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Abstract—Effort estimation in software development (SEE) is
a crucial concern within the software engineering domain, as it
directly impacts cost estimation, scheduling, staffing, planning,
and resource allocation accuracy. In this scientific article, the
authors aim to tackle this issue by integrating machine learning
(ML) techniques with metaheuristic algorithms in order to raise
prediction accuracy. For this purpose, they employ a multilayer
perceptron neural network (MLP) to perform the estimation for
SEE. Unfortunately, the MLP network has numerous drawbacks
as well, including weight dependency, rapid convergence, and
accuracy limits. To address these issues, the SSA Algorithm is
employed to optimize the MLP weights and biases. Simulta-
neously, the SSA algorithm has shortcomings in some aspects
of the search mechanisms as well, such as rapid convergence
and being susceptible to the local optimal trap. As a result, the
genetic algorithm (GA) is utilized to address these shortcomings
through fine-tuning its parameters. The main objective is to
develop a robust and reliable prediction model that can handle
a wide range of SEE problems. The developed techniques are
tested on twelve benchmark SEE datasets to evaluate their
performance. Furthermore, a comparative analysis with state-of-
the-art methods is conducted to further validate the effectiveness
of the developed techniques. The findings demonstrate that the
developed techniques surpass all other methods in all benchmark
problems, affirming their superiority.

Keywords—Software development effort estimation; machine
learning; multilayer perceptron neural network; salp swarm al-
gorithm; genetic algorithm

I. INTRODUCTION

Software engineering encompasses a systematic, methodi-
cal, and quantitative approach to the creation, operation, and
maintenance of software systems. In order to ensure the effec-
tive and timely production of software products, software engi-
neering management adopts specific actions such as planning,
monitoring, measuring, and reporting [1], [2]. Conversely,
software development effort estimation (SEE) represents a
formidable challenge that holds significant importance in the
software development process. SEE can be defined as the
process of constructing a model that aids software engineers

in determining the cost of a software project prior to or at the
commencement of the software development process [3], [4].

The scholarly literature proposes various methodologies
to tackle the SEE problem. Some of these methodologies
fall under the non-soft computing category, while others uti-
lize machine learning (ML) techniques. ML techniques have
demonstrated their effectiveness and capability to address
similar problems encountered in diverse engineering fields.
Among these ML techniques, artificial neural networks (ANN)
have gained popularity and been extensively adopted in nu-
merous research studies. One common type of ANN is the
Multilayer Perceptron Neural Network (MLP), which is widely
employed in addressing classification and prediction problems.
Additionally, MLP exhibits excellent capability for handling
non-linear and complex engineering problems [2], [3].

Motivated by the shortage of accuracy in the available
models for estimating software development efforts in the
literature, this research study aims to develop a robust and
reliable ML model that has the ability to address the problem
with high accuracy. However, to overcome limitations in
prediction accuracy in the MLP network, the study integrates a
metaheuristic algorithm known as the Salp Swarm Algorithm
(SSA) into the MLP network. This integration aims to optimize
the weights and biases of the MLP network, thereby enhancing
its prediction accuracy. Furthermore, considering the SSA
algorithm’s search restrictions, the research suggests a strategy
for using the Genetic Algorithm (GA) to fine-tune the SSA
parameters.

Because the optimization procedure is stochastic, the ef-
fectiveness of metaheuristic algorithms essentially rests on
finding a reasonable balance throughout the exploration and
exploitation phases and refining the solutions over generations.
The algorithm investigates the search space broadly during
the exploration phase in an effort to avoid becoming stuck in
local optima. Where, in the exploitation phase, the promising
solutions found during the exploration phase are refined to
attain the global optimum [5].
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The Salp swarm algorithm (SSA) was put out in 2017 by
Mirjalili [6] as an effective way for solving optimization issues
in the context of metaheuristic methodologies. The swarming
behavior of salps in deep waters, which commonly generates
a chain of salps, served as the basis for this method. In order
to have more control and make coordinated adjustments for
quick foraging, this chain advances by pushing water inside
its barrel-shaped shells.

The key drawbacks of the SSA algorithm, like those of
other metaheuristic algorithms, are delayed convergence and
premature convergence toward local optima. The No Free
Lunch theorem in optimization states that it must be altered
in order to address certain particular problems. This theorem
argues that when addressing all optimization issues, all meth-
ods function on average equally well. As a result, a particular
approach may work effectively for one group of problems but
fail miserably for another. In order to enhance algorithms that
are acceptable for the majority of issue types, researchers [7],
[8], [9] determined that the proper balance between exploration
and exploitation needed to be improved.

There are potential benefits to fine-tuning the SSA al-
gorithm parameter settings using the GA algorithm, thus
optimizing the MLP network weights. By integrating the SSA’s
exploration skills with the GA’s global search, the SSA opti-
mization capabilities are improved. Therefore, by overcoming
local optimum conditions and responding to various scenarios,
the developed model becomes adaptable and flexible. The
MLP network’s estimation error can be reduced, which in
turn improves the accuracy of resource planning and project
scheduling. The SSA-GA approach makes it easier to facili-
tate generalization and produce accurate estimates for varied
software projects. Overall, this method effectively addresses
the issue of estimating the effort required for software devel-
opment, allowing for good resource management and project
planning. The key contributions of this work are as follows:

1) Use the MLP network to address the issue of esti-
mating software development effort.

2) Use the SSA algorithm to optimize the MLP param-
eters (Weights and biases).

3) Apply the GA algorithm to boost the SSA algorithm’s
optimization capabilities by fine-tuning its parame-
ters.

4) Use several common benchmark SEE datasets to
generalize the findings.

5) Develop three methods (e.g., MLP, SSA-MLP, and
SSA-GA) and conduct statistical comparisons among
the methods to determine the most effective one.

The rest of the paper contains the following: Section II
provides a brief overview of the SEE problem, the MLP
network, and the SSA algorithm. Section III introduces the
developed methods. Section IV introduces the research results.
Section V introduces a discussion for study finding. Section VI
introduces the study conclusion.

II. BACKGROUND

The research at hand encompasses a variety of tools and
topics, including “Software Development Effort Estimation
Problem”, “Multilayer Perceptron Neural Network”, and “Salp
Swarm Algorithm.” These components form the foundation of

the study and contribute to its overall context and objectives.
Below is a brief overview of each of them.

A. Software Development Effort Estimation Problem

Software development effort estimation (SEE) is a critical
procedure that involves utilizing uncertain, noisy, inconsistent,
and incomplete data inputs to forecast the optimal and realistic
amount of effort required for software development and main-
tenance. Typically, the level of work accomplished is expressed
in units such as man-months, man-hours, or the number of
individuals involved in the software development process. Ac-
curate estimations play a pivotal role in effectively planning for
software project development. However, underestimation and
overestimation are two complex issues that software project
managers often face, and these challenges can potentially result
in project failure [10], [11].

Robert N. Charette [12] extensively discussed the primary
causes of failure in software projects, identifying a range of is-
sues that contribute to project failures. These issues encompass
unending system requirements, inadequate communication be-
tween developers and customers, the utilization of outdated
technologies, ineffective project management practices, com-
mercial pressures, difficulties in handling project complexity,
inaccurate project status reports, unrealistic project objectives,
uncontrolled risks, and stakeholder conflicts influenced by
political factors. However, the ultimate success of a software
project heavily relies on the accuracy of work estimation.
While precise estimation is essential for both project managers
and clients, there is a pressing need to enhance software
development effort estimation (SEE). SEE plays a crucial role
in supporting efficient software development and maintenance
for software developers, while also empowering clients to
negotiate contracts, plan project completion timelines, and
establish release dates for prototypes, among other aspects.
Despite the existence of numerous approaches to software
effort estimation, the development of accurate and consistent
estimation techniques remains challenging for researchers [13],
[1].

B. Multilayer Perceptron Neural Network

The multilayer perceptron (MLP) neural network, a spe-
cific component of the feedforward neural network (FFNN),
stands as a unique form of Artificial Neural Network (ANN)
capable of effectively approximating and comprehending the
characteristics exhibited by computational models [14].

The MLP neural network necessitates a unidirectional
arrangement of neurons, where data is transmitted through
stacked layers organized into three types: input, hidden, and
output layers. The connections between these layers can be
established using different weights. Neurons within the MLP
perform calculations using summation and activation functions.
Summation function responsible for calculating the weighted
sum of inputs and their corresponding connection weights.
This function aggregates the inputs and weights to generate a
weighted sum. The activation function, on the other hand, in-
troduces non-linearity to the output of the summation function.
It determines the output of a neuron or an entire layer based
on the weighted sum calculated by the summation function.
The activation function introduces non-linear transformations,
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allowing the network to learn and model complex relationships
between inputs and outputs.

The hidden layer neurons in the neural network employ
the sigmoid activation function, while the output layer neurons
utilize the linear activation function. The linear and sigmoid
functions can be mathematically represented by Eq. 1 and 2,
respectively.

f(x) = x (1)

f(x) =
1

1 + e−x
(2)

Consequently, by adjusting the biases and weights, the net-
work iteratively minimizes the error in the output and improves
the accuracy of predictions. Graphical representations of the
linear and sigmoid functions can be observed in Fig. 1 and 2,
respectively.

Fig. 1. Linear Activation Function

Fig. 2. Sigmoid Activation Function

C. Salp Swarm Algorithm

The Salp Swarm Algorithm (SSA) is a recently introduced
metaheuristic optimization algorithm developed by Mirjalili et
al. in 2017 [6]. This algorithm is inspired by the collective
behavior of sea salps found in nature. Sea salps, which are
transparent, barrel-shaped invertebrates resembling jellyfish,
propel themselves forward by pumping water into the back
of their shells [15], [16]. They live and swim together in
groups, with one salp acting as the leader while the others are
considered “followers” [6]. Fig. 3 illustrates the body shape of
a salp in (a) and depicts a group of salp swarms in (b).

The collective swimming behavior of salps in a group or
swarm can be mathematically formulated and modeled as an
optimization algorithm. The positions of the salps are deter-
mined within a search space of dimensions n × N , where n
represents the number of variables in a specific problem and N
corresponds to the number of solutions in the population. This
search space encompasses a food source (F ) that represents

the desired target or optimal solution for the salps. The leader
of the swarm updates its position using Eq. 3.

x1
j =

{
Fj + r1 ∗ ((ubj − lbj) ∗ r2 + lbj) r3 ≥ 0.5

Fj − r1 ∗ ((ubj − lbj) ∗ r2 + lbj) r3 < 0.5
(3)

In the provided equations, x1
j represents the position of the

swarm leader in the jth dimension, Fj represents the position
of the food source in the same dimension. The variables r1,
r2, and r3 correspond to three random numbers, while lbj and
ubj represent the lower and upper boundaries of the search
space in the jth dimension, respectively.

The movement of the swarm leader is determined by the
position of the food source F in the search space, as indicated
in Eq. 3. The value of r1 is used to achieve a balance between
exploration and exploitation during the search process, and its
formulation is given in Eq. 4.

r1 = 2 ∗ e−(
4∗l
L )

2

(4)

where L represents the maximum number of iterations and
l represents the current one.

The values of r2 and r3 are randomly generated within
the range of 0 to 1. These values play a significant role in
determining the magnitude of the movement step taken by the
salps and influencing the direction of the search, whether it
is positive or negative. Consequently, the position of the salps
can be updated using the following expression:

xi+1
j =

1

2

(
xi
j + xi−1

j

)
, i ≥ 2 (5)

where xi
j is the position of the ith follower.

The SSA’s optimization process starts with the population’s
random creation of solutions. The followers then start to
update their locations, led by the leader’s location, in an
effort to find better locations with greater fitness values. Up
until the termination condition is satisfied, which signifies
the conclusion of the optimization process, these phases are
repeated repeatedly.

III. DEVELOPED TECHNIQUE

The method that has been developed combines an MLP
network with SSA and is called “SSA-MLP.” This integration’s
main goal is to use SSA to identify the MLP network’s optimal
weights and biases, thereby improving the accuracy of MLP
predictions. The Genetic Algorithm (GA) is used to upgrade
the SSA algorithm to achieve this modification. The goal of
this upgrade is to fine-tune SSA’s settings to increase its capac-
ity for optimization. The GA algorithm is used in each iteration
of the SSA algorithm to search for the most appropriate values
for the SSA parameters, ensuring their optimal setting, which
leads to the creation of a new technology called “SSA-GA”. By
applying GA iteratively, it fine-tunes the parameters of SSA,
leading to enhanced optimization performance. The working
steps of the proposed SSA-GA algorithm may be summed up
as follows:
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Fig. 3. Salp and Salp Swarm

• MLP Initialization: The Multilayer Perceptron (MLP)
network’s initial state is determined during initializa-
tion, and this procedure also provides the groundwork
for further training and optimization.
The weights and biases of the network are chosen at
random during MLP startup. The biases serve as ad-
justable factors that regulate the activation thresholds
of individual neurons, while the weights demonstrate
the strength of connections between the neurons in the
MLP’s various layers. The MLP starts with a diverse
collection of values thanks to the random initialization
of these parameters, allowing for the exploration of
many solutions during the training process.
In MLP networks, random initialization is desirable
because it lessens biases toward particular patterns or
structures that may be present in the training data. The
MLP is encouraged to learn a variety of characteristics
and patterns by adding randomness, which helps it
generalize well to data that has not yet been seen.
In addition, initializing the MLP network with random
weights and biases stimulates variation among its neu-
rons and allows them to contribute to learning on their
own. This variant prevents the network from becoming
stale in local optima and enables it to explore diverse
regions of the solution space.

• SSA-Population Initialization: The approach starts
with the SSA-Population Initialization step by running
the Multilayer Perceptron (MLP) training phase using
the given training data. The number of times this
training phase is repeated equals the SSA-population
size, or the number of solutions in the population,
exactly.

The MLP’s updated weights and biases are retrieved
and arranged as a vector after each training phase
iteration. This vector form includes the precise set of
adjusted weights and biases from the training proce-
dure. The SSA-population is then updated with these
vectors, which reflect the altered weights and biases.
The SSA method treats each vector as an independent
solution.
The next step is to evaluate the fitness of each solution
inside the population once all the upgraded weights
and biases vectors have been introduced to the SSA-
population. Based on their individual training-fitness
values, which represent how well each solution does
in terms of minimizing errors throughout the training
phase, an evaluation is made. The training-fitness val-
ues provide each solution with a numerical evaluation
of its fitness or quality.
The optimal solution within the SSA-population is
identified in this assessment by finding the one with
the best fitness value. The weights and biases used
in this study’s best solution are those that produce
the most accurate estimates while minimizing the
mean squared error (MSE), which acts as the study’s
objective function. The mean squared difference be-
tween the anticipated values and the actual values is
quantified by the MSE, an extensively used statistic in
machine learning.
The SSA-Population Initialization stage makes it eas-
ier to identify the best solution within the population
by using the MSE as the objective function. This
allows for later optimization and enhancement of the
MLP’s performance in the estimation assignment.
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• GA-Population Initialization: The GA-population is
generated at random during the population initializa-
tion stage. The relevant parameters, indicated as p1
and p2, have discrete values between 1 and 15. The
GA-population is formulated as a two-dimensional
matrix, where each row represents one GA solution.
The number of SSA parameters that need to be
tweaked is indicated by the size of each row, which
is d = 2. Two parameters, p1 and p2, make up each
GA-solution and contribute to the set of accessible
parameters shown in Eq. 6.

r1 = p1.e
−( p2l

L )
2

(6)

• GA-Population Evaluation: Each GA-solution’s fitness
value is evaluated in order to ascertain it. This evalua-
tion entails running an SSA algorithm optimization
process and introducing each GA solution into the
SSA-population. The application of each SSA-solution
to the MLP, along with the validation data, aims to
determine the optimal SSA-solution. The resulting
validation-fitness is then calculated.
The SSA algorithm is combined with each GA solu-
tion to assess it through run its optimization process.
The goal of the optimization is to find the SSA-
solution that, when combined with the MLP, produces
the best results on the validation data.
The validation-fitness is calculated using the MLP
and the chosen SSA-solution. Based on the results
achieved during the MLP validation phase utilizing
the validation data, this validation-fitness measures the
caliber or efficacy of the GA solution.
By evaluating each GA-solution’s performance when
it is incorporated into the SSA algorithm and then
assessing the validation-fitness attained by the corre-
sponding SSA-solution when combined with the MLP
and the validation data, the fitness of each GA-solution
is thus determined through this GA-population evalu-
ation step.

• Parameter Tuning: The GA-solutions go through mu-
tation and recombination after being encoded into
chromosomes. Superior individuals within the popu-
lation develop as a result of these genetic activities,
which alter the encoded parameter values. The favor-
able parameter values that these superior GA-solutions
possess boost their chances of surviving, reproducing,
and passing on these enhanced parameter values to
their progeny.

• Selection: The roulette wheel selection strategy is used
in this phase to choose the GA-solution from the
population. The fitness function for each solution is
calculated using the standard SSA technique in this
selection scheme. To do this, the solution is used as
an input parameter for the SSA algorithm, and the
fitness value that results is taken into account as the
objective function value for that specific solution. The
roulette wheel selection system ensures that the fittest
individuals have a greater chance of being picked
for continued breeding and development by favoring
individuals with higher fitness ratings.

• Encoding: All GA-solutions or individuals are restruc-
tured in this stage using a binary format. The solutions
are transformed by utilizing binary notation to express
them. Each solution is recast in a standardized repre-
sentation using the binary format, making it easier for
genetic processes like crossover and mutation to take
place in later iterations of the algorithm. The binary
encoding makes it easy to manipulate and modify
the GA-solutions, allowing the evolutionary process
to explore various genetic material combinations.

• Crossover: The crossover operation is performed on
the chosen solution in this stage, where two encoded
parents are picked at random, the same as in the
Selection-Step. Both the single crossover and double
crossover approaches were used for this study. The
chance of using the crossover operation is determined
by the crossover rate, which is defined as gammar,
where gammar is a number produced at random
between [0, 1].
The amount of crossover applied throughout the pop-
ulation is influenced by the gammar value. A major
fraction of the population will experience crossover
when gammar is closer to 1, leading to a significant
inheritance of genetic material across people. This
suggests that during crossover, several genes will be
transferred across individuals.
The value of gammar is set at 70% for the provided
technique, suggesting a comparatively high crossover
rate. This decision guarantees that the population ex-
periences a sizable quantity of genetic recombination,
enabling the evolutionary process to explore various
genetic combinations.
To prevent similarity or uniformity among the solu-
tions, alterations are made to the chromosomes in the
mutation stage. This is accomplished by altering one
or more chromosomal genes; the mutation rate (mur)
determines the degree of mutation. In order to ensure
regulated exploration of the search space and prevent
excessive and disruptive modifications to the solutions,
the mur is often given a minimal value.
The mur is set to 0.1 for the proposed approach,
which is a quite low mutation rate. In order to promote
a certain degree of diversity and exploration among the
population, this choice permits modest alterations to
the genetic code.

• Decoding: The chromosomes’ binary representation is
converted into a decimal format during the decoding
process. The binary-encoded chromosomes are trans-
lated into their corresponding decimal values through-
out this procedure. The genetic data contained inside
the chromosomes is converted during this decoding
procedure into a format that is better suited for addi-
tional analysis and interpretation during the following
phases of the algorithm.

• Evaluation: In this stage, each new GA-solution goes
through an evaluation using the SSA algorithm. The
new values for the SSA parameters p1 and p2 are
produced from the gene values found in each GA-
solution. These gene values serve as the adjusted
values for the SSA algorithm’s associated parameters.
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Fig. 4. Developed Technique
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The optimal value obtained by using SSA determines
the fitness function value for each subsequent GA-
solution. The performance or efficacy of any particular
solution with regard to the issue at hand is represented
by this optimal value. Each solution may be tested for
quality or appropriateness within the framework of the
optimization process by using SSA to determine its
fitness function values.

• GA Termination Criteria: To attain the maximum
number of generations, repeat the previous procedures
(apart from initiation) as many times as necessary.
Each generation goes through several procedures like
selection, crossover, mutation, and evaluation as the
process continues repeatedly.
The optimal GA-individual is chosen once the max-
imum number of generations has been reached. The
SSA technique is then used to choose this individual
as the candidate for its optimization process. This
individual displays the best fitness or performance
among all the individuals in the GA-population. The
goal of choosing this most optimal GA-solution is to
enhance the SSA algorithm’s optimization capabilities
by enhancing and refining the parameter values linked
with it.

• Select best parameters: These optimal GA-individuals
are chosen when the optimization procedure by the
GA is finished and the best individuals have been iden-
tified. The SSA algorithm then uses the top candidates
that were discovered by the GA optimization as new
parameter values. By using these optimal parameters,
the SSA algorithm is given the most precise and
potent set of parameter values, improving both its
performance and its capacity for optimization.

• Optimization: Using the optimal parameters discov-
ered in the preceding rounds, the SSA-GA approach
is used during optimization. This strategy tries to
further optimize the SSA-GA-population and identify
the optimal SSA-GA-solution. The MLP’s weights
and biases are then updated using the best SSA-GA-
solution that was chosen. The MLP is provided with
better parameters, boosting its prediction accuracy
and overall performance by including this new set of
perfect weights and biases.

• Run the MLP simulation phase: Using recently im-
proved weights and biases, the MLP is run during the
simulation phase. The validation data set is used to
run this simulation. MLP uses updated weights and
biases to produce predictions and estimates based on
input data during simulation.

• Accuracy calculation: After the simulation, the MLP’s
estimation accuracy is calculated. Based on the sup-
plied validation data, this accuracy measurement as-
sesses the degree of accuracy and correctness of the
MLP’s forecasts and estimates. They may be quanti-
tatively assessed by assessing the precision, the effi-
ciency of the optimization procedure, and the influence
of the new and optimized weights and biases on the
MLP’s estimate performance.

The SSA algorithm’s parameters are dynamically adjusted

by the GA algorithm by following these formal procedures.
As a result, the SSA-GA technique’s optimization capabilities
are enhanced, increasing the accuracy of MLP predictions. By
combining the modeling prowess of MLP and the optimization
skills of SSA, this integrated strategy provides an efficient
remedy for resolving the SEE problem.

Fig. 4, which shows a flow chart outlining the methodol-
ogy’s several phases, graphically illustrates the suggested and
developed process. The proposed methodology is illustrated
graphically in the flow chart, which shows the sequence and
connections between the numerous parts and steps that make
up the method.

IV. EXPERIMENT AND RESULTS

This part focuses on the thorough design and construction
of an experiment that aims to solve the effort estimation
problem, a crucial component of software development. The
experiment makes use of MLP embedding together with SSA
and GA, two potent metaheuristic techniques. The main goal of
this experiment is to build a solid model that can calculate the
effort needed for software development projects with accuracy.

The experiment’s outcomes will be crucial in determining
whether or not the created model is effective. We’ll con-
duct a detailed analysis and comparison of the accuracy and
performance of the proposed model with those of currently
used effort estimation methods. The outcomes will also give
important insights into the model’s potential and capabilities
for actual software development scenarios.

A. Datasets Used

The datasets used in this study are from credible sites like
PROMISE and GitHub and are highly recognized benchmark
datasets frequently used in research. These datasets illustrate
a wide variety of features, traits, and scales, demonstrating
their effectiveness. Each dataset is described in full in Table I,
including the number of features, dimensions, effort unit, and
source repository. Albrecht, Kitchenham, and Kemerer datasets
each have seven, seven, and six features, making them the
datasets with the lowest feature sizes. On the other hand,
Maxwell and COCOMONASA-II have the most characteris-
tics, with twenty-seven and twenty-one, respectively. While the
China and Desharnais datasets are gathered from the GitHub
and PROMISE repositories and measured in “person-hours,”
the Maxwell dataset uses “function points” as the measurement
unit, in contrast to the other datasets, which all use “man-
months” as the measurement unit. The additional datasets,
like Albrecht and USP05, are measured in ‘man-months” and
were downloaded from the PROMISE and GitHub sources,
respectively.

B. Parameter Setting

A number of careful tests were done to make sure the
SSA algorithm worked as intended. Finding the ideal set of
parameters—specifically, the population size and maximum
iterations—was the main goal. A fair value was found for
each parameter: a population size of 30 and a maximum
iteration limit of 300, after careful deliberation and thorough
investigation. Based on the outcomes of the experiments and
how they affected the performance of the algorithm, these
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TABLE I. DATASETS

Dataset Features Dimension Unit Source
Miyazaki-94 048 08 man-months PROMISE
Kitchenham 145 07 man-months PROMISE
Desharnais 081 12 man-hours GitHub
COCOMONASA-I 060 17 man-months PROMISE
Cosmic 042 11 man-months PROMISE
Albrecht 024 08 man-months PROMISE
USP05 203 08 man-months GitHub
Maxwell 062 27 function points PROMISE
Kemerer 015 07 man-months PROMISE
COCOMONASA-II 093 24 man-months PROMISE
COCOMO-81 063 17 man-months PROMISE
China 499 16 man-hours PROMISE

values were determined to be the best ones. Which supports
what was used in the original research [6] that developed the
SSA algorithm. This study’s experiments were all carried out
in the environment that was specifically mentioned before.

For the MLP network, this research uses a network with
three layers: an input, an output, and a single hidden layer.
It is the basic structure of any simple artificial neural network
[17], [18]. The trial-and-error method [19], [20] was employed
to select the best number of neurons in the hidden layer.
Where the number with the best fitness value was considered.
Therefore, each dataset has a specific number of neurons
in the hidden layer. For instance, the following setting for
the number of neurons in the hidden layer for each dataset
was found: Miyazaki-94: 12 neurons; Kitchenham: 5 neurons;
Desharnais: 15 neurons; COCOMONASA-I: 5 neurons; Cos-
mic: 10 neurons; Albrecht: 15 neurons; USP05: 12 neurons;
Maxwell: 5 neurons; Kemerer: 15 neurons; COCOMONASA-
II: 10 neurons; COCOMO-81: 12 neurons; China: 12 neurons.
Finally, the activation functions used are as presented in
Section II-B, and the learning rate value is 0.05.

Additionally, each experiment was performed 21 times
in a row to guarantee accurate findings. As a result of this
repetition, a sizable quantity of data was gathered, allowing for
the computation of the average performance based on the best
results attained over the several runs. In order to conduct the
studies, MATLAB 2016a was used. The computing operations
were carried out using a device that had 16 GB of RAM
and an Intel Core i7 CPU running at a speed of 2.0 GHz.
Utilizing this hardware setup gave us plenty of processing
power and memory space to support the experimental methods
successfully.

C. Performance Measures

Using six important statistical variables, a thorough as-
sessment of the performance of the developed methodologies
was carried out in this study. These metrics were intentionally
chosen to offer a comprehensive evaluation of the techniques
and cover many facets of error analysis. It’s vital to remember
that no one measurement can accurately represent all of the
performance traits of the developed techniques. As a result,
the use of these six metrics enables a flexible and thorough
assessment of many elements of the approaches’ effectiveness.
Researchers can gain a more detailed picture of the benefits
and drawbacks of the proposed methodologies by taking into
account a variety of measures. The following are the six
statistical tests used in this study:

Mean Square Error (MSE): The average of the squared
discrepancies between the projected values and the actual
values is calculated by the commonly used metric known
as MSE. In addition to being very responsive to outliers, it
quantifies the overall size of the errors.

MSE =
1

n

n∑
i=1

(Ai − Pi)
2 (7)

Root Mean Square Error (RMSE): RMSE is derived from
MSE and, by calculating the square root of the MSE value,
offers a more understandable measurement. It serves as a
representation of the errors’ standard deviation and may be
used to compare models across various datasets.

RMSE =

√√√√ 1

n

n∑
i=1

(Ai − Pi)
2 (8)

Relative Absolute Error (RAE): RAE quantifies the ratio
of an absolute prediction error to an absolute error of a
straightforward baseline model. By dividing the error by the
total absolute errors in the base model, it normalizes the error.

RAE =

∑n
i=1 |Ai − Pi|∑n
i=1

∣∣∣Ai − Âi

∣∣∣ (9)

Root Relative Squared Error (RRSE): A RAE variant
known as RRSE takes the square root of the relative squared
error into account. Similar to RAE but including the squared
components, it offers a relative estimate of the errors compared
to a baseline model.

RMSE =

√√√√√ ∑n
i=1 (Ai − Pi)

2∑n
i=1

(
Ai − Âi

)2 (10)

Mean Absolute Error (MAE): The average of the absolute
discrepancies between the expected and actual values is de-
termined by MAE. Regardless of their orientation, it offers a
clear indication of the average error magnitude.

MAE =
1

n

n∑
i=1

|Ai − Pi| (11)

Mean Magnitude Relative Error (MMRE): The average
relative error between the anticipated and actual values is
assessed using MMRE. It is the result of dividing the actual
values by the average of the absolute differences between the
expected and actual values.

MMRE =
1

n

n∑
i=1

|Ai − Pi|
Ai

(12)

where Ai is the actual values, Pi is the predicted values,
and Âi is the average of actual values.
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These mathematical formulas make it possible to calculate
the corresponding statistical measures, providing quantitative
numbers for assessing how well the research’s methodologies
performed.

D. The Optimal SSA Parameter Values Found

The authors meticulously looked into many issue scenarios
during the considerable testing done for this work in order to
determine the best parameter values for the SSA method in
each situation. The outcomes of this thorough investigation are
shown in Table II, which highlights the precise SSA parameter
values that are most successful in resolving the issues under
consideration.

The proper values for the SSA parameters, namely p1 and
p2, for each problem examined in this research project are
clearly outlined in Table II. The fact that each problem requires
a different set of parameter values in order to function at its
best reveals the individuality of each one.

It is essential to understand that the values shown in
Table II are neither constant nor unchangeable. Instead, they
are prone to variation since the algorithms used are, by their
very nature, probabilistic. There is a chance that the calculated
parameter values might vary if the experiments were repeated.
This difference might be traced to the algorithms’ random
features, which provide an element of ambiguity and variety
to the optimization procedure.

As a result, the researchers stress how crucial it is to
take the algorithms’ stochastic character into account when
interpreting the findings. The parameter values indicated in
Table II are the best options based on the experimentation
that was performed; however, they should be viewed as
recommendations rather than strict guidelines. Recognizing
the potential variations in these variables enables a thorough
comprehension of the behavior of the algorithm and promotes
a strong optimization procedure.

TABLE II. BEST OBTAINED SSA PARAMETERS AFTER TUNED BY GA
ALGORITHM

Dataset p1 p2
Albrecht 03 09
China 04 12
Cosmic 11 14
COCOMO-81 08 08
COCOMONASA-I 15 11
COCOMONASA-II 01 06
Desharnais 03 14
Kemerer 14 11
Kitchenham 14 14
Maxwell 03 14
Miyazaki-94 15 09
USP05 15 12

E. Comparison of SSA-GA vs. SSA-MLP and Standard MLP

There were 21 iterations of the experiment. The best
findings were therefore averaged, and this was taken into
consideration. Table III is a list of the outcomes. The findings
of the study for several datasets utilizing MLP (Multi-Layer
Perceptron) and two variants of SSA (Salp Swarm Algorithm):

SSA-MLP and SSA-GA, are presented in the supplied data
table. For each combination, the average MSE, standard devi-
ation of MSE, worst MSE, and best MSE, as well as MMRE,
RMSE, RRSE, MAE, and RAE, were calculated statistically.

The study presented here highlights the results of the
recommended approaches and sheds light on two key findings
of enormous relevance. First off, it is clear that the efficient
optimization of weights and biases made possible by the
seamless integration of the Salp Swarm Algorithm (SSA) with
the Multi-Layer Perceptron (MLP) network has a significant
impact on the predictive capacities of the MLP network.
The performance and precision of the MLP predictions are
significantly improved as a result of this integration.

The MLP network’s training process is improved and
made more efficient by using the SSA technique. The SSA
algorithm presents a novel method of searching the solution
space that is motivated by the organic movement patterns of
salp swarms. This technique uses a series of dynamic equations
to direct the salps in the direction of the best outcome. The
network’s predictive capacity is greatly increased as a result
of the interaction between the MLP and the SSA algorithm,
producing better outcomes and more accurate predictions.

The recommended improvements to the SSA algorithm,
which were performed by fine-tuning its parameters with the
help of the Genetic Algorithm (GA) have also been shown to
significantly improve its optimization performance. The best
set of parameters for the SSA may be found using the GA
algorithm, which takes its cues from the mechanisms of natural
selection and genetics.

The SSA algorithm’s efficacy and efficiency in improving
the weights and biases are significantly increased by exposing
it to the GA’s optimization capabilities. Superior optimization
results are obtained as a result of the SSA method being able
to adapt more precisely to the unique traits and needs of the
current issue thanks to this parameter tweaking procedure.
The amalgamation the GA algorithm with the SSA algorithm
enables the latter to more thoroughly explore the solution space
and to converge to optimal solutions in a more effective and
efficient way.

In summary, the results obtained using the developed
approaches highlight two important facts. First off, by enabling
the efficient optimization of weights and biases, the SSA
algorithm’s integration with the MLP network has a signifi-
cant positive impact on the performance of MLP predictions.
Second, by applying the GA algorithm, the SSA algorithm has
been greatly improved in terms of its optimization efficiency,
which eventually results in higher-quality results and more
precise forecasts. These discoveries open up new opportunities
for additional study and application in a variety of fields,
enhancing the area of predictive modeling and optimization
approaches.

F. Comparing the SSA-MLP with State-of-the-Art Methods

A detailed and thorough comparison is made in this phase
of the study, contrasting the performance of the recommended
approach with leading-edge techniques that have been de-
scribed in the body of existing literature. The comparison’s
objective is to show the created technique’s effectiveness
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TABLE III. RESULTS OBTAINED BY SSA-GA, SSA-MLP, AND STANDARD MLP

Dataset Method MSE MMRE RMSE RRSE MAE RAE
avg std worst best

Miyazaki-94 MLP 0.0035 1.39E-05 0.0042 0.0035 0.3260 0.0218 0.2440 0.0473 0.2130
SSA-MLP 0.0010 5.44E-04 0.0020 0.0004 0.0634 0.0434 0.2760 0.0274 0.1420
SSA-GA 0.0008 1.85E-05 0.0008 0.0008 0.0507 0.0022 0.1200 0.0075 0.1270

Kitchenham MLP 0.0232 9.18E-04 0.0221 0.0220 1.7800 0.1350 0.5890 0.2380 0.6640
SSA-MLP 0.0132 4.54E-03 0.0149 0.0084 1.1400 0.1220 0.3910 0.0626 0.5290
SSA-GA 0.0092 5.46E-03 0.0147 0.0037 1.0200 0.1130 0.2140 0.0359 0.3520

Desharnais MLP 0.0145 8.32E-04 0.0166 0.0148 0.5640 0.2230 0.5240 0.0848 0.5100
SSA-MLP 0.0091 1.24E-03 0.0128 0.0053 0.2230 0.0192 0.2760 0.0486 0.3050
SSA-GA 0.0028 1.14E-04 0.0046 0.0042 0.0637 0.0116 0.1080 0.0011 0.1320

COCOMONASA-I MLP 0.0074 6.89E-05 0.0065 0.0064 1.6400 0.0329 0.2840 0.0773 0.4430
SSA-MLP 0.0032 9.25E-05 0.0041 0.0041 0.7190 0.0142 0.0554 0.0048 0.0576
SSA-GA 0.0026 1.19E-04 0.0015 0.0025 0.1340 0.0121 0.0344 0.0033 0.0356

Cosmic MLP 0.0000 8.98E-10 0.0000 0.0000 0.0004 0.0004 0.0083 0.0182 0.0919
SSA-MLP 0.0000 2.29E-08 0.0000 0.0000 0.0002 0.0000 0.0014 0.0000 0.0073
SSA-GA 0.0000 3.14E-11 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000 0.0007

Albrecht MLP 0.0261 2.65E-05 0.0214 0.0219 0.3490 0.1750 0.3980 0.0895 0.4460
SSA-MLP 0.0095 8.25E-03 0.0169 0.0028 0.1980 0.0194 0.0438 0.0304 0.0358
SSA-GA 0.0075 6.97E-03 0.0183 0.0010 0.0854 0.0126 0.0306 0.0132 0.0134

USP05 MLP 0.0144 3.93E-04 0.0294 0.0152 8.7500 0.1390 0.7830 0.0663 1.8700
SSA-MLP 0.0102 7.24E-03 0.0231 0.0031 4.9600 0.0170 0.3820 0.0174 0.6460
SSA-GA 0.0072 6.56E-03 0.0122 0.0011 1.5800 0.0115 0.0596 0.0076 0.2340

Maxwell MLP 0.0056 7.86E-04 0.0076 0.0060 1.0500 0.0717 0.4500 0.0704 0.4880
SSA-MLP 0.0038 2.16E-03 0.0052 0.0009 0.1720 0.0034 0.0262 0.0033 0.0329
SSA-GA 0.0007 2.46E-05 0.0007 0.0007 0.1210 0.0020 0.0172 0.0019 0.0112

Kemerer MLP 0.0002 9.87E-07 0.0002 0.0002 0.2680 0.0132 0.0486 0.0201 0.0242
SSA-MLP 0.0000 1.24E-06 0.0000 0.0000 0.0072 0.0042 0.0174 0.0036 0.0134
SSA-GA 0.0000 6.42E-07 0.0000 0.0000 0.0047 0.0035 0.0109 0.0014 0.0063

COCOMONASA-II MLP 0.0103 8.77E-05 0.0338 0.0113 1.7200 0.1230 0.4170 0.0578 0.4450
SSA-MLP 0.0050 1.34E-04 0.0063 0.0061 4.3800 0.0462 0.3790 0.0276 0.1980
SSA-GA 0.0041 1.03E-03 0.0067 0.0039 1.7600 0.0315 0.1120 0.0213 0.0551

COCOMO-81 MLP 0.0160 9.77E-05 0.0161 0.0248 0.1100 0.1470 0.5720 0.2560 0.4460
SSA-MLP 0.0073 1.42E-04 0.0086 0.0076 3.3400 0.0438 0.3930 0.0401 0.2780
SSA-GA 0.0040 1.05E-04 0.0031 0.0011 0.0955 0.0126 0.1110 0.0196 0.0642

China MLP 0.0032 8.79E-05 0.0031 0.0019 0.7450 0.0687 0.3170 0.0288 0.3830
SSA-MLP 0.0027 2.04E-03 0.0029 0.0004 1.3800 0.0321 0.2620 0.0260 0.3860
SSA-GA 0.0013 1.14E-03 0.0014 0.0002 0.6300 0.0273 0.2070 0.0221 0.2540

and superiority in addressing the Software Effort Estimation
(SEE) problem. The comparison study takes into account
two different scenarios and thoroughly compares the created
strategy to comparable techniques that have been specifically
designed to tackle the SEE problem. The state-of-the-art in the
field is represented by these chosen approaches, which also
act as benchmark models for evaluating the improvements and
contributions of the recommended approach.

The first comparison compares the developed technique to
the strategy put forward by Kassaymeh et al. (2021), [21],
while the second comparison compares the developed method-
ology to the strategies put forth by Khan et al. (2021), [22].
The benchmark datasets used in each of these comparative
assessments are the same ones used in this study, and they
use the same two evaluation metrics to assess performance:
mean squared error (MSE) and mean magnitude of relative
error (MMRE). Tables IV and V include the specific findings
of these comparisons, respectively.

The SSA-GA technique clearly outperforms the SSA-
BPNN method in terms of Mean Squared Error (MSE) per-
formance metrics across all datasets in the first comparison, as
shown by the results of the comparisons that were conducted.
This shows that, when compared to the SSA-BPNN approach,
the SSA-GA algorithm offers greater accuracy and precision in
calculating software effort. this due to ability of the developed
model that elicit the benefit of GA algorithm in adjusting its
parameter according to problem in the hand.

Furthermore, in the second comparison, it is shown that the

TABLE IV. COMPARISON BETWEEN SSA-GA AGAINST
STATE-OF-THE-ART METHODS [21]

Method SSA-GA SSA-BPNN
Miyazaki-94 8.41E-04 3.50E-03
Kitchenham 9.20E-03 2.29E-02
Desharnais 2.76E-03 1.57E-02
COCOMONASA-I 2.60E-03 7.40E-03
Cosmic 7.57E-11 1.34E-07
Albrecht 7.52E-03 1.61E-02
USP05 7.23E-03 1.44E-02
Maxwell 6.53E-04 6.80E-03
Kemerer 2.47E-06 1.62E-04
COCOMONASA-II 4.07E-03 1.03E-02
COCOMO-81 4.01E-03 1.60E-02
China 1.30E-03 3.00E-03
- comparison in term of MSE
- best results in bold

SSA-GA technique outperforms a number of other cutting-
edge algorithms. The SSA-GA algorithm stands out as the
best performer in terms of predictive abilities when compared
to the Straw Berry (SB), Ant Colony Optimization (ACO),
Cuckoo Optimization (CO), Genetic Algorithm (GA), Grey
Wolf Optimizer (GWO), Particle Swarm Optimization (PSO),
and Bat Algorithm (BA) algorithms.

In particular, the SSA-GA method exhibits outstanding
results on the COCOMO-81 and Maxwell datasets while taking
into account the assessment metrics of mean magnitude of
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relative error (MMRE). The SSA-GA method outperformed
the other state-of-the-art algorithms analyzed in the study
in terms of performance on these datasets, demonstrating
the algorithm’s greater capacity to estimate software effort
precisely and with less relative error.

These superiority results are due to the fact that the SSA
algorithm in the SSA-BPNN methods did not obtain parameter
tuning, as is the case in the method developed in this paper
(SSA-GA). This gives conclusive evidence of the desired ben-
efit of introducing another algorithm (GA here) to adjust the
parameters of the main algorithm (SSA) so that the developed
algorithm becomes more flexible and effective in handling
various prediction problems. In addition, the superior results
of the developed algorithm play a pivotal role in proving the
need to replace traditional training methods for artificial neural
networks with metaheuristic algorithms to enhance prediction
accuracy and raise the quality of the results.

TABLE V. COMPARISON BETWEEN SSA-GA AGAINST
STATE-OF-THE-ART METHODS [22]

Method COCOMO-81 Maxwell
SB 3.6100 2.7200
ACO 5.6100 4.5400
CO 4.0700 2.8600
GA 4.7800 3.2200
GWO 2.2100 1.4500
PSO 5.0600 3.7200
BA 4.7100 3.6400
SSA-GA 0.0955 0.1210
- comparison in term of MMRE
- best results in bold

Finally, these results highlight the SSA-GA algorithm’s
efficiency and competitiveness in the software effort estimation
field. The algorithm’s use of the Salp Swarm Algorithm and
Genetic Algorithm allows it to effectively train the MLP
network, improving accuracy and precision in software effort
estimation. The SSA-GA method performs better than other
advanced techniques, which makes it a promising and reliable
alternative for resolving problems related to software work
estimates.

V. DISCUSSION

The SSA-GA framework has the unique capacity to adjust
its parameters dependent on the specific problem it is address-
ing by applying the GA algorithm. This flexibility is critical
in improving the overall performance of the algorithm.

The GA method carefully chooses parameter values that
are most appropriate for the SSA algorithm. The SSA-GA
model assures that the SSA optimizer has optimal parameter
values via such a selection procedure. As a consequence, the
SSA optimizer becomes extremely trustworthy at avoiding the
dangers of local optima, which can stymie exploration of the
whole search space. Furthermore, by including the GA method,
the SSA-GA model gets the ability to find and explore the most
promising parts of the search space.

The ability to avoid local traps and explore the area of
search effectively is critical for striking a balance between
exploration and exploitation. Exploration entails investigating

different parts of the search space to find possibly optimal
solutions, whereas exploitation involves refining and improving
the identified solutions. Using the SSA-GA model increases
the likelihood of achieving this delicate balance.

On the other hand, the combination of the MLP with the
tuned-SSA technique has several advantages, such as enhanced
prediction accuracy and higher reusability. The MLP network
that results from using the tuned-SSA technique to improve
the MLP weights is more reconfigurable. This indicates that
the improved MLP may be used with different SEE prediction
tasks without requiring substantial adjustments or retraining,
saving time and effort.

Additionally, the tuned-SSA technique’s improvement of
MLP weights results in a decrease in prediction error. The
optimized process is successfully guided by the tuned-SSA
technique, which enables the MLP to converge towards more
precise predictions. This decrease in prediction error results in
an improvement in prediction quality, which raises the MLP’s
dependability and utility.

The addition of the tuned-SSA algorithm also aids in
adjusting the MLP network’s rate of convergence. The process
through which the MLP modifies its weights to reduce esti-
mation error is known as convergence. The MLP weights are
optimized using the tuned-SSA method in a way that promotes
reasonable convergence. In situations or applications that need
critical decisions, this improvement in convergence speed is
essential.

A tuned SSA technique further minimizes the MLP’s
reliance on initial parameter values. Whereas the behavior
and performance of MLP convergence can be greatly affected
by the values of the initial weights. The MLP becomes less
dependent on starting weight values when the Tuned SSA
technique is used, which improves the MLP’s stability and
robustness.

In conclusion, By choosing the best parameter values, the
combination of the SSA and GA algorithms improves the
performance of the SSA method. With this combination, the
algorithm is better able to explore interesting regions of the
search space and break out of local optima. An enhanced
balance between exploration and exploitation produces more
trustworthy optimization results. In addition, using the tuned-
SSA method to optimize the weights and biases of MLPs
has a number of benefits. When used for various prediction
tasks, the improved MLP network becomes more adaptable
and requires less alterations. Additionally, it lowers prediction
error, raising the accuracy of predictions. A more reliable
and stable model is produced thanks to the MLP’s faster
convergence and decreased reliance on starting weight values.

VI. CONCLUSION AND FUTURE WORKS

This research explores the integration of the salp swarm
algorithm (SSA) and the multilayer perceptron neural network
(MLP) in order to tackle the software development effort
estimation (SEE) problem. By adjusting the weights and biases
of the MLP, the goal is to increase prediction accuracy. Fur-
thermore, a suggested improvement is included by modifying
the SSA’s parameters using a genetic algorithm (GA). Twelve
different SEE datasets with different feature sets are used to
comprehensively assess the efficiency of the suggested method.
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To evaluate the results of the developed SSA-GA method-
ology, there are two phases in the assessment process. The
outcomes are first contrasted with those attained by traditional
MLP and traditional MLP in combination with the original
SSA. This comparison research enables a thorough compre-
hension of the effect of SSA on MLP prediction accuracy.
Additionally, the impacts of parameter adjustments on the
SSA’s optimization performance and the MLP’s prediction
performance are examined.

In the second evaluation, the results of the developed SSA-
GA methodology are contrasted with cutting-edge methods
that have been used on datasets related to the SEE problem.
The purpose of this comparison is to demonstrate how much
better the recommended strategy is than the alternatives. This
assessment offers a fair and direct comparison between the
proposed methodology and other cutting-edge technologies by
using identical datasets.

The main goal of these assessments is to show how SSA
affects the precision of MLP predictions as well as how pa-
rameter adjustment affects SSA’s and MLP’s optimization and
prediction performance, respectively. The findings of the two
assessments consistently show that the proposed methodology
is better than the competing techniques. This demonstrates how
the SEE problem may be solved by combining SSA and MLP
and optimizing the parameters with the GA algorithm, which
increases prediction accuracy.

Possible future directions for this work might include ex-
pansion to additional software engineering domains and/or ex-
ploration of integration with other metaheuristic methods. The
suggested approach may be integrated with other metaheuristic
optimization methods such as particle swarm optimization
(PSO), ant colony optimization (ACO), or differential evolu-
tion (DE) in the first potential direction. Investigating hybrid
strategies that take advantage of several methods may result in
even greater optimization performance and improved software
effort estimation accuracy. While In the second scenario, the
suggested approach may be investigated further and used in
software engineering domains other than effort estimation.
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