
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

MC-ABAC: An ABAC-based Model for
Collaboration in Multi-Cloud Environment

Mohamed Amine Madani1, Abdelmounaim Kerkri2, Mohammed Aissaoui3
Engineering Sciences Laboratory LSI, National School of Applied Sciences

Mohammed Premier University, Oujda, Morocco1

Laboratory of Stochastic and Deterministic Modeling
National School of Applied Sciences, Mohammed Premier University, Oujda, Morocco2,3

Abstract—Collaborative systems allow a group of organiza-
tions to collaborate and complete shared tasks through dis-
tributed platforms. Organizations who collaborate often leverage
cloud-based solutions to outsource their data and to benefit from
the cloud capabilities. During such collaborations, tenants require
access to and utilize resources held by other collaborating tenants,
which are hosted across multiple cloud providers. Ensuring access
control in a cloud-based collaborative application is a crucial
problem that needs to be addressed, particularly in a multi-cloud
environment. This paper presents the Multi-Cloud ABAC: MC-
ABAC model, an extension of the ABAC: Attribute Based Access
Control model, suitable for ensuring secure collaboration and
cross-tenant access in a multi-cloud environment. The MC-ABAC
introduces the notions of tenant, cloud customer and cloud service
provider as fundamental entities within the model. Additionally, it
incorporates multiple trust relations to enable collaboration and
resource sharing among tenants in the multi-cloud environment.
To demonstrate its feasibility, we have implemented the MC-
ABAC model using Python technology.

Keywords—ABAC model; multi-tenant; multi-cloud; collabora-
tion; trust

I. INTRODUCTION

Nowadays, applications and IT systems are increasingly
geared towards collaboration, facilitating cooperation between
organizations to attain shared objectives. These collaborative
efforts optimize the utilization of distributed resources among
the participating entities, leading to enhanced productivity and
overall benefits. Over the years, extensive research has been
conducted on the design and implementation of collaborative
work environments [1], aiming to fulfill the demands of col-
laborative activities. In this context, collaborative applications
offer innovative technologies that allow a group of users to
communicate, work together, and complete shared tasks using
distributed platforms.

Many organizations rely on cloud-based services provided
by cloud service providers to externalize their IT infrastructure,
including computing, networking, and data storage [2], [21].
This enables remote access to hardware and software over the
Internet. To maintain the privacy and confidentiality of these
services, the cloud service provider employs a multi-tenancy
approach, segregating data and customer services into distinct
tenants. Each tenant is assigned to an individual or organization
utilizing the cloud service.

In multi-cloud environment, collaborating tenants may be
hosted in the same cloud provider or in different cloud
providers. These tenants often require access to information

shared by other tenants during collaborative process. This
information often contains sensitive data. Balancing collabo-
ration and security can be challenging because collaboration
aims to provide access to services and resources for those
who require them, while security focuses on preserving the
availability, confidentiality, and integrity of these assets and
limiting access to authorized individuals only. This raises the
issue of access control [25]. In order to facilitate access and
collaboration across multiple tenants, a robust and fine-grained
access control model is mandatory.

Traditional access control models [3], [4], [5], [6], [7]
DAC, MAC, RBAC, TBAC, TMAC and others are primarily
designed for defining access policies within a single organi-
zation or for specific local access control scenarios. However,
they may not be adequately suitable for defining access policies
in multi-tenant environments. To address the challenges of
collaboration and multi-tenant access, various access control
models [23], [12], [13], [14] (CTTM, MTAS, MT-RBAC,
MT-ABAC, etc ) have been proposed. Nevertheless, these
approaches are designed for multi-tenant environment within
a single cloud. They may not effectively address the access
control challenges that arise in multi-cloud environments.

In this paper, we propose MC-ABAC: Multi-cloud ABAC
model, as an extended version of the ABAC [8] (Attribute
Based Access Control) model. MC-ABAC leverages the capa-
bilities of ABAC [18], [24], such as flexibility and adaptability.
MC-ABAC is especially designed for securing collaboration
and cross-tenant access in a multi-cloud environment. It
presents the concepts of tenant, cloud customer and cloud
service provider as key entities in the model. Furthermore,
this model introduces many trust relations in order to support
resource sharing between tenants in a multi-cloud environment.
Finally, we implemented this model using Python technology
to demonstrate its feasibility. To the best of our knowledge,
this is the first work, that aims to extend the ABAC model to
enable collaboration in a multi-cloud environment.

Our main contribution in this paper is to define a multi-
cloud ABAC model, with cross-tenant trust in a multi-cloud
environment. This model is suitable for supporting sharing
ressources between multi-cloud tenants belonging to different
cloud providers. Our model takes into account the heterogene-
ity requirement, since cloud providers may use different and
heterogeneous access control models. This is possible through
the flexibility of the ABAC model, which can represent access
policies defined by any model [3]. Furthermore, this model is
better suited to control access to any cloud service, whether it

www.ijacsa.thesai.org 1182 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

be IaaS, PaaS, or SaaS.

This paper is organized as follows: Section 2 presents the
background of this work, focusing on a telemedicine use case
and the explanation of the ABAC model. The related work is
presented in Section 3. Section 4 presents the suggested MC-
ABAC model. In Section 5, we introduce the trust relations.
Section 6 describes the implementation architecture. Finally,
we conclude in Section 7.

II. BACKGROUND

The purpose of this section is to provide the necessary
background information for this work. It primarily focuses
on presenting a use case of telemedicine within a cloud-
based collaborative environment. Additionally, it introduces the
attribute-based access control model.

A. Case Study

In this study, we examine the telemedicine use case, which
involves Rabat’s School Hospital SH1 and Oujda’s School
Hospital SH2 as two collaborating organizations that share
certain resources and services to achieve a common goal. SH1
and SH2 utilize cloud-based services provided by Azure and
Amazon, to outsource their IT infrastructure and software,
including computing, networking, and data storage.

Within this particular use case, in Table I, we consider
that Azure cloud offers three services, namely s1, s2, and
s3, while Amazon cloud provides three services, namely s4,
s5, and s6. Each customer cloud creates its own tenants
using the services offered by Azure and Amazon clouds. For
instance, the customer SH1 creates tenants (t1, t2, t3, t4, t5)
using the services (s1, s2, s3, s4, s5) provided by Azure and
Amazon, respectively. Similarly, the customer SH2 creates
its own tenants (t6, t7, t8, t9, t10) from the available services
(s4, s5, s6, s1, s2), respectively. During collaboration, users

TABLE I. MULTI-CLOUD USE CASE

Cloud customers Cloud providers Tenants services
SH1 Azure (t1, t2, t3) (s1, s2, s3)
SH1 Amazon (t4, t5) (s4, s5)
SH2 Amazon (t6, t7, t8) (s4, s5, s6)
SH2 Azure (t9, t10) (s1, s2)

from one tenant require access to resources owned by other
tenants. Therefore, our scenario gives rise to a set of require-
ments for cross-tenant access in a multi-cloud environment,
which can be categorized into four cases or situations:

• Case 1: Collaborating tenants hosted in the same
cloud provider and owned by the same cloud customer.
For instance, in the Azure cloud, a user from tenant
t1 requires access to resources owned by tenant t2.

• Case 2: Collaborating tenants hosted in the same
cloud provider and owned by different cloud cus-
tomers. For example, in the Azure cloud, a user from
tenant t3 (owned by SH1) requires access to resources
owned by tenant t9 (owned by SH2).

• Case 3: Collaborating tenants hosted in different cloud
providers and owned by the same cloud customer. For
example, a user from tenant t2 (hosted in Azure cloud)

needs access to resources owned by tenant t5 (hosted
in Amazon cloud).

• Case 4: Collaborating tenants hosted in different cloud
providers and owned by different cloud customers.
For example, a user from tenant t1 (owned by SH1
and hosted in Azure cloud) needs access to resources
owned by tenant t8 (owned by SH2 and hosted in
Amazon cloud).

Our main objective in this approach is to enable secure multi-
tenant collaborations in a multi-cloud environment. For this
purpose, there is a need for a comprehensive fine-grained
access control model that caters to the specific requirements
of the scenario.

B. Attribute Based Access Control Model

The following section introduces the ABAC model, which
has been tailored to suit the development of MC-ABAC and
is not intended to be a comprehensive ABAC model. ABAC
has been defined in several ways in the literature, typically for
specific use cases. ABAC is an adaptive and a flexible fine-
grained access control model.

Definition 1: The core components of ABAC model [8],
[22] are:

• U and O represent finite sets of existing users and
objects, respectively.

• A = {create, read, update, delete} is a finite set of
actions.

• UATT and OATT represent finite sets of user and
object attribute functions, respectively.

• For each att ∈ {UATT ∪ OATT}, range(att)
represents the attribute’s range, which is a finite set
of atomic values.

• attType : UATT ∪ OATT → {set, atomic}, speci-
fies attributes as set or atomic values.

• Each attribute function maps elements in U to an
atomic value or a set

◦ ∀ua ⊆ UATT. ua : U →
Range(ua) if attType(ua) = atomic

◦ ∀ua ⊆ UATT. ua : U →
2Range(ua) if attType(ua) = set

• Each attribute function maps elements in O to an
atomic value or a set

◦ ∀oa ⊆ OATT.oa : O →
Range(oa) if attType(oa) = atomic

◦ ∀oa ⊆ OATT.oa : O →
2Range(oa) if attType(oa) = set

• An authorization that decides on whether a user u
can access an object o in a particular environment
e for the action a, is a boolean function of u,
o, and e attributes: Rule: authorizationa(u, o) →
f(ATTR(u), ATTR(o)).

www.ijacsa.thesai.org 1183 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

III. RELATED WORK

Several works have been in the literature to ensure access
control in multiple environments. In the Task based access
control [5] (TBAC), the permissions are granted according
to the progress of several tasks. The TRBAC [7] model is
constructed by adding the ”Task” concept to the RBAC model.
In TRBAC, the user has a relationship with permission through
role and task. On the other hand, in the Team Access Control
Model (TMAC) [6], the permissions are granted to each user
through its role and the current activities of the team. These
models enable fine-grained access control but they do not
incorporate contextual parameters into security considerations
and do not support collaboration in multi-domain environment
[9], [10]. Moreover, the notion of ”Team” used in TMAC
model is static. Therefore, this model does not support dynamic
collaboration.

Several access control approaches have been proposed
to secure resources in cloud environments [11], [12], [13],
[15], [16], [23]. Calero et al. [11] introduces a multi-tenancy
authorization system based on hierarchical role-based access
control with a coarse-grained trust relation and path-based
object hierarchies. The work assumes that each issuer may
utilize multiple cloud services and collaborate with other
issuers.

Another model, Multi-Tenant Role-Based Access Control
(MT-RBAC), is proposed by Tang et al. in [13]. This model
provides fine-grained access control in collaborative cloud
environments by incorporating trust relations among tenants.
However, this model does not consider trust relations among
issuers separately from tenants. In the MT-RBAC model, the
truster exposes certain trusters roles to the trustee, who then
assigns their users to these roles. This enables users to access
the trusters’ resources by activating the trusters’ roles. The
CTRBAC model [16] extends the traditional RBAC model
by introducing new entities to support cross-tenant access
and the concept of tasks. However, it should be noted that
in this model, a tenant may utilize roles owned by other
tenants, which can potentially compromise confidentiality re-
quirements. Additionally, these models are based on the RBAC
model, which may lack the necessary flexibility to define
complex policy rules.

Several recent approaches have been proposed in [20],
[26], [27], focusing on the concept of activity control. This
concept expands the scope of traditional access control models
by addressing how multiple administrative authorities can
effectively collaborate to create, share, manage, and protect
digital content and resources. However, these solutions are not
suitable for facilitating cross-tenant access in a multi-cloud
environment.

The Attribute-Based Access Control (ABAC) model has
gained significant attention due to its relevance in addressing
the limitations of classical access control models such as
RBAC. ABAC, offers a solution that is adaptive and flexible,
providing an effective means to describe intricate access con-
trol semantics, particularly in collaborative environments. The
ABAC model has been extended in several works [14], [17],
[28], [29], [30] to support collaboration and resource sharing.

One notable example is the Multi-Tenant Attribute-Based
Access Control (MT-ABAC) model [14], which introduces

a framework for facilitating collaboration between tenants
in a single cloud environment. The MT-ABAC model takes
a decentralized approach, allowing each tenant to manage
their own access control policies and attributes. However,
the MT-ABAC model is primarily designed for multi-tenant
environments within a single cloud. These extended models of
ABAC may not adequately address access control challenges
that arise in multi-cloud environments where users and shared
resources span across different tenants in multiple clouds. In
such scenario, the complexity increases as different clouds may
have their own access control mechanisms and policies.

Authors propose in [19] the authorization federation ap-
proach in order to ensure collaboration among organizations
whose resources are distributed across multiple cloud ser-
vice providers. This study primarily focuses on facilitating
collaboration among multiple homogeneous clouds, limiting
its applicability to heterogeneous multi-cloud environments.
Additionally, the emphasis of this approach is on collaboration
and resource sharing at the Infrastructure as a Service (IaaS)
level, by using openstack cloud [21], overlooking resource
sharing at the Platform as a Service (PaaS) and Software as a
Service (SaaS) levels.

Therefore, in this paper, we propose the MC-ABAC model,
which aims to ensure secure multi-tenant collaborations in a
multi-cloud environment. This approach introduces the con-
cepts of tenant, cloud customer, and cloud service provider as
key entities in the model. To the best of our knowledge, our
work is the first approach that aims to extend the ABAC model
to support collaboration in a multi-cloud environment.

IV. MULTI-CLOUD ATTRIBUTE BASED ACCESS CONTROL
MODEL

In this section, we introduce the MC-ABAC (Multi-Cloud
Attributes Based Access Control) model, which extends the
ABAC model to support cross-cloud collaboration among mul-
tiple clouds. The MC-ABAC model incorporates new entities
to facilitate access control of shared resources across multiple
clouds. These entities, namely tenant, cloud service provider,
and cloud customer, are added to the original ABAC model.
Fig. 1 illustrates the structure of the MC-ABAC model. The
following sections provide a detailed description of these new
entities:

Tenant: is a virtual partition of a cloud service provided by
the cloud provider to the customer. The cloud service provider
segregates the data and services into multiple tenants. A cloud
service provider is defined in this approach as the 5-uplet,
(t, U,O,ATT ):

• t: The tenant ID;

• U : Set of users belonging to this tenant t;

• O: Set of objects held by this tenant t. An object in
cloud could be resource, machine, or service;

• ATT : Set of user, object and environment attributes
defined by this tenant t. An object in cloud could be
resource, machine, or service;

A cloud service provider (cp) is an organization that offers
computing resources, such as storage, platform, application,

www.ijacsa.thesai.org 1184 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Fig. 1. MC-ABAC model.

and cloud-based compute services, that businesses can access
over a network as and when required. These resources can
be scaled up or down depending on the customer’s needs. A
cloud service provider is defined in this approach as the 5-
uplet, (cp, U,O,ATT, T ):

• cp: The cloud service provider ID;

• U : Set of users belonging to this cp;

• O: Set of objects held by this cp. An object in cloud
could be resource, machine, or service;

• ATT : Set of user, object and environment attributes
defined by this cp;

• T : Set of tenants hosted in this cp.

A cloud customer (c) refers to an individual or organiza-
tion that utilizes cloud services. It’s worth noting that a cloud
customer can be a cloud itself, and that clouds may provide
services to each other. A cloud customer is defined as the 5-
uplet, (c, U,O,ATT, T ):

• c: The cloud customer ID;

• U : Set of users belonging to this c;

• O: Set of objects held by this c. An object in the cloud
could be resource, machine, or service;

• ATT : Set of user, object and environment attributes
defined by this c.

• T : Set of tenants that this cloud customer c owns.

In the model, every user and object is associated with a unique
entiy: Cloud provider, cloud customer or tenant. To achieve
this, the model introduces a system-defined attribute called
UOwner for users and OOwner for objects. Additionally,
each user attribute and object attribute is exclusively owned by
a single entity. This is represented using functions UAOwner
for user attributes and OAOwner for object attributes.

A. MC-ABAC Definition

Definition 2. Core Multi-Cloud ABAC (Fig. 1) is defined
by the basic component sets, functions and authorization policy
language given below:

• U , O, T , CP and C represent finite sets of existing
users, objects, tenants, cloud service providers and
cloud customers respectively.

• A represents a finite set of actions available on objects.
Typically A = {create; read;update; delete}.

• UA and OA represent a finite sets of user and object
attribute functions (ua and oa) respectively.

• For each att ∈ UA ∪ OA, range(att) represents the
attribute’s range, which is a finite set of atomic values.
An attribute att could be ua or oa.

• attType : UA ∪ OA → {set; atomic}, specifies
attributes as set or atomic values.

• Each attribute function maps elements in U to an
atomic value or a set

◦ ∀ua ∈ UA. ua : U → Range(ua) if
attType(ua) = atomic

◦ ∀ua ∈ UA. ua : U → 2Range(ua) if
attType(ua) = set

• Each attribute function maps elements in O to an
atomic value or a set

◦ ∀oa ∈ OA. oa : O → Range(oa) if
attType(oa) = atomic

◦ ∀oa ∈ OA. oa : O → 2Range(oa) if
attType(oa) = set

• UA = GUA ∩ LUA ∩ CUA, such as:
◦ GUA represents a finite set of global user

attribute functions which are defined by the
cloud customer C

◦ LUA represents a finite set of local user
attribute functions which are defined by the
tenants T

www.ijacsa.thesai.org 1185 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

◦ CUA represents a finite set of cloud user
attribute functions which are defined by the
cloud service provider cp

• OA = GOA ∩ LOA ∩ COA, such as:
◦ GOA represents a finite set of global object

attribute functions which are defined by the
cloud customer C

◦ LOA represents a finite set of local object
attribute functions which are defined by the
tenants T

◦ COA represents a finite set of cloud object
attribute functions which are defined by the
cloud service provider cp

• UOwner : (u : U) → E, required attribute function
mapping user u to its owner entity. Note that an entity
in this approach, could be a tenant t, a cloud service
provider cp or cloud customer c;

• OOwner : (o : O) → E, required attribute function
mapping object o to its owner entity (t, cp or c).

• UAOwner : (ua : UA) → E, attribute function,
mapping user attribute ua to its owner entity (t, cp
or c):

◦ ua ∈ LUA → UAOwner(ua) ∈ T
◦ ua ∈ CUA → UAOwner(ua) ∈ CP
◦ ua ∈ GUA → UAOwner(ua) ∈ C

• OAOwner : (oa : OA) → TE, attribute function,
mapping object attribute oa to its owner entity (t, cp
or c):

◦ oa ∈ LOA → OAOwner(oa) ∈ T
◦ oa ∈ COA → OAOwner(oa) ∈ CP
◦ oa ∈ GOA → OAOwner(oa) ∈ C

• TOwner : (t : T ) → C, required attribute function
mapping tenant t to its owner cloud customer c ∈ C;

• THost : (t : T ) → CP , required attribute function
mapping tenant t to its hosting cloud provider c ∈ C;

• The authorizations that decide on whether a user u
can access an object o for the action a, are a three
Boolean functions of u and o attributes:

◦ LAutha(u; o) → f(LUA(u);LOA(o)), rep-
resents local authorization that is defined by
the tenant;

◦ GAutha(u; o) → f(GUA(u);GOA(o)), rep-
resents global authorization that is defined by
cloud customer;

◦ CAutha(u; o) → f(CUA(u);COA(o)), rep-
resents cloud authorization which is defined by
cloud service provider;

B. Administrative MC-ABAC Model

In this subsection, we focus on the administrative model for
the suggested MC-ABAC. This model enables administrators
to perform various administrative operations. In this approach,
we distinguish three types of administrators: cloud administra-
tor, customer administrator and tenant administrator.

• Cloud administrator: The person who is responsi-
ble for defining access policies in the cloud service
provider;

• customer administrator: The person responsible for
defining access policies in the cloud customer;

• Tenant administrator: The person who is responsible
for defining access policies in the tenant entity;

In this model, administrators are granted the ability to perform
various administrative operations, with each operation having
certain preconditions that need to be satisfied. In the following,
we present the formal specification of several administrative
operations and their corresponding preconditions:

• ∀ua ∈ CUA, ua(u : U) is defined by the cloud
administrator of cp only if (UAOwner(ua) =
UOwner(u) = cp), means that the cloud cp must be
the owner of both the user u and the attribute ua. The
same principle applies to the subsequent operations as
well;

• ∀oa ∈ COA, oa(o : O) is defined by the cloud ad-
ministrator only if (OAOwner(oa) = OOwner(o) =
cp);

• ∀ua ∈ GUA, ua(u : U) is defined by the customer
administrator of c ∈ C only if (UAOwner(ua) =
UOwner(u) = c);

• ∀oa ∈ GOA, oa(o : O) is defined by the customer
administrator of c ∈ C only if (OAOwner(oa) =
OOwner(o) = c);

• ∀ua ∈ LUA, ua(u : U) is defined by the tenant
administrator of t ∈ T only if (UAOwner(ua) =
UOwner(u) = t) ∪ (TOwner(UAOwner(ua)) =
UOwner(u)), This implies that the user u must be
owned by either the tenant t, who is the owner of
the attribute ua, or the cloud customer who owns the
tenant t.

• ∀oa ∈ LOA, oa(o : O) is defined by the tenant
administrator of t ∈ T only if (OAOwner(oa) =
OOwner(o) = t);

• CAutha(u; o) is defined by the cloud administra-
tor of cp. For all attributes ua, oa that are de-
fined in CAutha(u; o) only if UAOwner(ua) =
OAOwner(oa) = UOwner(u) = OOwner(o) =
cp. Each authorization function needs to verify that
the owner of ua is the same as the owner of oa, u,
and o.

• GAutha(u; o) is defined by the customer adminis-
trator of c ∈ C. For all attributes ua, oa that are
defined in GAutha(u; o) only if UAOwner(ua) =
OAOwner(oa) = UOwner(u) = OOwner(o) = c;

• LAutha(u; o) is defined by the tenant administrator
of t ∈ T . For all attributes ua, oa that are de-
fined in LAutha(u; o) only if (UAOwner(ua) =
OAOwner(oa) = UOwner(u) = OOwner(o) =
t) ∪ (UAOwner(ua) = OAOwner(oa) =
OOwner(o) = t∩UOwner(u) = TOwner(t)). This
predicate UOwner(u) = TOwner(t) means that the

www.ijacsa.thesai.org 1186 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

user u is owned by the cloud customer who is the
owner of t;

V. TRUST RELATIONS

MC-ABAC introduces many trust relations in order to
support access between the cloud customer and the cloud
service provider, cross tenant access, cross customer access
and resource sharing in a multi-cloud environment. These trust
relations are established between both, cloud service providers,
cloud customers and tenants. In the following, we will define
each trust relation used in this model.

A. Provider to Customer Trust Relation

The Provider to customer trust relation (CPC) ⊆ CP ×C
is a many-to-many relationship between the cloud service
provider cp and the cloud customer c. It is defined as
TrustCPtoC(cp, c) = ∪i(Si), such as Si is a cloud service
owned by the provider cp. This relationship means that the
cloud cp provides a set of services ∪i(si) to the cloud
consumer c. This customer c will create its own tenants from
these services.

For example, the trust relation
TrustCPtoC(Azure, SH1) = {s1, s2, s3}, means that
the customer SH1 could create new tenants t1, t2 and t3
from these services s1, s2 and s3, in the cloud cp. Using this
trust relation, the cloud consumer can establish or create their
own tenants based on the services defined within this relation.

B. Cloud Trust Relation

The cloud trust relation (CPCP ) ⊆ CP × CP is
a many-to-many reflexive relation between a truster cloud
cpr ∈ CP and a trustee cloud cpe ∈ CP . It is defined as
TrustCloud(cpr, cpe : CP ) → 2T means that the cloud
service provider cpr authorizes cpr’s tenants to collaborate
with cpe’s tenants. This implies that tenants hosted in cpr
could establish tenant trust relation with cpe’s tenants, in order
to ensure cross tenant access in multi-cloud environment.

This trust relation TrustCloud(cpr, cpe) =
⋃k

i=1 ti is
defined with the additional required condition that: t ∈
TrustCloud(cpr, cpe) only if THost(t) = cpr, this implies
that the cloud service provider cpr should possess ownership
of the tenants which are defined in this relation. For example:
TrustCloud(Azure, Amazon)= t1, t2, means that tenants hosted
in Azure cloud, such as tenants t1 or t2, can establish a trust
relation with tenants from the Amazon cloud.

C. customer Trust Relation

The customer trust relation (CC) ⊆ C × C is a
many-to-many reflexive relation between a truster customer
cr ∈ C and a trustee customer ce ∈ C. It is defined as
Trustcustomer(cr, ce : C) → 2T , which means that the
cloud customer cr authorizes some cr’s tenants to collaborate
with ce’s tenants. This implies that tenants owned by cr could
establish tenant trust relation with ce’s tenants, in order to
ensure cross-tenant access, where each tenant belongs to a
different customer, .

This trust relation Trustcustomer(cr, ce) =
⋃k

i=1 ti is
defined with the additional required condition that: t ∈

Trustcustomer(cr, ce) only if TOwner(t) = cr, this means
that the customer cr must be the owner of tenants which
are defined in this relation. For example: Trustcustomer(SH1,
SH2)= t2, t3, means that tenants belonging to cloud customer
SH1, such as t2 or t3, can establish trust relationships with
tenants belonging to cloud customer SH2.

D. Tenant Trust Relation

The tenant trust relation (TT ) ⊆ T × T is a many-to-
many reflexive relation between the truster tr ∈ T and the
trustee te ∈ T . It is defined as TrustTenant(tr, te : T ) → 2U

which means that the tenant te is authorized to assign values
for te’s local user attributes to tenant tr’s users. This trust
relation TrustTenant(tr, te) =

⋃k
i=1 ui is defined with the

additional required condition that: u ∈ TrustTenant(tr, te)
only if UOwner(u) = tr, this implies that the truster tr must
be the owner of users which are defined in this relation. For
example: TrustTenant(t1, t3)= u1, u2, means that the tenant t3
can assign values for t3’s local user attributes to u1 and u2.

This trust relation is subject to a precondition that needs
to be satisfied, which depends on the four cases introduced
in the case study subsection. In the following, we specify the
precondition for each case:

• Case 1: Collaborating tenants hosted in the same
cloud provider and owned by the same cloud cus-
tomer. TrustTenant(tr, te) =

⋃k
i=1 ui is defined

with the additional required condition that: u ∈
TrustTenant(tr, te) only if UOwner(u) = tr.

• Case 2: Collaborating tenants hosted in the same
cloud provider and owned by different cloud
customers. Before establishing trust between the
two tenants tr and te, trust must be estab-
lished between the two cloud customers cr and
ce who are the owners of tr and te respec-
tively. TrustTenant(tr, te) =

⋃k
i=1 ui is defined

with the additional required condition that: u ∈
TrustTenant(tr, te) only if UOwner(u) = tr∩tr ∈
Trustcustomer(TOwner(tr), TOwner(te)).

• Case 3: Collaborating tenants hosted in different cloud
providers and owned by the same cloud customer.
Before establishing trust between the two tenants tr
and te, trust must be established between the two
cloud providers cpr and cpe who are the hosts of tr
and te respectively. TrustTenant(tr, te) =

⋃k
i=1 ui

is defined with the additional required condition that:
u ∈ TrustTenant(tr, te) only if UOwner(u) =
tr ∩ tr ∈ TrustCloud(THost(tr), THost(te));

• Case 4: Collaborating tenants hosted in different
cloud providers and owned by different cloud cus-
tomers. TrustTenant(tr, te) =

⋃k
i=1 ui is defined

with the additional required condition that: u ∈
TrustTenant(tr, te) only if UOwner(u) = tr ∩
tr ∈ TrustCloud(THost(tr), THost(te)) ∩ tr ∈
Trustcustomer(TOwner(tr), TOwner(te)).

We summarize the definition of this trust relation using
the following formalism, taking into account the four cases
previously discussed: TrustTenant(tr, te) =

⋃k
i=1 ui

www.ijacsa.thesai.org 1187 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

is defined with the additional required condition that:
u ∈ TrustTenant(tr, te) only if [(UOwner(u) =
tr) ∩ [(TOwner(tr) = TOwner(te)) ∪ (tr ∈
Trustcustomer(TOwner(tr), TOwner(te)))] ∩
[(THost(tr) = THost(te)) ∪ (tr ∈
TrustCloud(THost(tr), THost(te)))]].

Utilizing this trust relation entails redefining the precon-
ditions that correspond to the two operations oa(o : O) and
LAutha(u; o). Below, we provide the formal specification of
these two operations:

• ∀ua ∈ LUA, ua(u : U) is defined by
the tenant administrator of t ∈ T only if
(UAOwner(ua) = UOwner(u) = t) ∪
(TOwner(UAOwner(ua)) = UOwner(u)) ∪ (u ∈
TrustTenant(UOwner(u), UAOwner(ua)));

• LAutha(u; o) is defined by the tenant administrator
of t ∈ T . For all attributes ua, oa that are defined
in LAutha(u; o) only if (UAOwner(ua) =
OAOwner(oa) = UOwner(u) =
OOwner(o) = t) ∪ (UAOwner(ua) =
OAOwner(oa) = OOwner(o) = t ∩
UOwner(u) = TOwner(t)) ∪ (UAOwner(ua) =
OAOwner(oa) = OOwner(o) = t ∩ (u ∈
TrustTenant(UOwner(u), UAOwner(ua)))).

VI. IMPLEMENTATION

A. System Architecture

As shown in Fig. 2, we present the implementation archi-
tecture of the MC-ABAC model using pyhton technology in
order to demonstrate its feasibility. This architecture is com-
posed of five components: Entity information, entity attributes,
authorizations, trust relations and policy decision component.
In the following, we provide a description of each of these
components:

Fig. 2. Implementation architecture.

• Entity information: In this component, the cloud
administrator, customer administrator, and tenant ad-
ministrator are responsible for defining and managing
various entities. These entities encompass customers,
tenants, cloud users and objects, global users and
objects, as well as local users and objects. Each
administrator is responsible for their respective set of
entities within the system;

• Entity attributes: Within this component, it is the
administrator’s responsibility to define the attributes

associated with users and objects. These attributes
can be categorized as either global, local, or specific
to the cloud provider. Subsequently, the administrator
assigns values to the user and object attributes for their
respective users and objects. This is achieved through
a function that takes the user or object as input and
generates a value from the range of the attribute. For
instance, attr1(user1) = {val1, val2}: means that
for the user user1 the values of the attribute attr1
are val1 and val2;

• Authorizations: In this component, the cloud ad-
ministrator, customer administrator, and tenant ad-
ministrator are responsible for specifying the au-
thorizations policy CAutha(u; o), GAutha(u; o) and
LAutha(u; o). In our approach, we consider that each
cloud, customer and tenant defines its own policy
rules. Note that at this level, we assume that the
security policy rules are valid and free from conflicts.

• Trust relations: Within this component, the man-
agement of trust relations is handled. These trust
relations, namely TrustCloud(), TrustCustomer(),
and TrustTenant(), are established by the cloud
administrator, customer administrator, and tenant ad-
ministrator, respectively. Moreover, this component
governs the trust between the cloud provider and the
customer by using the trust relation TrustCPtoC().

• Policy decision: In this component, the evaluation
of access requests to objects stored in the cloud is
carried out based on the collected attribute values
and authorizations. When a user submits a request
to access a resource within the cloud, the policy
decision component assesses the request against the
policy rules to determine whether the user has the
authorization to access the requested resource or not.

B. Results and Performance

The experiments were conducted on a virtual machine
with the following specifications: Memory: 4096 MB, CPU:
2 cores, Hard Disk: 30 GB. For the analysis, we have used
a synthetic dataset, containing up to 1000 authorizations,
200 attributes, 2000 attribute assignments and 25 tenants. We
observed that the performance of our approach is influenced
by various factors, including the number of autorizations and
attribute assignments. The evaluation results indicate that the
implementation of the MC-ABAC model for defining access
control policies incurs minimal overhead.

The average time to grant the access to an object (Fig.
3(a)) with ABAC model increases with 13.1% and 28.5% for
policies of 200 and 1000 rules respectively using the MC-
ABAC model. The waiting time that is required to get a policy
decision increases when there are too many authorizations to
be collected. We attest that our implementation performs well,
even for a large number of authorizations.

Furthermore, the running time for access/deny decisions
to an object has been computed, using both ABAC and MC-
ABAC models, for 600 authorizations and for 400 to 2000
attribute assignments. Fig. 3(b) demonstrates that the average
time to access a resource with ABAC model increases with

www.ijacsa.thesai.org 1188 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Fig. 3. Running time overhead for access/deny decisions.

17.3% and 26.1% for 400 and 2000 attribute assignments using
MC-ABAC Module. We recognize that the implementation of
our model demonstrates effective performance when handling
a significant number of attribute assignments.

VII. CONCLUSION

In this paper, we present a novel ABAC model called:
MC-ABAC, that leverages the capabilities of ABAC, such as
flexibility and adaptability. MC-ABAC enables collaboration
and resource sharing among tenants, which are hosted across
multiple cloud providers. This model introduces the notions
of tenant, cloud customer and cloud service provider as fun-
damental entities within the model. Moreover, MC-ABAC inte-
grates various trust relations to facilitate effective collaboration
and cross-tenant access in the multi-cloud environment. This
model is designed to address access control challenges that
arise in heterogeneous multi-cloud environments where users
and shared resources are distributed across different tenants in
multiple clouds.

Finally, the implementation architecture of the MC-ABAC
model using Python technology has been proposed to demon-
strate its feasibility. The evaluation results have demonstrated
that implementing this model for defining access control
policies has minimal overhead. As a future work, we plan
to implement and test MC-ABAC model on a real platform
consisting of multiple cloud providers. Another future research
involves developing a solution to detect and resolve conflicting
rules in access policies that are defined using the MC-ABAC
model.

REFERENCES

[1] A. Tanvir and A. R. Tripathi, Specification and verification of security
requirements in a programming model for decentralized CSCW systems,
ACM Trans. Inf. Syst. Secur. 10(2) (2007).

[2] P. Mell and T. Grance, The NIST Definition of Cloud Computing.
NIST Special Publication 800-145 (Draft), Retrieved September 10,
2011, from http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-
145-cloud-definition.pdf.

[3] Jin, X., Krishnan and R., Sandhu, A unified attribute-based access control
model covering DAC, MAC and RBAC, DBSec 12, p. 41-55. 2012.

[4] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, Role Based
Access Control Models. IEEE Computer, 29(2), February 1996.

[5] R. Thomas and R. Sandhu, Task-based Authorization Controls (TBAC):
A Family of Models for Active and Enterprise-oriented Authorization
Management, 11th IFIP WorkingConference on Database Security, Lake
Tahoe, California, USA, 1997.

[6] R. Thomas, TMAC: A primitive for Applying RBAC in collaborative
environment, 2nd ACM, Workshop on RBAC, Fairfax, Virginia, USA,
P. 13-19, November 1997.

[7] O.H. Sejong and S.Park, Task-role-based Access Control Model, In:
Information Systems, 28(6): P. 533-562, 2003.

[8] E. Yuan and J. Tong, Attributed Based Access Control (ABAC) for Web
Services, ICWS IEEE Computer Society, P. 561-569. 2005.

[9] Z. Zhang, X. Zhang, and R. Sandhu, ROBAC: Scalable role and organi-
zation based access control models, In Proceedings of the International
Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), IEEE, Atlanta, USA, P. 1–9, November
2006.

[10] D. Lin, P. Rao, E. Bertino, N. Li and J. Lobo, Policy decomposition for
collaborative access control, SACMAT, P. 103-112, 2008.

[11] J. M. A. Calero, N. Edwards, J. Kirschnick, L. Wilcock, and M. Wray,
Toward a multi-tenancy authorization system for cloud services, IEEE
Security and Privacy, vol. 8, no. 6, P. 48-55. 2010.

[12] B. Tang and R. Sandhu, Multi-tenancy authorization models for collabo-
rative cloud services, in IEEE International Conference on Collaboration
Technologies and Systems, P. 132-138, 2013.

[13] B. Tang and R. Sandhu, A Multi-Tenant RBAC Model for Collaborative
Cloud in PST, P. 229-238, 2013.

[14] N. Pustchi, R. Sandhu, MT-ABAC: A Multi-Tenant Attribute-Based
Access Control Model with Tenant Trust. NSS. P. 206-220. 2015.

[15] M.A. Madani, M. Erradi and Y. Benkaouz, Access Control in a
Collaborative Session in Multi Tenant Environment 11th International
Conference on Information Assurance and Security, Marrakech, P. 129-
134, December 2015.

[16] M. A. Madani, M. Erradi and Y. Benkaouz, A Collaborative Task
Role Based Access Control Model, Journal of Information Assurance
andSecurity, vol. 11, no. 6, P. 348-358, 2016.

[17] M. A. Madani, M. Erradi and Y. Benkaouz, C-ABAC: An ABAC based
Model for Collaboration in Multi-tenant Environment, Journal of EAI
Endorsed Transactions on Smart Cities Volume 2, Issue 8, 26th June
2018.

[18] M. A. Madani, M. Erradi and Y. Benkaouz, ABAC Based Online Collab-
orations in the Cloud, First International EAI Conference, AFRICATEK
2017, LNICST Springer, Marrakech, Morocco, P. 67-76, March 2017.

[19] Navid Pustchi, Ram Krishnan and Ravi Sandhu, Authorization Feder-
ation in IaaS Multi Cloud, 3rd International Workshop on Security in
Cloud Computing, SCC’15, pp. 63–71, April 2015.

[20] M. Gupta and R. Sandhu, Towards Activity-Centric Access Control for
Smart Collaborative Ecosystems. SACMAT 21, Spain, June 2021.

www.ijacsa.thesai.org 1189 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

[21] OpenStack cloud platform, http://www.openstack.org/. Accessed: 2023-
05-30.

[22] X. Jin, R. Krishnan and R. Sandhu, Role and attribute based collab-
orative administration of intra-tenant cloud IaaS, CollaborateCom. P.
261-274. 2014.

[23] B. Tang, R. Sandhu: Cross-tenant trust models in cloud computing. In:
Proc. of Int. Conf. IRI, IEEE, pp. 129–136. 2013.

[24] P. Biswas, R. Sandhu, R. Krishnan, An Attribute Based Protection Model
for JSON Documents, In NSS, P. 303-317, 2016.

[25] H. Takabi, J. B. D. Joshi, and G. J. Ahn, SecureCloud: Towards a
Comprehensive Security Framework for Cloud Computing Environments,
In Proc. of the 1st IEEE International Workshop Emerging Applications
for Cloud Computing, Seoul, South Korea, P. 393-398, 2010.

[26] J. Park, R. Sandhu, M. Gupta and S. Bhat, Activity Control Design
Principles: Next Generation Access Control for Smart and Collaborative
Systems, journal IEEE Access, Volume 9, P. 151004-151022, Novembre

2021.
[27] T. Mawla, M. Gupta and R. Sandhu, BlueSky: Activity Control: A Vision

for ”Active” Security Models for Smart Collaborative Systems. SACMAT
22, New York, USA, pp. 207-216, June 2022.

[28] Y. Xue, K. Xue, N. Gai, J. Hong, D. S. L. Wei and P. Hon, An
Attribute-Based Controlled Collaborative Access Control Scheme for
Public Cloud Storage. IEEE Transactions on Information Forensics and
Security, Volume: 14 Issue: 11, PP. 2927 - 2942, April 2019.

[29] M. Gupta and R. Sandhu, T. Mawla and J. O. Benson, Reachability
Analysis for Attributes in ABAC With Group Hierarchy. IEEE Transac-
tions on Dependable and Secure Computing VOLume 20, issue 1, PP.
841-858, 2023.

[30] K. Liu, C. Wang and X. Zhou, Decentralizing access control system
for data sharing in smart grid. High-Confidence Computing, Volume 3,
Issue 2, 2023.

www.ijacsa.thesai.org 1190 | P a g e


