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Abstract—Human gut microorganisms are crucial in regulat-
ing the immune system. Disruption of the healthy relationship
between the gut microbiota and gut epithelial cells leads to the
development of diseases. Inflammatory Bowel Disease (IBD) and
Colorectal Cancer (CRC) are gut-related disorders with complex
pathophysiological mechanisms. With the massive availability of
microbiome data, computer-aided microbial biomarker discovery
for IBD and CRC is becoming common. However, microbial in-
teractions were not considered by many of the existing biomarker
identification methods. Hence, in this study, we aim to construct a
microbial interaction network (MIN). The MIN accounts for the
associations formed and interactions among microbes and hosts.
This work explores graph embedding feature selection through
the construction of a sparse MIN using MAGMA embedded into
a deep feedforward neural network (DFNN). This aims to reduce
dimensionality and select prominent features that form the disease
biomarkers. The selected features are passed through a deep
forest classifier for disease prediction. The proposed methodology
is experimentally cross-validated (5-fold) with different classifiers,
existing works, and different models of MIN embedded in DFNN
for the IBD and CRC datasets. Also, the selected biomarkers
are verified against biological studies for the IBD and CRC
datasets. The highest achieved AUC, accuracy, and f1-score are
0.863, 0.839, and 0.897, respectively, for the IBD dataset and
0.837, 0.768, and 0.757, respectively, for the CRC dataset. As
observed, the proposed method is successful in selecting a subset
of informative and prominent biomarkers for IBD and CRC.

Keywords—Biomarker discovery; microbial interaction network;
graph embedding feature selection; inflammatory bowel disease;
colorectal cancer

I. INTRODUCTION

The human gut microbiome represents a complex commu-
nity of trillions of microorganisms, some of which are well
known to affect general health. With rapid mutations and a
rise in resistance, there is a disruption in the steady relationship
between the microbiome and body cells, which can be linked
to several diseases [1]. Metagenomics, broadly, is the study of
the structure and function of the genetic material of organisms
extracted from multiple environmental samples. The metage-
nomic data presents each sample with its microbial taxonomic
composition. Microbiome-wide association studies (MWAS)
on the metagenomic data help identify the disease-associated
microbial biomarkers. These biomarkers assist in the early
diagnosis of diseases, and the development of treatment.

While there is a steady increase in the available and acces-
sible data, the interpretation of the biological data is becoming
considerably slower. Machine Learning (ML) tools can be used

to handle, organize and extract meaningful information from
unorganized biological data in an efficient manner. Recently,
even deep learning methodologies have garnered attention
especially due to their learning capabilities and abilities to
identify specific patterns directly from the data, thus avoiding
manual feature engineering.

As ML continues to be widely used for biomarker iden-
tification and classification of disease; a higher accuracy of
identified biomarkers will lead to higher accuracy of disease
prediction. But, the biggest challenge faced is the high dimen-
sionality of the metagenomics data, coupled with low sample
size. The high dimensionality in the metagenomics dataset is
represented by the large number of features which are the taxa
of microbes.

Feature selection is the process of reducing the number
of input variables by selecting informative features. This
benefits classification models to predict more accurately since
there exist fewer misleading features. It helps in improving
performance, and reducing the computational load and cost
of the model. It also helps by minimizing training time, and
overfitting due to the reduction in noisy data. Above all, feature
selection methods play an important role in identifying the
subset taxa in the metagenomics dataset that form the set of
potential biomarkers.

The main drawback of some of the well-known feature
selection mechanisms is the fact that they do not take into con-
sideration the interaction and the effect of interaction between
the features (taxa) [2]. However, in the case of microbial com-
munities, their structure and functions are heavily dependent
on ecological interactions and microbial relationships (such as
mutual, competition, synergism, etc.) in various environments
making it a crucial factor to be taken into account when
dealing with selecting appropriate features (biomarkers) with
highest predictive influence [3]. By understanding microbial
interactions, an insight into the dynamic properties of microbes
and their functions are obtained [4]. Microbial Interaction
Networks (MIN) are graph-based interaction networks that
map the relationship and association between the gut microbes
(features). Studies have shown that by embedding the resultant
MIN into a neural network, the high-dimensionality vector
can be mapped to a low-dimensionality vector. Moreover,
this retains relevant information about the topology thereby
improving the reliability of the network and facilitating the
extraction of prominent biomarkers [5].
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Inflammatory Bowel Disease (IBD) results from the inter-
action between environmental and genetic factors that influ-
ence immune response [6]. There are two major diseases that
come under the umbrella of IBD namely, Ulcerative Colitis
(UC) and Crohn’s Disease (CD). Colorectal Cancer (CRC) is
the second deadliest form of cancer arising from the mutation
of specific genes [7]. Both IBD and CRC cause disruption and
inflammation of the digestive system, and can lead to multiple
symptoms. Since the etiology of IBD and CRC is not fully
understood and symptoms are complex, the design of new tools
that make use of the available human gut metagenome data is
essential for their diagnosis [8], [9]. Hence, the metagenomic
analysis of the human gut microbiome helps to illuminate
disease development mechanisms [9].

The objective of this paper is to extract and identify the
biomarkers for IBD and CRC by constructing an MIN.The
feature selection is done by embedding the MIN into a graph
using a graph embedding technique in conjunction with a
Deep Feedforward Neural Network (DFNN) model to calculate
feature importance scores. This feature importance score is
used to rank the features on the basis of how informative it is
for the prediction of the presence of the disease. The proposed
method for feature selection allows for capturing the ecolog-
ical topology of the microbial community and generating a
subset of the top features which form the set of meaningful
biomarkers for the disease dataset.

All things considered, the proposed framework puts for-
ward the following contributions.

1) Construction of an MIN using MAGMA to capture
the interactions and associations between microbes in
a microbial community.

2) A graph-embedding neural network architecture with
a MIN embedded in the neural network forms a
sparsely connected first hidden layer. The model
performs feature scoring to rank the features (taxa)
during training.

3) The efficiency of the proposed framework is studied
by applying it to two different real disease datasets
of IBD, and CRC and classifying using Deep Forest
(DF) classifier. The results of the proposed method
are compared against other embedded MIN con-
struction models and existing works with various
classifiers.

4) Also, the biomarkers obtained as a result of the model
training and feature scoring from MAGMA+DFNN
feature selection technique is cross validated with
biological studies on IBD and CRC.

The paper has been organized as follows. Section II performs a
literary review of various proposed works that focus on feature
selection algorithms and biomarker identification techniques.
The proposed methodology, and the dataset used is elaborated
upon in Section III. Section IV elucidates the details of the
implementation, and the evaluation criteria of the experiments.
Section V details the findings of the experiment and Section VI
includes a discussion segment. Finally, Section VII concludes
the paper with the closing remarks.

II. RELATED WORKS

The MWAS are not only required to conduct metagenomic
sample classification tasks but also feature selection tasks. Nu-
merous studies have been conducted on effective and efficient
feature selection, and biomarker identification techniques.

This review aims to analyze the various feature selection
algorithms and methodologies for biomarker identification
implemented on different datasets, and identify the advantages
and disadvantages of each which help to guide this work.
Based on the objective of this work the literature review is
divided into two sections: feature selection algorithms, and
biomarker identification for human diseases.

A. Feature Selection Algorithms

Fleuret proposed “Fast Conditional Mutual Information
Maximization (CMIM)”, an algorithm for a fast and reliable
feature selection technique based on conditional mutual in-
formation. The algorithm reduced computational overhead by
computing CMIM between the feature and class given the most
recently picked feature. This method calculated the entropy
based on probabilistic and histogram methods. It made use of a
partial score and updated the score only if the best one found so
far in the iteration was not better. This feature selection method
outperformed other classical algorithms and had a decently low
error rate, working well for noisy data. In combination with
well-known classifiers, this feature selection method ranked
high in terms of low error rates and high speed [10].

Yu and Liu proposed a novel concept of predominant
correlation and introduced a fast feature selection algorithm
Fast Correlation Based Filter (FCBF). The aim was to select
features by using information gain to calculate the symmetric
uncertainty as its main selection criterion. A feature was
selected and considered good only if it was predominant in
predicting class and not redundant among the relevant selected
features. The algorithm was put through C4.5 and Naı̈ve
Bayes Classifier (NBC) and reported high average accuracy
when compared with other feature selection techniques. It
was computationally efficient and fast, with less computational
time complexity, and achieved high levels of dimensionality
reduction [11].

Ding and Peng proposed a feature selection method that can
reduce redundancy in chosen features, while selecting features
having a more balanced coverage of the feature characteristics.
A basic heuristic algorithm was used. For discrete variables,
it was based on mutual information while for continuous
variables, it was based on F-statistic. The selected features
were put through classifiers such as NBC, Linear Discriminant
Analysis (LDA), and Support Vector Machine (SVM), Logistic
regression was used for the comparison in terms of error re-
duction between the baseline features and features selected by
Minimum Redundancy Maximum Relevance (MRMR) [12].

Alshawaqfeh et al. created a novel hybrid feature selection
method that combined the speed of filter methods with the
accuracy of wrapper methods. The hybrid method performed
feature importance scoring using a filter method i.e. ratio
of Between group Sum-of-Squares (BSS) and Within group
Sum-of-Squares (WSS). On the selected features, a wrapper
method was applied by employing an embedded Nearest
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Centroid Classifier (NCC) with a forward sequential search.
The resulting model showed improved performance in terms
of execution time as well as classifier accuracy in comparison
with other feature selection techniques [13].

B. Biomarker Identification Techniques

Zhu et al. proposed a method for the identification of
microbial biomarkers via the use of Graph Embedding Feed
Forward Neural Networks (GEDFN). The aim was to reduce
overfitting and noise, and to construct a reliable neural network
with the ability to simultaneously assign feature importance
scores for feature selection while performing accurate classifi-
cation. The model made use of a modified weights initializer
to perform graph embedding in the first hidden layer of the
network. The dot product of the weights was done with the
adjacency matrix created by the amalgamation of the result-
ing matrix from the Maximal Information Coefficient (MIC),
MINs: SparCC, and Spiec-Easi. MIC is a statistic method
that identifies relationships between pairs of variables by
measuring the dependence for two-variable relationships [14].
The resulting model showed improved performance in terms of
Area Under Curve (AUC) score, and classifier accuracy, when
compared with state-of-the-art classifiers [4].

Abbas et al. proposed a method to identify reliable mi-
crobial biomarkers from metagenomics data for IBD using
network-based feature selection. The solution was based on
hybrid feature selection and incorporated ecological microbial
network construction of healthy samples and IBD samples.
The tools used for network construction included SparCC,
Meinshausen and Bühlmann (MB), CoNet, Proxi, and Ran-
dom Matrix Theory (RMT). The importance scores were
calculated based on network topology and a node resilience
clustering algorithm. The hybrid solution suggested combining
the features selected by Random Forest Feature Importance
(RFFI) and instances of the best-performing network-based
feature selection framework. The selected features were fed
to a Random Forest (RF) classifier, and evaluation was done
based on a comparison of the AUC scores obtained. Overall,
the RF classifiers using the hybrid feature selection network
outperformed its counterparts [15].

Bakir-Gungor et al. aimed to increase Type 2 Diabetes
(T2D) diagnostic accuracy by developing a classification
model using metagenomics data. Additionally, the goal was to
discover T2D biomarkers. Feature selection was done using
well-known variable selection techniques such as CMIM,
MRMR, Correlation Based Filter (CBF), and SelectKBest.
These features were then fed to RF classifiers which yielded
highly promising performances. Further, K-means clustering
was applied to the selected features to generate subgroups
for visualization and outputs. 15 features were commonly
identified by all feature selection methods and were able to
cover a large portion of important features from the samples
with comparable performance with respect to the best results
[16].

Acharjee et al. aimed at analyzing stable RF based feature
selection methods for the identification of biomarkers and
power analysis. A number of RF based feature selection
methods were compared against one another and the resulting
features were tested in a regression, as well as a classification

model for power analysis of the models. Overall, the Boruta
method yielded the best stability with high specificity and best
prediction ability among all the methods [17].

Bakir-Gungor et al. made use of ML algorithms to be
able to generate a classification model to aid IBD diagnosis,
discover the potential biomarkers for IBD, and identify IBD
patient subgroups. First, feature selection was conducted us-
ing well-known feature selection techniques, namely FCBF,
CMIM, MRMR, and XGBoost. Their performance was veri-
fied using classifiers such as RF, Decision trees, Logiboost,
AdaBoost, K-means + Logiboost, and SVM. Finally, using
unsupervised learning methods such as K-means clustering,
hierarchical clustering, and Principal Component Analysis
(PCA), visualizations, and outputs were achieved. Promising
results were seen in terms of performance and predictive
power, especially by the union of feature selection methods and
K-means + logiboost classifier, as well as, XGBoost feature
selection and K-means + logiboost classifier [8].

Zhu et al. aimed at creating a stable and robust model,
Deep-Forest, for MWAS along with ensemble feature selection
for biomarker identification. The ensemble feature selection
method aggregated multiple different feature selectors through
linear combinations of the subsets to form the final result. The
features were put through Deep-Forest which is an ensemble
learning model consisting of 8 random forests. The proposed
model was compared against other feature selection methods
and classifiers and achieved the best results among all three
datasets [18].

From the literature review, it could be noted that the meth-
ods reviewed either fail to capture the ecological interaction
between the microbial community for an MWAS dataset or are
computationally expensive. The proposed methodology in this
work emphasizes the underlying biological process, especially
through the inclusion of covariates during feature selection
which enables the identification of a subset of meaningful
biomarkers for disease diagnosis.

Table I provides a summary of various feature selection
algorithms and Table II summarizes the previous work on
biomarker identification for human diseases.

III. METHODOLOGY

Fig. 1 illustrates the overall workflow of the methodology
for the extraction and validation of potential biomarkers.
Firstly, prevalence measure is applied on the original dataset to
generate a reduced dataset. Secondly, the MIN is constructed
using the network construction tool MAGMA [19]. Thirdly, the
resulting network (adjacency matrix) is embedded into a deep
neural network using graph embedding (DFNN). Then, feature
importance scoring is done via the DFNN model resulting in
the selection of the subset of the top-scoring features which
form the set of disease biomarkers. Finally, the top features
are classified using DF for performance evaluation.

A. Dataset

This paper has focused on the use of two real datasets, one
on IBD and the other on CRC. For both datasets, the taxonomy
classification is done against the Greengenes database and the
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Fig. 1. Flowchart of the methodology.

comprehensive dataset is simplified in the form of an OTU
table. The common structure of the OTU table consists of the
number of samples in rows and the corresponding species-
specific taxa that are found in the sample in the columns in a
matrix format.

The IBD dataset has been procured from an online reposi-
tory [20]. The original data for the IBD dataset is derived from
the QIIME database under Study ID 2516 for all the proposed
techniques. The dataset consisted of a total of 1359 samples
out of which 336 are healthy, and 1023 are infected samples
with a total of 9511 species.

The CRC dataset has been procured from an online repos-
itory [21]. The original data for the CRC (CRC1) dataset is
derived from Zeller et al.’s [22] study. The dataset consisted
of 182 samples out of which 90 are cancer samples and 92 are
normal samples with a total of 18,170 species.

B. Reduced Dataset

The number of taxa in the data set was reduced according
to the percentage prevalence of the microbe in the samples. The
number of samples is reduced by removing the samples whose
sequencing depth is less than 500 reads on the remaining OTUs
(sampling reads threshold). The reduced dataset is generated
to reduce feature dimension and remove features that may be
redundant, irrelevant, or have low impact on the sample.

For the IBD dataset, upon setting a 10% prevalence thresh-
old and 500 sampling reads threshold, the resulting dataset
contains 1359 samples and 1032 features. For the CRC dataset,
upon setting a 15% prevalence threshold and 500 sampling
reads threshold, the resulting dataset contains 182 samples and
1260 features. The reduced datasets are then split into an 80%
training set and a 20% testing set.

C. Construction of MIN

1) Microbial interaction networks: Most microorganisms
do not live in isolation and thrive in communities while
forming interactions and establishing ecological relationships.
These ecological interactions and relationships shape microbial
abundances [3]. Detection of significant undirected associa-
tions between sample populations enables the inference of

their interactions. By constructing MINs, the use of statistical
methods that utilize relative data which are not independent
and reflect the compositional nature of the data rather than the
underlying biological process [23], is avoided. Thereby, by
making use of absolute abundance data, compositionality bias
is addressed. By exploring the structure and diversity, compre-
hensive and statistically significant associations between taxa
can be achieved. Using this information, the interplay between
the environment and microbial populations can be predictively
modeled as a network. The edge between two nodes, which
represent taxa, denotes that the connected nodes provide some
type of relational additional information about the state of the
other and that they are not conditionally independent [24].

Some popular MIN construction methods include SparCC
[23], Spiec-Easi [24], CoNet [25], MAGMA [19], and Proxi
[26]. SparCC enables the estimation of correlation values by
having a mathematical model based on the calculation of log
ratios. The dependencies are described using the variance be-
tween the variables [23]. Spice-Easi makes use of the statistical
method of conditional independence and covariance matrix
for inference of graph-based MIN [24].CoNet combines an
ensemble method of similarity or dissimilarity measures with
a permutation-renormalization bootstrap method to generate
an association network [25]. MAGMA constructs the MIN
based on a Gaussian copula mathematical model to graph the
interaction between variables [19]. Proxi makes use of nearest-
neighbor distances based on Pearson’s Correlation to generate
proximity graphs [26]. Among these methods, this work uses
MAGMA to construct the MIN.

2) MAGMA: Cougal et al. proposed a method Microbial
Association Graphical Model Analysis (MAGMA) for the
construction of MIN.

MAGMA is able to account for data flaws such as noisy
structure, overdispersion, and zero-count values, and can also
handle compositionality bias. Its main working principle is
based on the Gaussian copula model coupled with a gener-
alized linear model to achieve mapping of the estimation of
latent data by median values. The data is filtered to ensure
that sample reads and the prevalence measure of each feature
are above a particular threshold. The zero values in the data
are handled by the use of a zero-inflated distribution executed
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by the parametric mapping function and the overdispersion
is tackled by modeling a negative binomial distribution. Addi-
tionally, the sequencing depth is modeled as a variable number
by accounting for compositionality by an offset. The main
feature of MAGMA is that it integrates covariates (character-
istics of the participating variable) which improves the quality
of inference of the categorical variables. The covariates are
modeled over the mean of microbial abundances.

In this work, the dataset (Section 3.1) in the form of
an Operational Taxonomic Unit (OTU) table containing f
features and N samples, is presented as input to the MAGMA
algorithm and the sparse precision matrix is estimated. The
resulting precision matrix or inverse covariance matrix is the
resulting network in the form of an adjacency matrix and is
given by equation 1.

A =

{
1 if, edge between nodes ni and nj∀i, j ∃{1, .., f}
0 otherwise

(1)
The main advantages of this network construction method
are that the graphical models have minimum bias, and the
model takes covariates into consideration which are important
to account for any confounding in inference and beneficial in
recovering the network structure. Additionally, the inference
quality improves leading to fewer spurious correlations. More
details on the algorithm can be found in [19].

D. Graph Embedding using Deep Feedforward Neural Net-
work

1) Overview: Zhu et al. proposed a method to perform
graph embedding feature selection by constructing a neural
network that would simultaneously assign feature importance
scores to the input variables while training to classify. Wrap-
per methods lack the capability of good generalization over
classifiers and filter methods, since they are based on a
discriminative methodology of eliminating features, and are
independent of any ML algorithms, they are unable to find
a truly optimal subset [27]. Graph embedding techniques, on
the other hand, aptly represent the high dimensional vector
representation of discrete variables in low dimensions while
preserving relevant information like the topology of the graph
and the relationship between nodes [28]. It combines the
method of feature selection by importance and also feature
extraction - mapping higher dimensions to lower dimension
vectors - into the optimizing training step of the ML model
[29]. Using this method, this paper aims to reduce overfitting,
and noise and to embed priori knowledge into the neural
network which would help improve the reliability of the
network [4].

2) Deep feedforward neural network architecture: Fig. 2
depicts the model architecture of the neural network composed
of an input layer, four hidden layers, and an output layer.
Each neuron in the input layer corresponds to every feature or
taxa, the first hidden layer corresponds to the graph embedding
layer, and the output layer corresponds to the class label for the
sample after prediction. The second hidden layer is composed
of 128 neurons, the third layer is composed of 32 neurons
and the fourth layer is composed of 8 neurons. The model
has a learning rate of 0.0001 and utilizes the Adam optimizer
for gradient descent. Other model hyperparameters include

Rectified Linear Unit (reLU) activation function applied to the
hidden layers and the Sigmoid activation function applied to
the output layer, and a dropout of 0.5 applied to all the hidden
layers except the first graph embedding hidden layer.

3) Graph embedding: After the MIN is constructed, the
network is represented in the form of an adjacency matrix
where an edge between two nodes is depicted with 1 if exists,
else 0. The resulting matrix is then used as input to the
graph embedding layer, the first hidden layer in the neural
network. It generates a sparsely connected layer in contrast
to the traditionally fully connected layers. The sparse layer
is generated by performing element-wise dot product between
the calculated weights and the adjacency matrix received from
network construction as seen in equation 2. The dot product
is used as the kernel constraint.

 w1 w2 ... wi

...
...

...
...

wi(i−1) ... ... wi∗i

·
1 1 ... 0

...
...

...
...

0 ... ... 1

 =

w1 w2 ... 0
...

...
...

...
0 ... ... wi∗i


(2)

i = number of features
Input: weights matrix w, and adjacency matrix a

Output: modified weights matrix w’(win)

The neurons in the first layer (L1) can be represented as given
in equation 3 where X is the input matrix (n samples x
i features), b denotes the initialized bias parameter, and σ is
the activation function.

L1 = σ(w′X + b) (3)

E. Feature Importance Scoring

The feature importance score is given on the basis of the
graphical connect weight method. The relative importance of
each feature is scored on the basis of the sum of absolute
values of the weights directly related to that feature or neuron
as represented in equation 4, and 5 [4].

sj = γj

i∑
k=1

| w(in)
kj I(akj = 1) | +

h1∑
l=1

| w(1)
jl | (4)

γj = min

(
c∑i

k=1(akj = 1)
, 1

)
, j = 1, ..., i (5)

where sj is the score of the jth feature and w denotes the
weight of the layer, w(in) for the input layer, w(1) for the
weight between the first and second layer, and c denotes the
penalty score for vertices with many edges. The weights are
updated using a backpropagation algorithm that calculates the
gradient based on the backward flow of the static cost function
that was calculated by the feedforward network [4].
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F. Deep Forest Classifier

Deep Forest is an ensemble learning model based on a
cascading structure of decision trees. The ensemble model can
generally achieve better generalization performance than single
classifiers and the cascading structure enables the representa-
tion learning by the forests [18]. The DF’s performance is
quite robust to hyper-parameter settings and it can reach a
deeper layer through layer-wise learning in the classification
task compared to other traditional ML models [30].

IV. IMPLEMENTATION, EVALUATION, AND EXPERIMENTS

A. Implementation

The microbial network construction tool was implemented
using the MAGMA package [31] in R. The neural network
was modeled in Python v3.7 with the help of additional
frameworks and libraries such as keras v2.8.0 and tensorflow
v2.8.2, numpy, pandas, and Scikit-learn. All codes were run
on Intel(R) Xeon(R) CPU @ 2.20GHz in Google Colab. The
Python 3 Google Compute Engine backend was used for the
Python codes and the ir Google Compute Engine backend was
used for R codes. 12.7GB System RAM and 107.7GB disk
space was allocated on Google colab.

B. Evaluation

To evaluate model efficiency, statistical measures such as
Accuracy, F1 score, and AUC were measured. True Positive
(TP) represents the number of positive samples predicted cor-
rectly, True Negative (TN) represents the number of negative
samples predicted correctly, False Positive (FP) represents the
number of negative samples predicted incorrectly, and False
Negative (FN) represents the number of negative samples
predicted incorrectly.

Accuracy (equation 6) is used to measure the total number
of correct predictions out of all observations.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

The F1 score (equation 9) is the harmonic mean of Recall
(equation 7) and Precision (equation 8) and is used as a statis-
tical measure to rate the overall performance of classification.

Recall(Sensitivity) =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(9)

AUC is used to quantify the capability a model has in
distinguishing between classes. It calculates the area under the
curve made of points formed by calculating the True Positive
vs the False Positive value at different thresholds. The higher
the AUC score, the better the model is at accurate prediction.

C. Experiments

In order to evaluate and establish the superiority of the
proposed model in terms of feature selection, the following
different models of MIN embedded in DFNN were developed.

1) The proposed method: Constructing the MIN using
MAGMA, embedding it using DFNN to obtain the
reduced features (MAGMA+DFNN), and classifying
the reduced features using DF.

2) Constructing the MIN using SparCC, embedding
it using DFNN to obtain the reduced features
(SparCC+DFNN).

3) Constructing the MIN using Spiec-Easi, embedding
it using DFNN to obtain the reduced features (Spiec-
Easi+DFNN).

4) Constructing the MIN using SparCC and Spiec-Easi,
and combining that with the network constructed us-
ing MIC, embedding it using DFNN to obtain the re-
duced features ((SparCC+Spiec-Easi+MIC)+DFNN).

The top k features were chosen from each of the above
methods. In this work, we experimented by varying the value
of k in [100, 200, 300, 400, 500]. The selected features
were then put through selected classifiers like Support Vector
Machine (SVM), DF, Random Forest (RF), Multi-Layer Per-
ceptron (MLP), and XGBoost (XGB) for evaluation. Python’s
scikitlearn package with default settings was applied for the
implementation of all the classifiers.
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A baseline model with no feature selection was also ex-
perimented. The baseline model experiment was conducted by
subjecting all the features of the IBD and CRC dataset through
the classifiers for classification. The proposed methodology
was experimentally analyzed against existing works on IBD
and CRC datasets. Finally, the biomarkers obtained by the
proposed method was verified against biological studies of IBD
and CRC datasets. All the experiments were performed using
5-fold cross validation.

V. RESULTS

A. Comparative Results

In this section, the classification performance of the pro-
posed model and other MIN construction models for feature
selection over different classifiers such as RF, DF, SVM, MLP,
and XGB is compared. The results are presented in terms of
the evaluation metrics AUC, Accuracy, and F1 scores across
all the five classifiers.

1) IBD: Table III presents the findings for the result
obtained after the experiments for the IBD dataset. Table IIIa
presents the performance across classifiers for the baseline with
no feature selection applied on the dataset. As noted from the
table, the maximum AUC of 0.855, highest accuracy of 0.829,
and F1 score of 0.89 were resulted with the DF classifier.
Table IIIb presents the results for MAGMA+DFNN feature
selection technique. As noted from the table, the highest AUC,
accuracy, and F1 score is 0.863, 0.839, and 0.897, respectively
when classified using the DF classifier with the top 300
features . Table IIIc tabulates the results for (SparCC+Spiec-
Easi+MIC)+DFNN feature selection technique. As noted from
the table, the best AUC score of 0.85 was obtained using
XGB with 300 features, accuracy of 0.832 using DF with
300 features, and an F1 score of 0.892 using DF with 400
features. Table IIId presents the results for Spiec-Easi+DFNN
feature selection method. The feature selection and classifica-
tion method resulted in an AUC of 0.849 using RF with 400
features, an accuracy of 0.819, and an F1 score of 0.884 when
using DF with 200 features. Table IIIe shows the results for
SparCC+DFNN feature selection method. As seen from the
table, the maximum values for AUC is 0.858 for 300 features,
for accuracy is 0.824 for 100 features, and for F1-score is
0.889 for 500 features all with the DF classifier.

The results obtained by the proposed method
(MAGMA+DFNN), put through all the classifiers (SVM,
RF, MLP, DF, XGB) for different numbers of features are
illustrated in Fig. 3. Additionally, the final results comparing
the feature selection techniques tested using the different
classifiers in terms of AUC, accuracy, and F1-score as detailed
in Table III is illustrated by Fig. 4.

2) CRC: Table IV presents the findings for the result ob-
tained after the experiments. Table IVa presents the evaluation
metrics AUC, accuracy, and F1 scores across classifiers for
the baseline with no feature selection applied. As noted from
the table, the maximum AUC is 0.801 with RF, and highest
accuracy is 0.746 and F1 score is 0.89 with the DF classifier.
Table IVb presents the results for MAGMA+DFNN feature
selection technique. It achieved the highest AUC, accuracy,
and F1 score of all findings of 0.837, 0.768, and 0.757,
respectively when classified using the DF classifier with the

top 400 features selected as highlighted in bold. Table IVc
tabulates the results for (SparCC+Spiec-Easi+MIC)+DFNN
feature selection technique. It achieved an AUC of 0.808 with
RF for 300 features, an accuracy of 0.735 and F1 score of
0.742 with RF for 200 features. Table IVd presents the results
for Spiec-Easi+DFNN feature selection method. The feature
selection and classification method achieved an AUC of 0.803,
an accuracy of 0.735, and an F1 score of 0.729 with RF for 500
features, 400 features and 400 features respectively. Table IVe
shows the results for SparCC+DFNN feature selection method.
It resulted in an AUC of 0.815 with DF for 400 features, an
accuracy of 0.724 and an F1-score of 0.752 with SVM for 200
features.

The results obtained by the proposed method
(MAGMA+DFNN), put through all the classifiers (SVM,
RF, MLP, DF, XGB) for different numbers of features are
illustrated in Fig. 5. Additionally, the final results comparing
the feature selection techniques tested using the different
classifiers in terms of AUC, accuracy, and F1-score as detailed
in Table IV is illustrated in Fig. 6.

B. Comparison Against Existing Model

The proposed methodology ((MAGMA+DFNN)+DF) is
compared against the model proposed in Zhu et al.s’ study [4]
which makes use of a combination of SparCC, and Spiec-Easi
for MIN construction along with MIC for the graph network
construction, and a graph embedding deep model (GEDFN) for
feature extraction from both IBD and CRC datasets. The top k
features, where k ∈ 100, 200, 300, 400, 500, were chosen and
put through selected classifiers, SVM, RF, DF, MLP, and XGB.
The best results were achieved by the DF classifier for both
datasets and both models. The results are presented in Table V.
From the table, it could be observed that, the proposed model
obtained the best classification performance.

C. Biomarker Analysis

The top features selected by the MAGMA+DFNN model
were cross-validated with biological studies to determine the
reliability and accuracy of the biomarkers(features) suggested
for the respective disease datasets.

1) IBD: Upon analyzing the top 300 features selected
by MAGMA+DFNN, the top-scoring taxa were found to be
related to the IBD development mechanisms. The selected
taxa as seen in Fig. 7 could be suggested as potential IBD-
biomarkers of human gut microbiota.

The results were cross-validated with the results from two
biological studies presented by Paljetak et al. [32], and Gevers
et al. [33].

The biomarkers identified by MAGMA+DFNN match with
the majority of the informative biomarkers identified by Gevers
et al., and Paljetak et al. in their respective studies as seen
from Table VI. The biomarkers highlighted in bold denote
the common subset of biomarkers from the study and the
top 300 features selected by the proposed model for IBD.
The top and most common IBD biomarkers identified in this
study include Bacteroides, Bifidobacterium, Lachnospiraceae,
Ruminococcaceae, Enterobacteriaceae, and Streptococcaceae
among others.
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TABLE III. IBD EVALUATION RESULTS.THE MAXIMUM VALUES ARE HIGHLIGHTED IN BOLD.

RF SVM MLP DF XGB
AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
0.804 0.756 0.855 0.728 0.750 0.856 0.604 0.741 0.850 0.855 0.829 0.890 0.829 0.797 0.872

(A) FULL FEATURES

MAGMA RF SVM MLP DF XGB
# features AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
100 0.819 0.785 0.872 0.707 0.763 0.865 0.544 0.757 0.861 0.814 0.818 0.887 0.806 0.801 0.879
200 0.785 0.773 0.866 0.675 0.760 0.861 0.552 0.757 0.862 0.839 0.822 0.889 0.813 0.802 0.880
300 0.811 0.782 0.868 0.726 0.755 0.860 0.533 0.750 0.857 0.863 0.839 0.897 0.850 0.807 0.881
400 0.813 0.794 0.879 0.705 0.772 0.870 0.525 0.763 0.865 0.848 0.816 0.884 0.822 0.806 0.880
500 0.809 0.789 0.875 0.773 0.775 0.872 0.528 0.753 0.859 0.840 0.819 0.884 0.845 0.796 0.871

(B) MAGMA+DFNN FEATURES

Sparcc+
SpiecEasi+
MIC

RF SVM MLP DF XGB

# features AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
100 0.799 0.793 0.877 0.647 0.750 0.857 0.512 0.747 0.855 0.824 0.805 0.876 0.829 0.789 0.867
200 0.814 0.802 0.883 0.689 0.751 0.857 0.541 0.750 0.857 0.817 0.810 0.879 0.841 0.788 0.866
300 0.809 0.754 0.853 0.713 0.746 0.855 0.532 0.759 0.863 0.847 0.832 0.891 0.851 0.806 0.879
400 0.828 0.779 0.870 0.732 0.741 0.851 0.555 0.743 0.852 0.842 0.830 0.892 0.835 0.790 0.868
500 0.814 0.775 0.867 0.695 0.764 0.866 0.537 0.754 0.859 0.826 0.820 0.885 0.840 0.799 0.872

(C) (SPARCC+SPIECEASI+MIC)+DFNN FEATURES

SpiecEasi RF SVM MLP DF XGB
# features AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
100 0.761 0.773 0.864 0.692 0.747 0.855 0.611 0.763 0.865 0.815 0.790 0.867 0.780 0.788 0.871
200 0.825 0.785 0.872 0.711 0.749 0.856 0.589 0.748 0.855 0.838 0.820 0.884 0.835 0.805 0.881
300 0.815 0.788 0.874 0.694 0.751 0.857 0.542 0.755 0.860 0.813 0.793 0.870 0.816 0.779 0.860
400 0.849 0.771 0.865 0.713 0.750 0.857 0.517 0.755 0.860 0.824 0.815 0.882 0.832 0.798 0.874
500 0.831 0.787 0.875 0.723 0.768 0.868 0.540 0.741 0.851 0.821 0.811 0.880 0.840 0.806 0.880

(D) SPIECEASI+DFNN FEATURES

SparCC RF SVM MLP DF XGB
# features AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
100 0.811 0.779 0.868 0.706 0.761 0.864 0.539 0.726 0.841 0.851 0.824 0.889 0.837 0.802 0.876
200 0.839 0.801 0.881 0.729 0.749 0.856 0.537 0.739 0.850 0.845 0.809 0.877 0.851 0.809 0.879
300 0.818 0.802 0.884 0.748 0.767 0.867 0.505 0.752 0.858 0.858 0.819 0.884 0.844 0.790 0.867
400 0.810 0.775 0.866 0.734 0.761 0.864 0.545 0.764 0.866 0.854 0.818 0.883 0.856 0.801 0.876
500 0.829 0.788 0.874 0.742 0.764 0.865 0.549 0.742 0.852 0.855 0.823 0.889 0.840 0.802 0.875

(E) SPARCC+DFNN FEATURES
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Fig. 3. Evaluation metrics for the top k features where k = 100, 200, 300, 400, 500 selected by MAGMA+DFNN for the IBD dataset after being fed to
classifiers.
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Fig. 4. Best or maximum value of a) AUC, b) Accuracy, c) F1 score for each combination of feature selection methods and classifiers regardless of the number
of features for the IBD dataset.
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Fig. 5. Evaluation metrics for the top k features where k = 100, 200, 300, 400, 500 selected by MAGMA+DFNN for the CRC dataset after being fed to
classifiers.
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TABLE IV. CRC EVALUATION RESULTS. THE MAXIMUM VALUES ARE HIGHLIGHTED IN BOLD

RF SVM MLP DF XGB
AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
0.801 0.730 0.717 0.758 0.697 0.720 0.697 0.627 0.604 0.767 0.746 0.731 0.709 0.649 0.652

(A) FULL FEATURES

MAGMA RF SVM MLP DF XGB
# features AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
100 0.680 0.611 0.580 0.766 0.665 0.683 0.637 0.551 0.425 0.752 0.692 0.690 0.773 0.692 0.692
200 0.709 0.649 0.647 0.693 0.638 0.625 0.633 0.649 0.574 0.727 0.638 0.619 0.635 0.578 0.549
300 0.732 0.665 0.643 0.803 0.714 0.694 0.600 0.503 0.527 0.777 0.670 0.658 0.696 0.616 0.616
400 0.819 0.724 0.715 0.743 0.649 0.695 0.679 0.627 0.589 0.837 0.768 0.757 0.737 0.632 0.601
500 0.728 0.665 0.615 0.812 0.719 0.745 0.667 0.622 0.645 0.803 0.730 0.732 0.672 0.605 0.633

(B) MAGMA+DFNN FEATURES

Sparcc+
SpiecEasi+
MIC

RF SVM MLP DF XGB

# features AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
100 0.627 0.568 0.551 0.621 0.573 0.589 0.549 0.514 0.452 0.643 0.584 0.586 0.659 0.584 0.571
200 0.793 0.735 0.742 0.670 0.573 0.573 0.593 0.573 0.474 0.758 0.719 0.727 0.684 0.627 0.616
300 0.808 0.686 0.673 0.707 0.611 0.609 0.690 0.627 0.593 0.734 0.692 0.686 0.649 0.600 0.583
400 0.706 0.676 0.685 0.707 0.605 0.536 0.621 0.600 0.611 0.763 0.719 0.699 0.664 0.605 0.612
500 0.759 0.676 0.691 0.707 0.643 0.616 0.623 0.584 0.575 0.760 0.670 0.637 0.673 0.649 0.640

(C) (SPARCC+SPIECEASI+MIC)+DFNN FEATURES

SpiecEasi RF SVM MLP DF XGB
# features AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
100 0.695 0.643 0.622 0.715 0.616 0.628 0.593 0.546 0.349 0.730 0.697 0.694 0.720 0.654 0.674
200 0.727 0.649 0.657 0.704 0.659 0.701 0.509 0.497 0.338 0.700 0.638 0.623 0.656 0.643 0.647
300 0.667 0.622 0.610 0.692 0.627 0.623 0.609 0.535 0.494 0.713 0.659 0.656 0.738 0.681 0.681
400 0.802 0.735 0.729 0.745 0.670 0.681 0.647 0.611 0.593 0.779 0.719 0.728 0.595 0.600 0.586
500 0.803 0.730 0.716 0.765 0.692 0.699 0.669 0.638 0.556 0.757 0.692 0.685 0.668 0.627 0.633

(D) SPIECEASI+DFNN FEATURES

SparCC RF SVM MLP DF XGB
# features AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
100 0.732 0.643 0.634 0.684 0.595 0.656 0.519 0.535 0.444 0.714 0.600 0.577 0.648 0.611 0.592
200 0.769 0.681 0.667 0.800 0.724 0.752 0.576 0.568 0.422 0.765 0.665 0.652 0.745 0.659 0.652
300 0.717 0.659 0.634 0.785 0.714 0.747 0.585 0.546 0.508 0.776 0.703 0.702 0.708 0.659 0.659
400 0.714 0.627 0.608 0.789 0.719 0.748 0.512 0.476 0.364 0.815 0.724 0.724 0.766 0.697 0.689
500 0.724 0.643 0.622 0.788 0.719 0.705 0.584 0.524 0.478 0.772 0.686 0.694 0.694 0.665 0.684

(E) SPARCC+DFNN FEATURES
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Fig. 6. Best or maximum value of a) AUC, b) Accuracy, c) F1 score for each combination of feature selection methods and classifiers regardless of the number
of features for the CRC dataset.
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TABLE V. COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD WITH PREVIOUS WORK DONE ON THE
IBD AND CRC DATASETS

Dataset Feature Selection Models #features Classifier
Best performance metrics

AUC ACC F1

IBD
Zhu et al.[4] 300 DF 0.857 0.826 0.888

Proposed method 300 DF 0.863 0.839 0.897

CRC
Zhu et al.[4] 300 DF 0.789 0.681 0.672

Proposed method 400 DF 0.837 0.768 0.757
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Fig. 7. Phylogenetic tree of the top 300 biomarkers selected by MAGMA+DFNN feature selection method for IBD.

Out of the top 300 features, MAGMA+DFNN was able
to identify 85 distinct features in contrast to the other feature
selection methods as seen in Fig. 8.

2) CRC: Upon analyzing the top 400 features selected
by MAGMA+DFNN, the top-scoring taxa were found to be
related to the CRC development mechanisms. The selected
taxa as seen in Fig. 9 could be suggested as potential CRC-
biomarkers of human gut microbiota. The results were cross-
validated with the results from two biological studies presented
by Oudah et al. [34], and Zeller et al. [22].

The biomarkers identified by MAGMA+DFNN match with

the majority of the informative biomarkers identified by Oudah
et al. and Zeller et al. in their respective studies as seen
from Table VII. The biomarkers highlighted in bold de-
note the common subset of biomarkers from the study and
the top 400 features selected by the proposed model for
CRC. The top and most common CRC biomarkers identi-
fied in this study include Bacteroides, Bacteroidales, Lach-
nospiraceae, Ruminococcaceae, Clostridiaceae, Faecalibac-
terium, and Streptococcaceae among others.

Out of the top 400 features, MAGMA+DFNN was able to
identify 104 distinct features in contrast to the other feature
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TABLE VI. POTENTIAL IBD BIOMARKERS IDENTIFIED BY A) PALJETAK
ET AL. [32] B) GEVERS ET AL. [33]

a) Paljetak et al. [32] b) Gevers et al. [33]

Enterobacteriaceae Enterobacteriaceae
Eubacterium Pasteurellacaea
Lactobacillaceae Veillonellaceae
Dialister Fusobacteriaceae
Christensenellaceae Erysipelotrichales
Ruminococcus Bacteroidales
Anaerostipes Clostridiales
A. muciniphila
Adlercreutzia
Lactobacillus
F. prausnitzii
Turicibacteriaceae / Turicibacter
Haemophilus
R. gnavus
Erysipelotrichaceae
Blautia
Coprococcus
Veillonellaceae
Phascolarctobacterium

Fig. 8. Venn diagram depicting the top 300 features of IBD dataset selected
by each of the feature selection algorithms.

selection methods as seen in Fig. 10.

VI. DISCUSSION

Overall, the proposed solution ((MAGMA+DFNN)+DF)
can capture a large characteristic space using a limited number
of features and is able to identify the core potential IBD
and CRC biomarkers. The downsides of this methodology
include the fact that MAGMA is not extremely good at
predicting very sparse networks with high accuracy. It is also

TABLE VII. POTENTIAL CRC BIOMARKERS IDENTIFIED BY A) OUDAH
ET AL. [34] B) ZELLER ET AL. [22]

a) Oudah et al. [34] b) Zeller et al. [22]

Fusobacteriaceae Fusobacteriaceae
Clostridiales Peptostreptococcus
Bacteroides Eubacterium
Eubacterium biforme Streptococcus
Ruminococcus
Prevotella
Rikenellaceae
S24-7
Veillonellaceae
Coprococcus
Dorea

uncertain if the model can detect both linear and non-linear
relationships. Moreover, the Gaussian copula model cannot
model tail dependence which is the stronger dependence on
extreme events [35].

But, in contrast to network construction tools like SparCC,
MAGMA is centered around multivariate normal and does not
perform pairwise associations, thereby allowing it to consider
multivariate associations. It is also able to work to measure
partial correlations between nodes. In comparison to state-
of-the-art tools SparCC and Spiec-Easi, MAGMA showed
the most tempered output and the least negative links. The
spurious negative links were eliminated by taking the covariate
measure into account. Embedding the suitable MIN enabled
in retaining the topological structure of the network while
mapping it to a low dimension and also helped to deal with
overdispersion and high levels of noise in the dataset. The
feature selection performance was also verified by the results
of the DF classifier and comparison with biological studies.
Thereby, MAGMA+DFNN can be considered as a reliable
feature selection technique.

The future work, inspired by the learnings of the lit-
erature review and conducted experiments, can focus on a
more thorough analysis of the construction of the MINs, and
feature selection methods. The model can be improved by
overcoming the aforementioned limitations of MAGMA, and
incorporating and leveraging more biological information into
the construction of the MIN. Additionally, the future scope
includes improving the design of the neural network archi-
tecture to create a better, more precise model while dealing
with the previously mentioned shortcomings for improved
feature importance scoring techniques, accurate classification,
and efficient and meaningful biomarker identification. Finally,
as this work focuses its evaluation on smaller datasets, further
efforts can be made to ensure the analysis of the methodologies
on a larger, comprehensive data set.

VII. CONCLUSION

IBD and CRC are global diseases affecting millions of
humans around the world with IBD being on a steady rise
and CRC being one of the most frequently maligned cancer
in the world. The accurate diagnosis of these is crucial for
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Fig. 9. Phylogenetic tree of the top 400 biomarkers selected by MAGMA+DFNN feature selection method for CRC.

Fig. 10. Venn diagram depicting the top 400 features of CRC dataset
selected by each of the feature selection algorithms.

effective treatment, creating a need to identify the informative
subset of microbiota by applying fitting feature selection
techniques. This work utilizes the method of embedding
the MIN constructed using MAMGA+DFNN as a feature
selection technique to extract prominent features for the
identification of potential biomarkers. Across all of the feature
selection methods considered, the proposed methodology
achieved the highest AUC, accuracy, and F1-score when
classified using DF across both the IBD and CRC datasets.
Further, upon inspecting the resulting biomarkers identified

by the proposed approach against relevant biological studies,
it is validated that these microbial biomarkers have a
relationship with the diagnosis of the disease. Therefore,
these results could guide further experimental investigation
and contribute to the diagnosis of microbiome-related diseases.
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