optimizers. The
outcomes demonstrated the efficiency of the proposed method
in enhancing nighttime object detection. The experiments
involved training the YOLOv5 model using two optimizers,
SGD and Adam, along with various activation functions,
namely SiLU, ReLU, Tanh, LeakyReLU, and Hardswish.

www.ijacsa.thesai.org 1171 | P a g e



IJACSA-International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Fig. 9. Training results of YOLOv5 with adam optimizer and various activation functions (a) The mAP@0.5 scores (b) Training precision, and (c) Training
recall.

TABLE I. VALIDATION RESULTS OF YOLOV5 WITH SGD AND ADAM
OPTIMIZER AND VARIOUS ACTIVATION FUNCTIONS USE LEARNING RATE

= 0.01 AND MOMEMTUM = 0.937

Optimizer Activation Function Precision Recall mAP@0.5
SGD SiLU 0.835 0.722 0.800
SGD ReLU 0.807 0.724 0.793
SGD Tanh 0.787 0.667 0.751
SGD LeakyReLU 0.813 0.706 0.790
SGD Hardswish 0.826 0.719 0.790
Adam SiLU 0.801 0.693 0.771
Adam ReLU 0.782 0.703 0.771
Adam Tanh 0.745 0.642 0.715
Adam LeakyReLU 0.794 0.675 0.759
Adam Hardswish 0.793 0.696 0.777

The evaluation metrics used, including Precision, Recall, and
mAP@0.5, provided insights into the accuracy, coverage, and
overall performance of the model. For the SGD optimizer,
the SiLU activation function achieved the highest Precision
and mAP@0.5 values, indicating its effectiveness in accurately
identifying positive instances. However, ReLU, LeakyReLU,

and Hardswish also demonstrated competitive performance
in terms of Precision and mAP@0.5. Similarly, with the
Adam optimizer, the SiLU activation function consistently
yielded the highest Precision, while ReLU, LeakyReLU, and
Hardswish also performed well. These results highlight the
impact of different activation functions on the model’s perfor-
mance. Overall, the findings suggest that the YOLOv5 model,
coupled with the SiLU activation function, is a promising con-
figuration for nighttime object detection in driver-assistance
systems. However, researchers and practitioners can also con-
sider other activation functions such as ReLU, LeakyReLU,
and Hardswish, which showed competitive performance in this
study. These results contribute to the understanding of the role
of optimizers and activation functions in training the YOLOv5
model for object detection tasks. The insights gained from
this research can guide future endeavors in improving the ef-
ficiency and accuracy of driver-assistance systems, ultimately
enhancing safety for both drivers and passengers.
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Fig. 10. Precision-Recall curve of yolov5 model with SGD optimizer and
SiLU activation function.

REFERENCES

[1] Road traffic injuries, available online: https://www.who.int/news-
room/fact-sheets/detail/road-traffic-injuries. Accessed: 20 June 2022.
[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/
road-traffic-injuries

[2] T. N. Hoang and L.-D. Quach, “Adaptive lane keeping assist for
an autonomous vehicle based on steering fuzzy-pid control in ros,”
International Journal of Advanced Computer Science and Applications,
vol. 13, no. 10, 2022.

[3] P. B. Silva, M. Andrade, and S. Ferreira, “Machine learning applied to
road safety modeling: A systematic literature review,” Journal of traffic
and transportation engineering (English edition), vol. 7, no. 6, pp. 775–
790, 2020.

[4] G. Li, H. Xie, W. Yan, Y. Chang, and X. Qu, “Detection of road objects
with small appearance in images for autonomous driving in various
traffic situations using a deep learning based approach,” IEEE Access,
vol. 8, pp. 211 164–211 172, 2020.

[5] A. Najjar, S. Kaneko, and Y. Miyanaga, “Combining satellite imagery
and open data to map road safety,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

[6] H. Lin, J. D. Deng, D. Albers, and F. W. Siebert, “Helmet use detection
of tracked motorcycles using cnn-based multi-task learning,” IEEE
Access, vol. 8, pp. 162 073–162 084, 2020.

[7] W. Wang, B. Wu, S. Yang, and Z. Wang, “Road damage detection and
classification with faster r-cnn,” in 2018 IEEE international conference
on big data (Big data). IEEE, 2018, pp. 5220–5223.

[8] H.-T. Vo, H. T. Ngoc, and L.-D. Quach, “An approach to hyperparameter
tuning in transfer learning for driver drowsiness detection based on
bayesian optimization and random search,” International Journal of
Advanced Computer Science and Applications, vol. 14, no. 4, 2023.
[Online]. Available: http://dx.doi.org/10.14569/IJACSA.2023.0140492

[9] R. Simhambhatla, K. Okiah, S. Kuchkula, and R. Slater, “Self-driving
cars: Evaluation of deep learning techniques for object detection in
different driving conditions,” SMU Data Science Review, vol. 2, no. 1,
p. 23, 2019.

[10] R. Kulkarni, S. Dhavalikar, and S. Bangar, “Traffic light detection and
recognition for self driving cars using deep learning,” in 2018 Fourth
International Conference on Computing Communication Control and
Automation (ICCUBEA). IEEE, 2018, pp. 1–4.

[11] P. Prajwal, D. Prajwal, D. Harish, R. Gajanana, B. Jayasri, and
S. Lokesh, “Object detection in self driving cars using deep learning,”
in 2021 International Conference on Innovative Computing, Intelligent
Communication and Smart Electrical Systems (ICSES). IEEE, 2021,
pp. 1–7.

[12] V. D. Nguyen, H. Van Nguyen, D. T. Tran, S. J. Lee, and J. W.
Jeon, “Learning framework for robust obstacle detection, recognition,
and tracking,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 6, pp. 1633–1646, 2016.

[13] H. Yu, R. Hong, X. Huang, and Z. Wang, “Obstacle detection with deep
convolutional neural network,” in 2013 Sixth International Symposium
on Computational Intelligence and Design, vol. 1. IEEE, 2013, pp.
265–268.

[14] P. Salavati and H. M. Mohammadi, “Obstacle detection using googlenet,”
in 2018 8th international conference on computer and knowledge
engineering (ICCKE). IEEE, 2018, pp. 326–332.

[15] P. Aswathy, D. Mishra et al., “Deep googlenet features for visual object
tracking,” in 2018 IEEE 13th International Conference on Industrial and
Information Systems (ICIIS). IEEE, 2018, pp. 60–66.

[16] M. Saranya, N. Archana, J. Reshma, S. Sangeetha, and M. Varalakshmi,
“Object detection and lane changing for self driving car using cnn,”
in 2022 International Conference on Communication, Computing and
Internet of Things (IC3IoT). IEEE, 2022, pp. 1–7.

[17] S. H. Naghavi, C. Avaznia, and H. Talebi, “Integrated real-time object
detection for self-driving vehicles,” in 2017 10th Iranian Conference
on Machine Vision and Image Processing (MVIP). IEEE, 2017, pp.
154–158.

[18] A. A. Cervera-Uribe and P. E. Mendez-Monroy, “U19-net: a deep
learning approach for obstacle detection in self-driving cars,” Soft
Computing, vol. 26, no. 11, pp. 5195–5207, 2022.

[19] Y. Chen, W. Zheng, Y. Zhao, T. H. Song, and H. Shin, “Dw-yolo: an
efficient object detector for drones and self-driving vehicles,” Arabian
Journal for Science and Engineering, vol. 48, no. 2, pp. 1427–1436,
2023.

[20] G. Rjoub, O. A. Wahab, J. Bentahar, and A. S. Bataineh, “Improving
autonomous vehicles safety in snow weather using federated yolo cnn
learning,” in Mobile Web and Intelligent Information Systems: 17th
International Conference, MobiWIS 2021, Virtual Event, August 23–25,
2021, Proceedings. Springer, 2021, pp. 121–134.

[21] T. Sharma, B. Debaque, N. Duclos, A. Chehri, B. Kinder, and P. Fortier,
“Deep learning-based object detection and scene perception under bad
weather conditions,” Electronics, vol. 11, no. 4, p. 563, 2022.

[22] T. P. Dang, N. T. Tran, V. H. To, and M. K. Tran Thi, “Improved yolov5
for real-time traffic signs recognition in bad weather conditions,” The
Journal of Supercomputing, pp. 1–19, 2023.

[23] V. D. Nguyen, T. D. Trinh, and H. N. Tran, “A robust triangular sigmoid
pattern-based obstacle detection algorithm in resource-limited devices,”
IEEE Transactions on Intelligent Transportation Systems, pp. 1–10,
2023.

[24] Non-linear activations (weighted sum, nonlinearity), available
online: https://pytorch.org/docs/stable/nn.htmlnon-linear-activations-
weighted-sum-nonlinearity. [Online]. Available: https://pytorch.org/
docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

www.ijacsa.thesai.org 1173 | P a g e



IJACSA-International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Fig. 11. Prediction results of the YOLOv5 model trained with SGD optimizer and SiLU activation function.
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