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Abstract—The traditional methods used to identify plant 

diseases mostly rely on expert opinion, which causes long waits 

and enormous expenses in the control of crop diseases and field 

activities, especially given that the majority of crop infections 

now in existence have tiny targets, occlusions, and looks that are 

similar to those of other diseases. To increase the efficiency and 

precision of rust disease classification in a fava bean field, a new 

optimized multilayer deep learning model called YOLOv8 is 

suggested in this study. 3296 images were collected from a farm 

in eastern Morocco for the fava bean rust disease dataset. We 

labeled all the data before training, evaluating, and testing our 

model. The results demonstrate that the model developed using 

transfer learning has a higher recognition precision than the 

other models, reaching 95.1%, and can classify and identify 

diseases into three severity levels: healthy, moderate, and critical. 

As performance indicators, the needed standards for mean 

Average Precision (mAP), recall, and F1 score are 93.7%, 90.3%, 

and 92%, respectively. The improved model's detection speed 

was 10.1 ms, sufficient for real-time detection. This study is the 

first to employ a new method to find rust in fava bean crops. 

Results are encouraging and supply new opportunities for crop 

disease research. 

Keywords—Fava bean disease; deep learning; YOLOv8; real-
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I. INTRODUCTION 

Humanity faces a severe problem with food security, and 
one of the main challenges to agricultural output is the 
occurrence of plant diseases [1]. These diseases generate 
significant losses, making early identification of these 
situations crucial. Accurate diagnosis of plant diseases is 
essential to minimizing economic losses imposed on them. The 
three approaches now in use are manual inspection of a plant's 
leaves to determine its health condition and the sort of illness it 
is affected, which has time, efficiency, and high professional 
needs issues; pathogen testing [2], which is correct but time-
consuming and unsuitable for field detection, and plant 
protection expert diagnosis [3], which is subject to personal 
interpretations and has low accuracy. 

Development of artificial intelligence and machine vision 
in various sectors, including agriculture is required. It states 
that many researchers prefer hyperspectral images due to their 
capacity to provide continuous spectral information and the 
spatial distribution of plant diseases [4]. Near-infrared 
spectroscopic digital images are also used for plant disease 

detection [5]. However, the tools needed to capture spectral 
images are costly and not easily accessible. Digital cameras 
and mobile phones are within everyone's reach; on the other 
hand, they make it simple to capture visible light images, 
making them a more practical choice for image recognition 
research. 

Deep learning (DL) is a crucial technique to remedy this 
problem. While resolving complex issues like feature 
extraction, transformation, and image classification, this 
technology helps implement new tools, methods, and 
technologies in agriculture. By proposing detection models 
based on convolutional neural networks (CNN) and using 
photos taken by cameras, many researchers have used deep 
learning to identify crop diseases in real time. Therefore, DL 
has enormous potential to increase the effectiveness of 
agricultural output and lower losses brought on by plant 
diseases [6]. 

To detect rust disease on fava bean pods, this study used 
the convolutional neural network's enhanced version, You 
Only Look Once (YOLO). It is commonly used in computer 
vision tasks, including object segmentation and image 
classification [7]. A grid divides images into cells, with each 
cell responsible for object detection in the YOLO object 
identification approach. For the first time, a bean crop rust 
disease was detected using the innovative system named 
YOLOv8 in this study. This research aimed to identify and 
correctly classify rust disease according to three different 
severity levels: healthy, moderate, and critical, using images 
obtained with the camera. 

The YOLOv8 method has many advantages over traditional 
object identification techniques. We want to solve the 
limitations of current methods and offer a more efficient and 
accurate solution for the recognition of rust disease in our 
study. One of the main advantages of the YOLOv8 approach is 
its excellent level of precision, making it ideal for operations 
involving identifying small objects. It locates items of interest 
more precisely by utilizing innovative techniques, including 
bounding boxes, multi-scale prediction, and feature fusion. 
This increased accuracy is crucial for applications requiring 
reliable and precise detection results. Real-time performance is 
one of this strategy's key benefits. In our application, which 
tracks the progression of plant diseases in real-time, accurate 
recognition of small objects in real-time video streams is 
critical. This is made possible by YOLOv8's exceptional 
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processing rates, which are made possible by an efficient 
network design and parallel processing. Additionally, YOLOv8 
shows that it can manage various environmental factors, 
including occlusions, changing illumination, and crowded 
backdrops. The method's adaptability in the real world, where 
environmental variables are frequently unpredictable, is 
enhanced by its capacity to retain dependable detection 
performance in challenging settings. The suggested solution's 
streamlined operational model is shown in Fig. 1. 

 

Fig. 1. Creation of the operational model for crop health monitoring. 

The context of deep learning algorithms in plant disease 
detection is discussed in Section II of the seven sections of the 
research paper—the background in Section III. We outline the 
methods and materials in Section IV. In Section V, we outline 
our contribution and the experiment results. The results are 
discussed in Section VI; Section VII is where we conclude and 
outline our next steps. 

II. RELATED WORKS 

In this section, we summarized some algorithms proposed 
by researchers and are recently used for disease detection in 
crops. We can cite Dai et al. [8] work as an example. They 
merged the CBAM attention mechanism, HRNet, and ASPP 
structure to enhance the R-CNN. With an average 
identification rate of 88.78%, a detection algorithm was 
presented to remove tiny target pests of diverse sizes in citrus. 

Karthik et al. [9] recommended a two-level deep-learning 
method to detect tomato leaf disease. The second deep learning 
model was applied as an attention mechanism on top of the 
first model after the first was used to learn critical features via 
residual learning. The authors identified the late blight, early 
blight, and leaf diseases in tomatoes using the PlantVillage 
dataset. 

To identify the unhealthy region on tea leaves with an 
average accuracy of 83%, Mukhopadhyay et al. [10] suggested 
a new approach based on image processing technology. Zhao 
et al. [11] proposed a YOLOv5s-based model for crop disease 
detection. To enhance global and local feature extraction and 
address the issue of scaling the prediction frame during model 
learning, the model uses an upgraded CSP structure, CAM 
structure, additional grid, and DIoU loss function. The model 
has a recall of 87.89%, an F1 score of 0.91, and an average 
accuracy (mAP) of 95.92%. The model also has a 40.01 FPS 
detecting speed. When employed by Alita et al. [12] to find 
plant leaf diseases, the EfficientNet deep learning model 
outperformed other cutting-edge deep learning models in terms 

of accuracy. To show and detect insects in soybean crops in 
real-time; the authors Tirkey et al. [13] of this research suggest 
a deep learning-based approach. They used YOLOv5, 
InceptionV3, and CNN to achieve 98.75%, 97%, and 97% 
accuracy as they investigated the viability and dependability of 
transfer learning models. With YOLOv5, the suggested 
solution runs at 53 frames per second. 

III. BACKGROUND 

Fava bean rust disease presents a severe risk to fava bean 
crops worldwide, significantly decreasing crop quality and 
productivity. Traditional approaches to rust disease detection 
and control rely on visual examination and human observation, 
which can be time-consuming, labor-intensive, and prone to 
mistakes. Computer vision and machine learning developments 
have made deep learning models that can automatically detect 
and classify rust diseases possible. The YOLOv8 (Fig. 2) 
object identification method is one such model. This model is a 
development of the YOLOv4 model, renowned for its object 
detection speed and accuracy. With the help of a deep neural 
network and several convolutional layers, the YOLOv8 model 
can recognize and categorize objects in real time. The 
YOLOv8 algorithm can quickly and effectively identify this 
disease since it was trained on a large dataset of healthy and 
rust-infected fava bean leaf images. The model can evaluate 
the severity of an infection, which may be used to choose the 
best preventative actions. The YOLOv8 model, which may 
decrease reliance on human inspection and improve the speed 
and accuracy of diagnosis, significantly advances the detection 
and control of fava bean rust disease. 

 

Fig. 2. Pipeline of YOLOv8 algorithm. 

IV. MATERIALS AND METHODS 

A model for fava bean rust disease detection in crops is 
presented in this paper. To do this, an AI-based image 
recognition system is created. The suggested technique will 
help farmers apply pesticides precisely and quickly, cut 
operating costs, and enhance crop output and quality. The 
settings, data collecting, data pre-processing, Data annotation, 
and deep learning model training are just a few components of 
the system’s structure. The system uses the trained model to 
identify rust diseases and validate the developed models based 
on the results obtained. The suggested strategy is expected to 
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give farmers precise information for effectively managing crop 
disease. Fig. 3 depicts the proposed method's flowchart. 

 

Fig. 3. Diagram showing the proposed model's workflow. 

A. YOLOv8 for Object Detection 

The YOLO family of detection models, which has become 
famous for their precise detection and segmentation abilities 
[14], now includes the new YOLOv8 model. This new model's 
architecture comprises a backbone, head, and neck. Given its 
transformed architecture, enhanced convolutional layers 
(backbone), and more sophisticated detecting head, it is an 
excellent solution for real-time object detection. 

One of its strong characteristics is this model's ability to 
recognize many objects in an image or video faster and more 
accurately than prior iterations. Because of the model's giant 
feature map and enhanced convolutional network, which 
boosts accuracy and speed and are supported by our results, it 
is more effective than prior versions. The architecture and 

framework of the best-trained model YOLOv8l are shown in 
Fig. 7 and divided into multiple vital parts, each of which is 
outlined below: 

 Backbone network: used by the YOLOv8 model to 
extract features from the input images. YOLOv8 uses 
the cross-stage partial network (CSPNet) design for the 
backbone network to lower the computing cost of the 
network while keeping its accuracy [15]. 

 Neck: The neck acts as a connecting point between the 
backbone and the detection head. The channel is 
specifically constructed using the spatial pyramid 
pooling (SPP) module, which uses different-sized 
pooling processes to collect multi-scale information 
[15]. 

 Detection head: Predicting the bounding boxes and 
class probabilities of things seen in the input image is 
the responsibility of the detection head. It does this by 
predicting each item's bounding boxes and class 
probabilities using a series of convolutional layers, 
followed by a cluster of anchor boxes [15]. 

B. Research Site 

The experimental location was examined at a farm in Ahfir, 
Berkane province, eastern area of Morocco, at coordinates 
34°57'58.9 "N 2°07'42.5 "W shown in Fig. 4. The Fava bean 
crop was the subject of the investigation, and the picture 
capture plots were chosen randomly. 

C. Images Acquisition and Data Collection 

To capture images, a Sony DSLR-A230 camera was used. 
In Table I, the camera settings are displayed. Horizontally 
aligned pictures were taken. The position of the lens was 
between 30 and 50cm away from the fava bean pods during 
image collecting, having a pixel resolution of 3872 x 2592. 
Throughout March and April 2023, pictures were shot every 
three to four days. 

Three types of fava bean pods—healthy, moderate, and 
critical—are included in the dataset used for this research; in 
Fig. 5, samples of each class are displayed. These photos were 
taken in several spots within the same agricultural area. 1124 
images are included in the healthy pod, and 1279 in the 
moderately infected pod—893 photos of the pods with severe 
infections. There are 3296 images in all in the data collection. 

 

Fig. 4. Research area located in Ahfir, Berkane province, Morocco.
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TABLE I. SONY DSLR – A230 CAMERA 

Camera Lens ISO Speed Resolution Max Aperture 

Sony/Minolta 

Alpha APS-C 18-

55MM Lens 

ISO 3200 3872 x 2592  9.4 feet at f/3.5 

 

Fig. 5. A sample of each class in our database. 

D. Data Annotation 

Before training our model, it is crucial to complete this 
step, which requires carefully labeling the images from the 
resized and obtained data set. This technique is executed via 
the Python-written "LabelImg" graphical image annotation 
program [16], which was used for image normalization. The 
training and validation set images were annotated in VOC 
format to obtain XML and Txt files with the image names, 
sizes, class names, target image positions, and other data. Fig. 
8 displays the data for the annotations. 

The accuracy of the training dataset has a significant effect 
on how well a machine-learning model performs. An 
agricultural specialist who helped us find the various lesions 
present in the farm field to take captures and assisted us with 
the computer annotation was crucial in our study's dataset 
annotation. We identified 4468 lesion boundary boxes from a 
collection of 3296 images. Particularly, healthy, moderate, and 
critical pods totaling 1540, 1682, and 1246 labels were 
identified, respectively, (Fig. 6). Since all annotation files were 
saved in ".txt" format, the model can readily access and 
understand them. 

 

Fig. 6. Number of instances per class. There are labels for 1540 healthy, 

1682 moderate, and 1246 critical pod samples. 

According to this stringent, expert-guided annotation 
procedure, the YOLOv8 model can now be trained on high-
quality data. This also increases the model's accuracy and 
efficiency in finding rust diseases in fava bean crops. 

E. Augmentation of Dataset and Data Preprocessing 

Fig. 6 shows a slight disparity between the healthy and 
critical classes and the middle class, which might lead to 
overfitting and impact our model's ability to identify and 
classify data accurately. Therefore, the training set for healthy 
and critical pods is increased using simple adjustments like 
rotation, zoom, brightness, and color saturation of the images 
to balance our dataset. Additionally, adaptive scaling and 
filling procedures were conducted on the pictures of the 
various fava bean pod instances before training our model. The 
input image size was 640x640 pixels. 

 

Fig. 7. Architecture of YOLOv8l – best-trained model. 

(a) Healthy (b)Moderate (c)Critical 
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F. Experimental Setup 

The processing platform was a desktop PC with Windows 
10 Professional running. The Torch version was 1.13.1, the 
CUDA version was 11.6, and the Python version was 3.9. The 
hardware consisted of an Intel® Xeon® W-2223 CPU with a 
3.6 GHz core clock, 16 GB of RAM, and an NVIDIA GeForce 
Quadro P1000 graphics card. 

The dataset was divided into training and validation sets in 
a 4:1 ratio after each image, and the status of the bean pods was 
manually annotated. Six distinct architectures, including 
YOLOv8s, YOLOv8l, YOLOv8x, YOLOv5s, YOLOv5l, and 
YOLOv5x, were modeled using the training set. Four batches 
of 8 photos each were used for the training procedure. The goal 
was to evaluate the performance of each architecture and 
identify the most effective identification model for rust disease 
detection in fava bean crops. The best model for rust disease 
detection in fava bean crops was chosen based on the 
architecture with the highest performance. Fig. 7 shows the 
selected model's architecture. 

 

Fig. 8. Images annotation result. 

The best hyperparameters were used in the training models. 
The momentum parameter for the SGD optimizer, which was 
used in the model learning process, was set at 0.937. This study 
uses the SGD optimizer; therefore, the convergence will be too 
slow if the model's initial learning rate is higher. As a result, 
the learning rate was initially set at 0.01 and gradually 
increased to identify the ideal answer more quickly during the 
final stage of model training. 

The number of training epochs is 40, and the input training 
picture size is 640x640. The training hyperparameters for our 
architecture model are listed in Table II. 

TABLE II. HYPERPARAMETER OPTIMIZATION FOR IMPROVED MODEL 

PERFORMANCE 

Hyperparameters Yolov8l 

Initial learning rate 0.01 

Final learning rate 0.01 

Optimizer SGD 

Momentum 0.937 

Weight decay 0.0005 

Warmup epochs 3.0 

Cls 0.5 

IoU 0.7 

V. EXPERIMENTAL RESULTS AND COMPARATIVE 

ANALYSIS 

A. Indicators for Evaluating the Model's Performance 

Several indicators and assessment specifications were used 
to judge the performance of the trained models to ensure they 
could provide accurate object detection results. Examples 
include the number of network parameters, Precision (P), 
mean Average Precision (mAP), Recall (R), and speed of 
detection. The intersection over union (IOU) threshold value 
was set to 0.7 for our dataset. The conventional formulae (1), 
(2), (3), (4), and (5) were used to figure out the values of P, 
AP, mAP, R, and F1, respectively [17]. Using these assessment 
measures, we could compare the accuracy and efficiency of 
several models and assess how well they performed under 
different situations. Using these criteria, we could choose the 
top-performing model for rust disease detection in fava bean 
crops criteria. 
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Fig. 9. Graphical representation of model training and validation sets. 

B. Models Training 

The various architectures of the YOLOv5 and YOLOv8 
models were chosen for training, validation, and testing. With a 
learning rate of 0.01, SGD was used as an optimizer. The four 
distinct structures of the YOLOv5 model are YOLOv5s (the 
smallest), YOLOv5m, YOLOv5l, and YOLOv5x (the biggest). 
The YOLOv8 model includes four structures—YOLOv8s, 
YOLOv8m, YOLOv8l, and YOLOv8x. Six YOLOv5 and 
YOLOv8 architectures were selected for our study. Table III 
displays the parameter comparison. The mAP of YOLOv8l 
was 0.937, which was 7.79% higher than the mAP of 
YOLOv5l, and 20.2% higher than the mAP of YOLOv5s. 
However, YOLOv5s improved the execution speed due to the 
reduced number of network layers and parameters but with less 
accuracy. Therefore, YOLOv8l has the advantage of being 
more accurate, which meets the needs of this study. 
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TABLE III. COMPARISON OF THE PARAMETERS OF THE YOLOV5 AND YOLOV8 MODELS AND GENERAL EVALUATION METRICS LIKE PRECISION, MAP, AND 

SPEED 

Model Params  Precision  Recall mAP mAP50@95  Speed (ms) FLOPs (B) FPS 

YOLOv5s ~07.2M 75.2% 68.9% 74.8% 45.6% 2.8 7.2 358 

YOLOv5l ~46.5M 81.4% 79.2% 86.4% 48.8% 7.9 109.1 126.6 

YOLOv5x ~86.7M 88.6% 87.6% 88.7% 69.6% 13.8 205.7 73 

YOLOv8s ~11.2M 89.9% 90.3% 91.8% 72.7% 4.8 28.4 209 

YOLOv8l ~43.7M 95.1% 89.5% 93.7% 76.5% 10.1 164.8 100 

YOLOv8x ~68.2M 93.2% 88.9% 93.6% 75.9% 15.4 257.4 65 

YOLOv5s has improved execution speed by 2.8 ms, which 
is 41.7% faster than YOLOv8s and 81.9% faster than 
YOLOv8x due to its reduced number of network layers, 
parameters, and memory requirements. However, it also has 
reduced accuracy and mAP. The accuracy of YOLOv8l was 
0.951%, which is 2% higher than the accuracy of YOLOv8x, 
and 20.9% higher than the accuracy of YOLOv5s. Therefore, 
YOLOv5s has the advantage of being fast but less accurate, 
whereas YOLOv8l has observable accuracy, which better 
meets the needs of this study. The initial model for this 
experiment has been chosen to be Yolov8l. The verification 
measures described the performance of this model. Fig. 9 
shows the total training and validation losses for each epoch. 

To evaluate the impact of training intervals on model 
performance, the YOLOv8l architecture was developed in this 
work to visualize the process of dynamic training state 
monitoring and model function. The results are displayed in 
Fig. 10. The model's parameters changed significantly when it 
was iterated from 0 to 14 epochs. The score eventually 
stabilized during the 30–40 epochs. After 30 to 40 model 
epochs, the index stabilized, and the precision (P) increased to 
around 95.1% before stabilizing. 

The loss functions that our trained model employed for its 
detection and classification tasks are thoroughly examined in 
Fig. 10. The stochastic gradient descent approach optimizes the 
network and modifies its parameters during the learning 
process, decreasing the value of the loss function. We see a 
significant link between the value of the loss function and other 
performance indicators like precision, recall rate, and average 
precision. Classification loss measures how well an algorithm 
can predict a specific item category. Since classification 
accuracy increases as the loss value decreases, minimizing the 
loss function value is essential for better accuracy. 

A set of test images was chosen, as shown in Fig. 11, to 
better prove how well the trained model identified the rust 
disease on fava bean pods. This picture shows how the model 
selected for this investigation can accurately locate disease 
positions, classify them based on pod state, and successfully 
avoid missed and false detection issues for small and many 
targets. 

The classification performance of the proposed model is 
clearly shown by the confusion matrix shown in Fig. 12. The 
model works efficiently in terms of detecting accuracy for all 
types, and it makes it simple to analyze the accuracy for each 
target class. The model's excellent accuracy is a promising 
result and shows that it can be used successfully in situations 
found in real-life situations. 

 

Fig. 10. Visualization of training progress and model evaluation metrics, 

between 0 and 40 epochs. 

An essential tool for assessing the efficiency of 
classification model performance is the confusion matrix. Fig. 
12 illustrates the confusion matrix for the model used to 
examine the target classes' classification accuracy. The values 
of true positives, true negatives, false positives, and false 
negatives for each class are displayed in the confusion matrix. 
With the bulk of values near or above 0.9, the model's 
identification accuracy is good for all classes. With a score of 
0.95, the model specifically proved good accuracy for the 
"healthy" class, demonstrating its ability to accurately 
discriminate healthy samples from other classes. With a score 
of 0.88, the "moderate" class also showed high accuracy. With 
an accuracy of 0.94 for the "critical" class, the model was able 
to successfully detect samples with severe conditions. These 
findings are encouraging for the proposed model since they 
show that it can correctly classify samples into multiple 
categories. The model may be used in real-world applications 
for disease detection and classification, enabling prompt and 
efficient interventions to treat the diagnosed disorders, 
according to its high accuracy in all categories. 

 

Fig. 11. Rust disease detection images on fava bean pods, (A-F) represent test 

images of the proposed model with different accuracy. 

A B 

C D 

E F 
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Fig. 12. Confusion matrix of the trained model – YOLOv8l. 

The F-measure is the weighted harmonic average of the 
precision (P) and recall (R) of a classifier using the F1 score. 
The confidence value in the graph shown in Fig. 13 is 0.681, 
which maximizes recall and precision and corresponds to the 
maximum F1 value of 0.92. In general, a higher F1 score and 
confidence value are preferred. 

According to the results displayed in Fig. 14, a precision 
value of 1.00 is included in the 0.983 confidence range for 
effect. With bigger data sets, the estimate becomes more 
correct, and the confidence interval shows how confidently we 
can state the effect magnitude. 

 

Fig. 13. Performance evaluation of YOLOv8l model using F1 curve. 

The sample size is often a key element in assessing 
accuracy. As demonstrated in Fig. 15, the recall value and 
associated confidence interval are objectively understood 
together. Recall values of 0.000 are included in the confidence 
interval of 0.96. The significance of sample size and 
confidence intervals for appropriately reporting and 
interpreting recall levels in this experiment is illustrated by 
these results. 

 

Fig. 14. Model performance through precision curve. 

Finally, the curve in Fig. 18 illustrates the link between 
recall and precision at various thresholds. High recall and low 
false negative rates are correlated with high precision and low 
false positive rates, respectively. Excellent recall and excellent 
precision are both shown by a large area under the curve. 
Utilizing the precision-recall curve, we discovered 0.937 mAP. 

 

Fig. 15. Recall curve for model performance evaluation. 

VI. DISCUSSION 

In this work, in comparison to other models from the same 
family or to other versions of YOLOv5 (Fig. 16), we proved 
the YOLOv8l model's capacity for detecting rust disease in 
fava bean pods. The model exceeds the average accuracy 
reported by previous studies in identifying the presence of a 
single or a lot of classes, with an accuracy of 95.1% and a mAP 
of 93.7%. Given the necessity of quick recognition of diseases 
for efficient crop management, Fig. 17 illustrates several real-
time experiments conducted on fava bean pods in the 
agricultural field. To confirm its accuracy and efficiency, it 
was tested in a variety of situations; the performance of the 
system and its capacity to precisely and consistently detect fava 
bean pods' condition have been providing light on using the 
proposed YOLOv8l model, which has offered important 
details. This study is special since it is the first to use a deep-
learning model to identify fava bean pod rust disease. 
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Fig. 16. Performance comparison of yolov8 model with other models. 

Three distinct categories of rust disease conditions—
healthy, moderate, and critical—are included in the dataset 
used for this investigation. However, by expanding the dataset 
for a generalization of the model, our application may still be 
improved. The effects of our treatment on different crops and 
illnesses will be fascinating to see. The creation of advanced 
real-time detection models based on moving robots with 
integrated cameras through agricultural fields is another 
research area and future direction. Farmers could be able to 
monitor their crops more effectively and correctly as a result, 
and the demand for human labor for disease detection might 
decrease. 

 

Fig. 17. Results of testing the proposed solution from different time of day – 

Yolov8l model. 

Our study proves our suggested method's improved plant 
disease detection and categorization performance. We have 
significantly improved precision, efficiency, and speed using 
the YOLOv8 architecture, exceeding traditional methodologies 
in related research disciplines. As can be seen, our findings are 
superior to those of earlier research, setting a new standard for 
illness detection precision. Our method surpasses detailed 
results reported in [18]–[25] and achieves a remarkable mAP 
of 93.7%, demonstrating the suggested model's excellent 
generalizability and resilience. Furthermore, our recall of 
89.5% is higher than the value stated in [25], highlighting the 
efficiency and dependability of the suggested approach. Our 
YOLOv8-based solution also exhibits impressive speed, with 
an average image detection time of only 10.1ms, reaching 100 
frames per second (FPS), satisfying real-time requirements, 
and obtaining a good rust disease detection result, surpassing 
the performance of [20], [22], and [25]. Our work demonstrates 
the vast potential of the YOLOv8 model for precise and 
effective rust disease classification, exceeding the findings of 
previous research efforts regarding the accuracy, recall, 
mAP@0.5, and F1 score. Our study significantly contributes to 
agricultural disease research by emphasizing these 
improvements, opening the door for more investigation and 
future advancements in this crucial area. 

 

Fig. 18. Precision-recall (PR) curve. 

We want to discuss inherent limitations that are pertinent to 
the findings of our research. It is essential to note right away 
that our dataset was only collected from a single farm in 
eastern Morocco, which may restrict the applicability of our 
findings to other geographic areas or different agricultural 
techniques. As a result, care should be used when extending 
our findings to other situations. Additionally, even though we 
tried to gather a comprehensive dataset of 3296 images, it's 
vital to understand that this representation does not fully 
capture the range of variety and nuance connected with 
fava bean rust illness. As a result, our suggested deep learning 
model, YOLOv8, may perform differently when subjected to a 
wider variety of field circumstances. Because our model 
showed good identification accuracy, it is essential to 
understand that no model can be without errors and that the 
chance of misclassification or false positives cannot be 
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eliminated. Finally, it is critical to remember that despite being 
judged suitable for real-time detection in our experimental 
setting, the detection speed of 10.1ms may vary depending on 
the hardware and computer capabilities available in other 
agricultural scenarios. Understanding these restrictions helps us 
fully appreciate our study's scope and applicability. It also 
emphasizes the need for more research to address these 
limitations and improve the precision and robustness of AI-
based disease detection mechanisms in agricultural settings. 

Our work does not address identifying and categorizing 
other plant diseases; instead, it focuses only on the rust disease 
in fava bean harvests. Future research should focus on the 
efficacy and usability of the YOLOv8 model in detecting 
illnesses other than rust in various crops. We intend to present 
a thorough and open overview of our findings by fully 
outlining these limitations. We think pointing out these 
limitations will help researchers interpret our results more 
accurately and create foundations for more studies and 
advancements in crop disease identification. 

VII. CONCLUSION 

To evaluate the severity of the rust disease on fava bean 
crop pods in natural settings with small, dense, and overlapping 
crop targets, this research proposes an advanced comparative 
study between six different YOLOv5 model iterations and the 
most modern YOLOv8 model. By using many layers, the deep 
learning-based technique automates the image processing and 
feature extraction processes in the deep learning model. It is 
significant to highlight that the database used in this study was 
built especially for it. The data is typical of real-life situations 
because the images were taken on a farm where fava beans 
were cultivated. For the model to be trained successfully, 
collecting information was done carefully to ensure image 
quality and diversity. This database can be used to train other 
models and is an excellent resource for detecting agricultural 
diseases in future research. The study's results proved the 
superior performance and resilience of the proposed YOLOv8l 
model. This provides a foundation for the model's execution on 
embedded devices, robots, or mobile devices. The model could 
accurately detect the three different classes of fava bean pod 
conditions with a remarkable accuracy of 95.10%, with better 
identification of smaller pod targets and complex situations. By 
integrating more courses into the dataset and using various 
optimization strategies, we will continue to improve the 
structure and the features of the model provided in this study to 
increase its robustness and expand its use cases. 
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