
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Software Vulnerabilities’ Detection by Analysing
Application Execution Traces

Gouayon Koala1, Didier Bassolé2, Telesphore Tiendrebeogo3, Oumarou Sié4
Laboratoire de Mathématiques et d’Informatique, Université Joseph Ki-Zerbo

Ouagadougou, Burkina Faso1,2,4

Laboratoire d’Algèbre, de Mathématiques Discrètes et d’Informatique
Université Nazi Boni, Bobo-Dioulasso, Burkina Faso3

Abstract—Over the years, digital traces have proven to be
significant for analyzing IT systems, including applications. With
the persistent threats arising from the widespread proliferation
of malware and the evasive techniques employed by cybercrim-
inals, researchers and application vendors alike are concerned
about finding effective solutions. In this article, we assess a
hybrid approach to detecting software vulnerabilities based on
analyzing traces of application execution. To accomplish this,
we initially extract permissions and features from manifest files.
Subsequently, we employ a tracer to extract events from each
running application, utilizing a set of elements that indicate the
behavior of the application. These events are then recorded in a
trace. We convert these traces into features that can be utilized
by machine learning algorithms. Finally, to identify vulnerable
applications, we train these features using six machine learning
algorithms (KNN, Random Forest, SVM, Naive Bayes, Decision
Tree-CART, and MLP). The selection of these algorithms is based
on the outcomes of several preliminary experiments. Our results
indicate that the SVM algorithm produces the best performance,
followed by Random Forest, achieving an accuracy of 98%
for malware detection and 96% for benign applications. These
findings demonstrate the relevance and utility of analyzing real
application behavior through event analysis.

Keywords—Execution traces; events; vulnerability detection;
malware; applications

I. INTRODUCTION

The prevalence of malicious applications has significantly
increased in recent years. Unfortunately, as digital technol-
ogy continues to advance, the number of vulnerabilities in
applications is also growing exponentially, thereby leaving
users even more vulnerable. Since these applications handle
highly personal and sensitive data, it remains a significant
challenge for researchers and application providers to find
effective and efficient solutions. Despite the efforts described
in the existing literature to safeguard data, the threat remains
very real. Moreover, in recent years, it has become even
more severe as cybercriminals increasingly employ evasion
techniques to bypass existing protection measures [1], [2].
Not only are the majority of available solutions limited or
inadequate against the sophisticated tactics of cybercriminals,
but these malicious actors are also becoming more organized
and motivated [2], [3], [4], [5]. Consequently, ensuring data
security and protection has become an essential and urgent
concern. It is crucial, therefore, to urgently discover solutions
that can minimize the exploitation of software vulnerabilities
and mitigate the risk of attacks targeting user data [3], [6].

Among the techniques employed to detect malware in

recent years, machine learning has been utilized [7]. This is
associated with the static approach ([8], [9]) or the dynamic
approach ([1], [10], [11]), depending on the methods em-
ployed. In the literature, the hybrid approach is increasingly
being utilized to leverage the advantages of both the static and
dynamic approaches, thus partially mitigating the limitations
inherent in each of these two approaches. As our approach
involves utilizing data from the Android’s manifest file for
static analysis and execution traces for dynamic analysis, it
can be categorized as a hybrid approach. By combining the
analysis of application execution traces with machine learning
techniques, we aim to enhance malware detection. Previous
studies have emphasized the significance and utility of traces
in monitoring computer system behavior [11], [12], [13], [14],
[15].

The collected traces enable us to comprehend the func-
tioning of a system and identify anomalies, deviations in op-
eration, suspicious behavior, and more. Hence, traces contain
pertinent and valuable information for analyzing the behavior
of systems in general, as well as applications specifically
during their execution. Although traces are beneficial, they are
less commonly utilized for identifying malicious applications.
Instead, they are typically employed for debugging, profiling,
or logging purposes. This study aims to assess the hypothesis
that traces of application execution are high-quality data that
can be used to analyze and detect malicious applications [16].
Consequently, the solution proposed in this study is founded
on capturing relevant behavioral elements (events) during
application execution, based on pertinent characteristics. These
events are recorded in the traces. Subsequently, the values of
the behavioral features are extracted in the form of dictionary
objects or converted into eigenvectors using appropriate tools
for analysis with machine learning algorithms. The primary
objective of this study is to effectively detect malware in order
to enhance the safeguarding of private data transmitted through
applications. Therefore, it presents a proactive solution that
diminishes cybercriminals’ attack vectors. The experimental
results demonstrate the significance of execution traces in
identifying software vulnerabilities. This study contributes to
malware detection in the following ways:

• We present a model that effectively and efficiently
identifies malware by utilizing a blend of static fea-
tures (permissions and characteristics) and behavioral
features (traces). The features we have selected allow
us to describe the dynamic behavior of applications.
Furthermore, these features are comprehensive, en-

www.ijacsa.thesai.org 1288 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

compassing attributes extracted from the Android-
Manifest file as well as features extracted during
application execution.

• We have extracted five (05) relevant features to char-
acterise the behaviour of Android applications. The
numerical values of these features vary from one
application to another. We use six (06) classifiers,
namely Support Vector Machine (SVM), k-Nearest
Neighbor (kNN), Random Forest (RF), NB, MLP and
DTREE-CART, to identify malware. We compare the
detection performance of these different classifiers.

• We conducted analyses on a dataset containing 8014
traces from benign and malware applications collected
from Google Play (15%) and Drebin (85%). Exper-
imental results show the effectiveness of the model
with a detection accuracy of more than 98% with the
SVM algorithm.

The rest of the document is structured as follows: the
Section II deals with some previous studies and research into
traces and vulnerability detection methods. In Section III we
detail the process of collecting traces and converting them
into features through trace generation, data pre-processing and
feature vector formation. Section IV presents the construction
of the data set and experimental setup. In addition, the results
obtained will be presented in this section. We conclude the
work in Section V.

II. RELATED WORK

Over the last few years, the digital world has seen an
impressive development in malicious software, which rep-
resents a major threat [3], [4]. The consequences of this
malware for users are enormous. On an ongoing basis, a
number of researchers have proposed methods and techniques
for detecting malware in applications [7], [8], [17], [18], [10].
The aim is to improve data protection methods by reducing
threats and attacks against private data. Unfortunately, their
efforts are coming up against determined cybercriminals who
are more innovative in their malicious behaviour [3], [2], [19],
[5], [17]. They are increasingly using sophisticated techniques
to bypass security solutions or evade the control systems
in place. It is therefore crucial and urgent to find effective
solutions to protect data. Several methods and techniques based
on static and dynamic approaches are proposed [7], [19], [13],
[16]. Previous works [4], [19], [16] have proposed literature
reviews on both analysis approaches and their weaknesses [3],
[17], on analysis techniques, [7], [20], on the use of machine
learning techniques [7], [8], [17], on digital traces [11], [16].
Nevertheless, we will mention some of the work related to
traces, especially as our approach is a hybrid one.

In static analysis, the source code is examined and repre-
sentative features (libraries, opcodes, API calls, permissions,
function calls, etc.) are extracted. In contrast to the static
approach, for dynamic analysis, representative features are
extracted during the execution of the application by monitoring
its behaviour. Features such as system calls, file behaviour
(access, create, read, modify, delete), registry access (create
and modify), network traffic, are relevant data used by some
authors to study application behaviour and detect malicious
actions.

The authors of the works [8], [9], [10], [20], combined
machine learning techniques with one or other of these ap-
proaches, depending on their methodology to improve de-
tection. The authors Al-Hashmi et al. [10] selected several
features from the extracted features and combined them with
different machine learning techniques to train a model. The
results obtained are encouraging with their DeepEnsemble
model. Numerous other works on detecting malware in An-
droid applications extract certain information to distinguish
malicious applications from benign ones. This is the case of the
work by Bassole et al. [18] and the authors [8] and [9]. These
authors extracted authorisations and other functionalities as
features, and combined them with machine learning methods
to detect malware.

As for traces, they were used by the authors [13], [15],
[14], [21], [22] and [23] in their work. The authors of the
references [24], [25] [26] and [27] used traces to detect their
code errors through debugging. In the studies [24] and [26],
traces are used for profiling while the authors [28], [29] and
[30] use them as a means of studying logging. All these
techniques using traces (debugging, profiling and logging) do
not provide enough information for optimal diagnosis of flaws
in applications. It was in the web and network domain that
the first uses of traces were useful. Hassan et al. [21] used
traces to detect vulnerabilities in web sites and Zhou et al.
[22], used them to analyse anomalies in TCP/IP networks.
Several other studies show that traces provide more relevant
results when combined with machine learning techniques [31],
[32]. Studies such as that carried out by Razagallah et al. [11]
show us that traces are an invaluable source of information on
the execution behaviour of a program. This information can
be used to detect malicious software in Android applications.
The authors have therefore built up a dataset based on traces
that can be exploited according to research needs.

Despite all these malware detection methods and protection
measures, cybercriminals often manage to escape and exploit
vulnerabilities with more sophisticated attacks. Between the
repackaging of certain benign applications for malicious pur-
poses, new families of malware, vulnerabilities (known and
unknown) and inadequacies in data protection, there is a need
to explore possible solutions to limit the risk of attacks.

With the ever-changing and innovative nature of malware,
detection based solely on one approach or type of functionality
cannot meet data protection needs. In this study, we therefore
evaluate an analysis model that uses events collected during
application execution to analyse the malicious behaviour of
these applications (Fig. 1). This is a hybrid approach that
takes advantage of both static and dynamic approaches and
combines machine learning techniques. The traces generated
contain sensitive information extracted and trained by the
algorithms for detecting software vulnerabilities. In this way,
static characteristics (permissions and features) are extracted
and dynamic characteristics are captured in order to obtain data
that is more relevant and better suited to improving malware
detection performance.

www.ijacsa.thesai.org 1289 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Fig. 1. Model using android application execution traces.

III. TRACE COLLECTION AND PROCESSING

In this section, we present the process for extracting
features and events, the construction of our dataset, and the
features selected for training the machine learning algorithms.
We also present the tools and equipment used to collect the
events.

A. Choice of Android Applications

To evaluate our model, we used execution traces generated
from Android applications. Our choice is motivated by the
fact that the high number of these applications with a share
of over 82% of mobile applications, according to Gartner’s
2021 report1. According to this report more than 2 billion
will be delivered in 2021. All this popularity (see Fig. 2)
combined with Android’s security model makes users of these
applications a prime target for malware writers. The scale of
attacks targeting Android users is considerable [1].

B. Behavioural Data Extraction (Events)

Application behaviour, operations performed and system
performance are among the essential and useful data provided
by application execution traces. This data can be used for
analysis, debugging, performance optimisation, problem de-
tection and many other tasks related to application monitoring
and diagnosis. For analysis, the features to be extracted from
the events depend on the context of the application and the
information you wish to use to construct the eigenvectors.
In this study we have specified the behavioural features to
be extracted in the features to extract list (Table I). These
features are relevant, we believe, to understanding the actual
behaviour of the application being run. Several events are
captured and recorded in a file (the trace). All events are
generated with the LTTng tracer. Also, to extract characteristics
during the execution of each application, we created a dynamic
environment with the Genymotion emulator version 3.3.3 with
a Google Nexus 5 API 11 device. Each of the applications is
installed and then run. In the Algorithm 1, we describe the
process of collecting events, the building blocks of traces.

1https://www.gartner.com/en/information-technology/insights/
top-technology-trends/top-technology-trends-ebook

Fig. 2. Growth rate of android applications compared with other applications
from 2009 to 2022.

TABLE I. LIST OF BEHAVIOURAL DATA TO BE EXTRACTED

Event
data

Type of
data

Description

Timestamp Numeric This is the timestamp that indicates the precise moment
when each event occurred. It is useful for temporal
analysis of events and for understanding the chrono-
logical order in which they occurred

”Name” String This is the name of the event, representing the type
or category of the event. It can indicate a specific
action performed by the application, a function call or
a system operation

PID (Pro-
cess ID)

Numeric This is the process identifier (PID), which is a unique
number assigned to each process running on the system.
It identifies the process that caused the event

TID
(Thread
ID)

Numeric This is the thread identifier (TID), which is a unique
number assigned to each thread in a process. It identi-
fies the specific thread at the origin of the event

”Syscall”
(System
Call)

String This is the set of data that represents a request from
the running program to the operating system kernel to
perform a specific operation. For example, read or write
data, access external resources, create files, allocate
memory, etc. The ”syscall” field indicates the specific
system call associated with the event

Retval
(Return
Value)

Numeric This represents the return value of the system call
(syscall). It is a numerical value that indicates the result
of the operation performed by the system call, such as
the success of an operation or the occurrence of an
error

Duration Numeric Duration represents the time elapsed between the start
and end of an event. It is used to measure the execution
time of each specific operation

C. Data Pre-processing

Once the traces have been generated, the data collected
must be made useful for the rest of the process. This stage is es-
sential and requires appropriate tools to transform behavioural
data into features. It is this phase that produces data that
can be used by machine learning algorithms. During the pre-
processing phase, only data that can contribute to improving
detection or classification is retained from the data collected.
This data should maximise the accuracy of the results obtained.
Unnecessary data is therefore ignored. Given that the data we
collected in the previous stage is unstructured data, it comes
in different formats and is sometimes unreadable. Also, they
generally contain redundant and unnecessary features, with
missing values, symbols, punctuation and spaces. To prevent
unnecessary data from negatively influencing the results, we
converted the traces into Python dictionary objects. The Algo-

www.ijacsa.thesai.org 1290 | P a g e

https://www.gartner.com/en/information-technology/insights/top-technology-trends/top-technology-trends-ebook
https://www.gartner.com/en/information-technology/insights/top-technology-trends/top-technology-trends-ebook

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Algorithm 1: Extracting Events from an Application
Entry :

Application : .apk
events to extract[]: contains the list of

elements to be extracted
Output:

T: list of traces (content and metadata)
1 Load application into memory //Specify application

package name
2 package name = ”MyApp”
3 source code = decompile(app.apk)//Decompile the

apk to obtain the source code
4 trace code = insert tracepoints(source code)
5 //Insert tracepoints in the source code to capture the

desired events (calls to special functions or macros
that record events)

6 Run the application several times //(2 to 5 times)
7 Run Tracer //Configure the lttng-ust tracing tool to

collect events
8 events = extract(trace code) // collect events

generated on the state of variables, function calls,
errors, system events, etc.

9 T=[] // Initialise the list of traces
10 foreach event ∈ events do
11 if event ∈ events to extract then
12 // for an event element in the list

events to extract
13 trace = event // Create a new trace with the

event
14 T.append(trace) // Add the track to the list of

tracks
15 end
16 else
17 Continue with the next event
18 end
19 end
20 Return T

rithm 2 presents this transformation process. Once converted,
machine learning algorithms use these dictionaries to identify
malware from benign software. We also use the Trace compass
visualisation tool to convert the traces into CTF files. As the
contents of these files are readable, they are used to construct
feature vectors, as indicated by the algorithm 3. In this way,
machine learning algorithms can use these feature vectors to
detect vulnerable applications, and therefore behaviours that
are precursors to possible attacks.

D. Features Representation

Feature extraction creates new feature sets in which the
typical malware example is better represented than the use
of the original features. This feature-derived data extracted
from software behavioural data improves the accuracy of
malware detection. Before extracting these characteristics from
the traces, we statically extracted the permissions and features
of each application. This brings the total number of feature
fields to five (05) for vulnerability analysis. For the detection of
a vulnerable or malicious application by the machine learning
model, the analysis focuses on the features taken from the

Algorithm 2: Convert Generated Traces into Python
Dictionary Objects

Entry :
trace file : events file

Output:
event dicts : events converted into dictionary

objects
1 Define the path to the directory containing the traces
2 Define the name of the traces session
3 events to extract = [timestamp, ”name”,

pid,tid,”syscall”, retval,duration, cpu]
4 Run TraceCompass // to convert evenements
5 Load the file containing extracted events
6 events = open(”trace file”, ”read”) //Storing events in

an events variable
7 event dicts = { } // Initialise the object dictionary
8 foreach event ∈ events do
9 if event[”name”] ∈ events to extract then

10 //If the event name is in the list
events to extract

11 event dict = {//create a dictionary event dict
with the variables

12 timestamp: event[timestamp],
13 ”name”: event[”name”],
14 pid: event[”fields”][pid],
15 tid: event[”fields”][tid],
16 ”syscall”: event[”fields”][”syscall”],
17 retval: event[”fields”][retval],
18 duration: event[duration],
19 cpu: event[cpu]
20 }
21 end
22 else
23 continue with the next event
24 end
25 event dicts.append(event dict) //Adding the

dictionary to the list
26 end
27 return event dicts

execution traces and the AndroidManifest file. These fields
include all the important information from the traces. These
features are based on:

• C1(Searching for abnormal activity): The aim is to
analyse the values in this field to identify any activity
that does not conform to the expected behaviour of
the application. This includes inappropriate access to
system resources, attempts to modify critical files and
suspicious communications with external servers. The
application will be detected as vulnerable.

• C2 (Error and exception detection): This involves
identifying errors and exceptions reported in the ex-
ecution trace and contained in this field. If there are
frequent errors in the traces, such as access violations
or security exceptions, this indicates potential vulner-
abilities in the application.

• C3(Verification of privileges): this field contains the
values of the analysis of system calls made in the trace

www.ijacsa.thesai.org 1291 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Algorithm 3: Transformation of Events into CTF
Files to Construct Eigenvectors

Entry :
trace file : input trace file
features to extract : list of characteristics to

be extracted from events
Output:

feature vectors: list of eigenvectors
constructed from events

1 Load traces // with Trace Compass from the file
trace file

2 Configuring CTF conversion parameters
3 Convert tracks to CTF // format using Trace Compass
4 Loading converted CTF files
5 Initialise feature vectors as an empty list
6 foreach event belonging to the converted CTF files do
7 Extract the characteristics specified in

features to extract to converted CTF files
8 Construct a feature vector for the event using the

extracted values
9 Add the feature vector to the list feature vectors

10 end
11 Return feature vectors

and checks whether they are appropriate for the appli-
cation in question. For example, system calls relating
to access to files, processes or network resources may
reveal unauthorised access attempts.

• C4(Searching for suspicious network behaviour): This
involves examining the values in this field, which
represent network communication activities in the
trace. If there are suspicious outgoing connections
to unknown IP addresses or domains, unauthorised
protocols or unencrypted transmissions of sensitive
data, then the application is considered vulnerable.

• C5(Detecting malicious behaviour): This involves
comparing the permissions and features fields in the
Android’s manifest file with the authorisations.txt and
features.txt lists. These lists contain all the permissions
and features declared in the official Android documen-
tation.

Representing the functionalities represented by each field (C1,
C2, C3, C4, C5) in figures means that the counter values can
be incremented if a suspect element is present. These values
are used to create the data set. The final value of the counter
is compared with its initial value. If the final value is equal to
the initial value, this implies normal behaviour and therefore
a benign application. Otherwise, for any other value different
from the initial value, the model assumes that the application
is vulnerable.

IV. IMPLEMENTATION AND RESULTS

A. Dataset and Experimental Setup

1) Dataset: To experiment with our approach, we collected
a number of Android applications that included both benign
and malicious apps. We acquired benign apps from Google

Play2 and malicious apps from Drebin3 and built a dataset of
8014 traces (benign apps and malicious apps). This approach
gives us apk’s that have undergone Google’s verification tests
before being published on its site. Nevertheless, all applications
are downloaded and then analysed on VirusTotal4 with a
considerable number of antivirus software for detection. The
results of these scans are used to group the applications into
benign and malware. Applications are selected according to
several criteria. For benign applications, almost all sectors of
activity are taken into account (tourism, news, health, educa-
tion, financial transactions, justice, culture, religion, job search,
history, geolocation and entertainment, etc). Several types of
malware were collected (repackaging, privileges, sending sms,
stealing information, advertising, etc.). We formed a set of
8014 traces for analysis.

2) Experimental setup: We conducted our experiments on
a computer Inter(R), Core(TM) i3-4160, CPU @ 3.60GHzx4
with with 12GB RAM running on Ubuntu 22.04.2 LTS 64 bits
and GNome 42.5. We have installed the LTTng 2.13 plotter
including LTTng-tools52.13.9, LTTng-UST62.13.5 and LTTng-
modules72.13.9. The models are built with Python 3.10.6 and
GCC 11.3.0.

Evaluation metric: The metrics precision (P), recall (R)
and F-measure (F1) , Accuracy are proposed to evaluate our
method. The precision, recall and F1 for example are defined
as:

P (precision) =
TP

TP + FP
R(recall) =

TP

TP + FN

F1 =
2 ∗ P ∗R
P +R

Accuracy =
TP + TN

TP + FP + FN + TN

Where :

• TP (True Positive): when the actual class and the
predicted class are all yes.

• TN(True Negative): when the actual class and the
predicted class are all no.

• FP(False Positive): when the actual class is no and the
predicted class is yes.

• FN(False Negative): when the actual class is yes and
the predicted class is no.

B. Results

To analyse the performance of our model, we used six (06)
machine learning algorithms including the K-Nearest Neigh-
bors classifier(KNN), the Decision Tree Classifier (DTREE-
CART), Naive Bayes (NB), MLP classifier, Random Forest
(RFOREST) classifier, Support Vector Machine (SVM) which
were selected on the basis of the results of several preliminary
experiments carried out.

2https://play.google.com/
3https://www.sec.cs.tu-bs.de/∼danarp/drebin/download.html
4https://www.virustotal.com/
5git://git.lttng.org/lttng-tools.git
6git://git.lttng.org/lttng-ust.git
7git://git.lttng.org/lttng-modules.git

www.ijacsa.thesai.org 1292 | P a g e

https://play.google.com/
https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html
https://www.virustotal.com/
git://git.lttng.org/lttng-tools.git
git://git.lttng.org/lttng-ust.git
git://git.lttng.org/lttng-modules.git

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Fig. 3. The results obtained with each algorithm.

The Table II presents a comparison of the performance
of the proposed approach with the precision, recall and F1
score measures for detecting software vulnerabilities on An-
droid. The results show good performance for all the machine
learning algorithms used. The best performance is given by the
SVM algorithm with an F-score of 0.99 for malware detection
and 0.89 for benign software detection.

TABLE II. COMPARISON OF ML ALGORITHMS

Malware Benign apps
Precision Recall F1-score Precision Recall F1-score

KNN 0.98 0.99 0.99 0.96 0.75 0.84
DTREE-
CART

0.98 0.99 0.99 0.93 0.80 0.86

NB 0.91 0.96 0.95 0.31 0.24 0.27
MLP 0.98 0.99 0.99 0.96 0.77 0.85
SVM 0.98 1.00 0.99 0.96 0.77 0.89
RFOREST 0.98 1.00 0.99 0.94 0.81 0.87

TABLE III. IMPLEMENTATION FOR ALL ML ALGORITHMS

Macro Precision Macro Recall Macro F1-score Accuracy
KNN 0.97 0.87 0.91 0.98

DTREE-
CART

0.96 0.90 0.93 0.98

NB 0.73 0.70 0.71 0.91
MLP 0.96 0.89 0.92 0.98
SVM 0.97 0.90 0.93 0.98
RFOREST 0.97 0.88 0.92 0.98

The Table III shows the implementation results for all the
machine learning algorithms with precision and the F1 macro
score. The best performing algorithm obtained an accuracy of
0.98 and a score of 0.93 for the F1 macro. Fig. 3 shows that
the SVM algorithm is better than the others. We can therefore
conclude that the proposed model obtains results that show its
good performance in detecting vulnerabilities. It is effective
and can therefore be used to improve the protection of data
passing through Android applications.

V. CONCLUSION

Although identifying malware is a difficult and tedious
task, it remains an imperative when it comes to protecting
data. Our solution, based on application execution traces and
machine learning techniques, meets this challenge. On the one
hand, the results obtained enable us to confirm the relevance

of execution traces in analysing unexpected and unhealthy
application behaviour. On the other hand, these experimental
results also show that static and behavioural characteristics are
more effective and efficient for detecting malware. The use of
behavioural features can enable the detection of malware that
escapes the control of solutions based on signatures or static
approaches. This compensates for the shortcomings of static
feature-based approaches.

In this way, the combination of behavioural and static
features improves the level of detection of software vulner-
abilities. Our model will make it possible to reduce new
threats targeting Android applications. Unfortunately, there are
a few limitations to our study, the future objective of which
is to generalise this solution to all emerging applications and
technologies. Also, to increase the number of applications and
consequently the number of traces. The second objective is to
have a real environment and not an emulated environment for
a better user experience of this solution. We will continue to
improve this approach in order to have a vulnerability detection
system that is accessible to users.

REFERENCES

[1] E. Amer and S. El-Sappagh, Robust deep learning early alarm prediction
model based on the behavioural smell for android malware,Computers
& Security, Volume 116, 2022, 102670.

[2] D. T. Dehkordy, and A. Rasoolzadegan A new machine learning-based
method for android malware detection on imbalanced dataset, Outils et
applications multimédias le volume 80 , pages 24533–24554, 2021.

[3] K. D. T. Nguyen, T. M. Tuan, S. H. Le, A. P. Viet, M. Ogawa and N L
Minh, Comparison of Three Deep Learning-based Approaches for IoT
Malware Detection, 10th International Conference on Knowledge and
Systems Engineering, 2018.

[4] S. Arshad , A. Khan , M. A. Shah and M. Ahmed, Android Malware
Detection & Protection: A Survey, (IJACSA) International Journal of
Advanced Computer Science and Applications, Vol. 7, No. 2, 2016.

[5] G. Lin , S. Wen, Q-L. Han , J. Zhang, And Y. Xiang ”Software
Vulnerability Detection Using Deep Neural Networks: A Survey”. DOI:
htpps://10.1109/JPROC.2020.2993293, PROCEEDINGS OF THE IEEE,
May 2020.

[6] G. Koala, D. Bassolé, A. Zerbo/Sabané, T. F. Bissyandé and O. Sié,
”Analysis of the Impact of Permissions on the Vulnerability of Mo-
bile Applications”. International Conference on e-Infrastructure and e-
Services for Developing Countries. AFRICOMM 2019: pp 3–14, dec,
2019.

[7] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Népal and Y. Xiang, A Survey of
Android Malware Detection with Deep Neural Models, ACM Computing
Surveys Volume 53 Numéro 6 Article : 126 pp 1–36, 06 décembre 2020.

[8] statique : W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu and X. Zhang,
DroidEnsemble: Detecting Android Malicious Applications With Ensem-
ble of String and Structural Static Features, in IEEE Access, vol. 6, pp.
31798-31807, 2018.

[9] T. Chen, Q. Mao, Y. Yang, M. Lv and J. Zhu, TinyDroid: A Lightweight
and Efficient Model for Android Malware Detection and Classification,
Mobile Information Systems, vol. 2018, Article ID 4157156, 9 pages,
2018.

[10] A. A. Al-Hashmi, F. A. Ghaleb, A. Al-Marghilani, A. E. Yahya, S. A.
Ebad, M. S. MS and A. A. Darem, Deep-Ensemble and Multifaceted
Behavioral Malware Variant Detection Model, in IEEE Access, vol. 10,
pp. 42762-42777, 2022.

[11] A. Razagallah, R. Khoury, J-B. Poulet, TwinDroid: a dataset of An-
droid app system call traces and trace generation pipeline, MSR ’22:
Proceedings of the 19th International Conference on Mining Software
Repositories, Pages 591–595, May 2022.

[12] P. L. Cueva, A. Bertaux, A. Termier, J. F. Méhaut, and M. Santana,
Debugging embedded multimedia application traces through periodic

www.ijacsa.thesai.org 1293 | P a g e

htpps://10.1109/JPROC.2020.2993293

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

pattern mining, EMSOFT ’12: Proceedings of the tenth ACM interna-
tional conference on Embedded software, 2012 Pages 13–22.

[13] A. Lebis ,Capitaliser les processus d’analyse de traces d’apprentissage
: modélisation ontologique et assistance à la réutilisation,
Thèse,Sorbonne Université, 2020.

[14] F. Hojaji, T. Mayerhofer, B. Zamani, A. Hamou-Lhadj, and E. Bousse
,Model execution tracing: a systematic mapping study, Springer-Verlag
GmbH Germany, part of Springer Nature, 2019.

[15] T. Galli ,F. Chiclana, and F. Siewe, Quality Properties of Execution
Tracing, an Empirical Study, Appl. Syst. Innov. 2021, 4, 20.

[16] G. Koala, D. Bassolé, T. Tiendrebeogo and O. Sié, Study of an Approach
Based on the Analysis of Computer Program Execution Traces for the
Detection of Vulnerabilities. In: Mambo, A.D., Gueye, A., Bassioni, G.
(eds) Innovations and Interdisciplinary Solutions for Underserved Areas.
InterSol 2022.

[17] S. M. Ghaffarian and H. R. Shahriari, Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey, ACM Comput. Surv., vol. 50, no. 4, pp. 1–36, Nov. 2017.

[18] D. Bassolé, Y. Traoré, G. Koala, F. Tchakounté, and O. Sié, Detection
of Vulnerabilities Related to Permissions Requests for Android Apps
Using Machine Learning Techniques. In: , et al. Proceedings of the 12th
International Conference on Soft Computing and Pattern Recognition
(SoCPaR 2020). Advances in Intelligent Systems and Computing, vol
1383. Springer, Cham, dec, 2020.

[19] M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R. Damasevicius
and R. Maskeliunas, Android Malware Detection: A Survey, In: H. Florez,
C. Diaz, J. Chavarriaga, (eds) Applied Informatics. ICAI 2018. Commu-
nications in Computer and Information Science, vol 942. Springer, Cham,
2018.

[20] A. Razgallah and R. Khoury, Behavioral classification of Android appli-

cations using system calls, 2021 28th Asia-Pacific Software Engineering
Conference (APSEC), Taipei, Taiwan, 2021, pp. 43-52, 2021.

[21] N. A. Hassan, and R. Hijazi, Digital Privacy and Security Using
Windows, Berkeley: CA Apress, 2017.

[22] D. Zhou, Z. Yan, Y. Fu, and Z. Yao, A survey on network data collection,
2018. Journal of Network and Computer Applications 116, pp 9-23, 2018.

[23] J. Lazar, J.H. Feng and H. Hochheiser, Chapter 12 – Automated
data collection methods,2017. Research Methods in Human Computer
Interaction, 2nd edition, pp 329-368, 2017.

[24] F. Gruber, Performance Debugging Toolbox for Binaries: Sensitivity
Analysis and Dependence Profiling , pp 3-10, 2020.

[25] A. Belkhiri, Analyse de performances des réseaux programmables, à
partir d’une trace d’exécution, 2021.

[26] H. Venturi, Le débogage de code optimisé dans le contexte des systèmes
embarqués, pp 13-40.

[27] O. Iegorov, Data Mining Approach to Temporal Debugging of Embed-
ded Streaming Applications, pp 89-95, 2018.

[28] , Y. J. Bationo, Analyse de performance des plateformes infonuagiques.
École Polytechnique de Montréal, pp 19-28, 2016.

[29] F. Reumont-Locke, Méthodes efficaces de parallélisation de l’analyse
de traces noyau, 2015.

[30] A. Ravanello, Modeling end user performance perspective for cloud
computing systems using data center logs from big data technology.
Thesis, 2017.

[31] C. D. Sestili, W. S. Snavely and N. M. VanHoudnos, Towards security
defect prediction with AI, arXiv:1808.09897, 2018.

[32] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk and
F. Herrera, Imbalanced classification for big data. In: Learning from
imbalanced data sets, pp 327–349, Springer, 2018.

www.ijacsa.thesai.org 1294 | P a g e

	Introduction
	Related Work
	Trace Collection and Processing
	Choice of Android Applications
	Behavioural Data Extraction (Events)
	Data Pre-processing
	Features Representation

	Implementation and Results
	Dataset and Experimental Setup
	Dataset
	Experimental setup

	Results

	Conclusion
	References

