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Abstract—In recent years, natural language processing (NLP)
has transformed numerous domains, becoming a vital area of
research. However, the focus of NLP studies has predomi-
nantly centered on major languages like English, inadvertently
neglecting low-resource languages like Pashto. Pashto, spoken
by a population of over 50 million worldwide, remains largely
unexplored in NLP research, lacking off-the-shelf resources and
tools even for fundamental text-processing tasks. To bridge this
gap, this study presents NLPashto, an open-source and publicly
accessible NLP toolkit specifically designed for Pashto. The initial
version of NLPashto introduces four state-of-the-art models for
Spelling Correction, Word Segmentation, Part-of-Speech (POS)
Tagging, and Offensive Language Detection. The toolkit also
includes essential NLP resources like pre-trained static word
embeddings, Word2Vec, fastText, and GloVe. Furthermore,
we have pre-trained a monolingual language model for Pashto
from scratch, using the Bidirectional Encoder Representations
from Transformers (BERT) architecture. For the training and
evaluation of all the models, we have developed several benchmark
datasets and also included them in the toolkit. Experimental
results demonstrate that the models exhibit satisfactory perfor-
mance in their respective tasks. This study can be a significant
milestone and will hopefully support and speed-up future research
in the field of Pashto NLP.
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I. INTRODUCTION

Pashto is an Indo-European language primarily spoken in
Afghanistan and Pakistan. Written in the Perso-Arabic script,
Pashto is also cursive, written right-to-left (RTL), and the
letters take on different forms depending on their position
in the word. Despite being the native language of a large
population, NLP research in Pashto is still very rare, and
sophisticated tools can hardly be found even for basic text-
processing tasks, such as word segmentation and spelling cor-
rection. Additionally, the tools developed for other languages
are not sufficient for Pashto text processing due to the complex
and unique morphology of the language. Pashto is not a
standardized language, lacking any golden rules to impose a
uniform way of writing. For instance, it is a good practice to
add space after each word in typing (writing with a keyboard),
but in some cases, space omission is acceptable for human
readers, which creates an issue for NLP applications. Without
space between words, a naive NLP algorithm will consider
the whole string as a single word. Due to this inconsistency
in writing, any arbitrary Pashto text, whether on social media,
news websites, or even books, is noisier compared to any other
language.

This study aims to address the challenges in Pashto text
processing and develop essential resources and state-of-the-
art (SOTA) models for preliminary NLP tasks. All these
resources and models, along with the benchmark datasets,
are packaged in a toolkit named NLPashto, publicly available
on GitHub and PyPi hub. The objective of toolkit is to
enhance re-usability, avoid reinventing the wheel, and provide
a single point of entry for further research in Pashto NLP. The
initial prototype of NLPashto includes static word embeddings
(Word2Vec, fastText and Glove) and the first monolingual
Pashto BERT, pre-trained on our custom-developed Pashto text
corpus of 15 million words. The toolkit includes four SOTA
models, three of which are general-purpose tools for basic
text processing: spelling correction, word segmentation, and
POS tagging, while the fourth model is for offensive language
detection.

Most NLP algorithms require the input text split into
individual units before processing. Two baseline techniques
commonly used for converting text into tokens/words: whites-
pace tokenization and lexicon-based word segmentation. In
whitespace tokenization, words are separated by whitespaces
(spaces, tabs, or line breaks), commonly used in Western
languages like English. On the other hand, languages that do
not have spaces between words, such as Chinese and Japanese,
use word segmentation, which is typically more complex be-
cause it involves identifying the boundaries between words and
deciding which character belongs to which word. However,
none of these techniques is perfect for the Pashto language.
In Pashto, unlike English, the ”space” is not consistently used
for word separation and is not a reliable word delimiter, and
unlike Chinese, space is a part of writing and cannot be
completely ignored. To handle these limitations, we have
developed two specialized machine learning models, one for
spelling correction and the other for word segmentation. The
spelling correction model can be used to identify the proper
position of spaces in the text, remove extra spaces, or insert
spaces where required. Once the spaces are corrected, we
can use the baseline whitespace tokenizer to convert the text
into tokens. The word segmentation model can be used in
applications that need to split the text into ”full” words rather
than space-delimited tokens. For example, a NER application
may need to extract ”whole” words from text like ”New York”
rather than ”New” and ”York”. Therefore, we have developed
a specialized word segmenter for the Pashto language that will
not break the compound words, such as خواره واره (dispersed)
or مظاهره چيان (protesters).

POS tagging is also a fundamental text pre-processing task
that involves assigning a grammatical category to each word
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in a sentence, such as a noun, verb, adjective, or adverb. POS
information is very helpful for AI models better understand
the language, as they can learn more about the grammatical
structure of the text, which could improve models’ ability
to generate coherent and grammatically correct text. It is
one of the earliest types of annotation performed on corpora
and is still used, for example, BNC [1], Brown Corpus and
LCMC. POS tagging is not intuitive, as a particular word
can have different tags based on the context. For example,
in the sentence په غرونو واوره وريګي (it is snowfall on the
mountain), the word واوره is a noun, while in the sentence
زما خبره واوره (listen to me), واوره means ”listen,” which is
an imperative verb. For automatic POS tagging, we have
developed a machine learning-based POS tagger and included
it in the toolkit.

The rise of social media has led to an increase in the
dissemination of offensive language, which has a profound
negative impact on the targeted individuals and the community.
The sheer volume of content posted everyday, makes the
manual removal of offensive content by human moderators
unfeasible. Therefore, automated NLP systems for detecting
offensive content have become essential. Significant research
has been dedicated to this area in other languages, such as
English [2], Chinese [3], Arabic [4], [5], [6], [7], Hindi [8],
and German [9], to name a few. However, for the Pashto
language there is no such research work available. In this
study, we have developed a SOTA AI model for Pashto
offensive language detection, trained on a dataset of tweets
manually categorized as ”offensive” and ”not-offensive.”

Toolkit development is an ongoing process, and we are ac-
tively working on NLPashto to make it more inclusive, though
the progress we have already achieved can be summarized as
follows:

We developed a Pashto text corpus of around 15 million
words and used it to pre-train the Static Word Embeddings
for Pashto. We developed the first monolingual Pashto BERT
from scratch. We developed benchmark datasets and used
them to develop four SOTA models for Spelling Correction,
Word Segmentation, POS Tagging, and Offensive Language
Detection. Finally, we packaged all the resources, benchmark
dataset, and pre-trained models in a Toolkit and distributed
them publicly on GitHub and PyPi hub to facilitate and speed
up future research in this domain.

II. RELATED WORK

Natural language toolkits have been utilized in the research
and development of various NLP applications. One of the
most widely known NLP toolkits is the Natural Language
Toolkit (NLTK) [10], which is a Python library providing a
comprehensive suite of tools and resources for NLP tasks,
including tokenization, POS tagging, NER, sentiment analysis,
and more. Another popular NLP toolkit is CoreNLP [11],
which offers a set of core NLP tools similar to NLTK,
such as tokenization, POS tagging, parsing, and NER. It
also encompasses advanced tools like coreference resolution,
relation extraction, and sentiment analysis.

In recent years, language-specific NLP toolkits have gained
prominence, offering SOTA tools, datasets, and pre-trained
models for specific languages. An example of such toolkits

is FudanNLP [12] for the Chinese language. FudanNLP
employs statistics-based and rule-based methods to tackle
various NLP tasks, including word segmentation, POS tagging,
NER, dependency parsing, anaphora resolution, and time-
phrase recognition. For Urdu, a sister language of Pashto, [13]
developed the UNLT toolkit, which includes three preliminary
NLP tools: word tokenizer, sentence tokenizer, and part-
of-speech tagger. The word tokenizer utilizes a morpheme-
matching algorithm combined with a stochastic n-gram model.
The toolkit addresses space-omission through back-off and
smoothing characteristics, and space-insertion is handled using
a lexicon-based look-up technique. The POS tagger is based
on HMM entropy-based stochastic and lexicon-based look-
up techniques. InaNLP [14] is a natural language toolkit
for the Indonesian language, which integrates several NLP
modules, such as tokenization, sentence splitter, POS tagger,
NER, syntactic parser, and semantic analyzer, with most of
the models being rule-based. [15] developed a toolkit named
CAMeL for the Arabic language. CAMeL provides tools
for preliminary NLP tasks, including morphological analysis,
dialect identification, and NER, with support for various Ara-
bic dialects. DaNLP [16] is another toolkit for low-resource
languages, specifically designed for Danish. It contains pre-
trained models for NER, POS tagging, coreference resolution,
and sentiment analysis and also includes benchmark datasets
and static word embeddings. IceNLP, developed by [17], is
an NLP toolkit for the morphologically complex Icelandic
language. It encompasses essential pre-processing tools, such
as tokenizer, sentence segmenter, rule-based taggers, finite-
state parser, and morphological analyzer. For Vietnamese, [18]
have developed VnCoreNLP, a toolkit that provides solutions
for preliminary NLP tasks such as word segmentation, POS
tagging, NER, and dependency parsing. Lastly, [19] developed
an NLP toolkit for the Bengali language, which includes super-
vised machine learning models for tokenization, POS tagging,
and NER, as well as other resources like word embeddings.

III. CHALLENGES IN PASHTO TEXT PROCESSING

Pashto is not a standardized language, and there are no
golden rules for the proper usage of space in the writing sys-
tem, which leads to two typical spelling errors, space omission,
and space insertion error. Besides that other challenges in
Pashto text processing include non-standardized transliteration
and homograph ambiguity.

A. Space-omission Errors

A space-omission error occurs when the space between
two words is ignored, causing the words to merge into a single
string. For example, the phrase دامیز (this table) has two words,
دا (this) and ميز (table), but the space between the words is
omitted, which is perfectly readable to a human reader and
thus it is not considered to be a typo in Pashto; however, an
NLP system will interpret and process the phrase as a single
word.

B. Space-insertion Errors

A space-insertion error occurs when a ”useless” space is
inserted within a word, splitting it into two or more (possibly
meaningless) parts. For example, the words خبريال (reporter)
and خبر يال look very similar, but the latter one has an extra
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space between the two ligatures خبر and .يال A human reader
may consider it correct, but an NLP application treat each
ligature as a separate word. An example sentence in Fig. 1,
highlights the issues of both the space-omission and space-
insertion errors.

���نه �و لنه �� دنا لوستو خل�وسلنه ډیرە ج�ه دە

Space-omission errors

Space-insertion errors

The percentage of illiterate people in the Pashtun
community is very high.

:���Well-written sentenceنه �ولنه �� د نالوستو خل�و سلنه ډیرە ج�ه دە
Meaning:

Figure 1. Example of space-omission and space-insertion errors.

C. Non-standardized Transliteration

Transliteration is the process of converting the characters of
one writing system into another, preserving the pronunciation
of original words. Translitration is very common in Pashto, but
there are no standard rules to enforce one common spelling
for foreign words transliterated into Pashto. The spelling of
transliterated words usually depends on the choice of the writer
(translator or transliterator), resulting in several variants of
spellings for one word. For instance, the word ”Coronavirus”
has more than ten variants in our Pashto text corpus, e.g., کرونا
وائرس، کورونا وائرس and .کروناوايرس

D. Homograph Ambiguity

Homograph ambiguity is a common issue, not only in
Pashto but in many languages, which occurs when a word
has more than one meaning. It can create ambiguity in the
language, as the meaning of a homograph may be unclear
based solely on its spelling. For example, the word ”tear”
in English can refer to a ”liquid from the eyes” or ”to rip
apart forcefully”. Similarly, in the Pashto sentence, هغه تور
کوټ اغوستی (he is wearing a black jacket), the word تور is an
adjective, means ”black”, while in the sentence هغوي د دې تور
په ګاونډي هيواد لګوي (they blame the neighboring country for it),
the word تور refers to ”blame”, which is a Common Singular
Masculine Noun.

IV. TEXT CORPUS AND BENCHMARK DATASETS

This project involves the development of word embeddings
and a BERT model. Training these models requires a substan-
tial corpus of text that should be diverse and representative
of the entire language. However, Pashto is a low-resource
language, where electronic textual content, large-scale corpora,
and well-organized datasets are hard to find. Therefore, we
developed a Pashto text corpus, for which we collected text
from four primary sources: news websites, Wikipedia articles,
books, and Twitter tweets. The corpus size is over 15 million
tokens, with an average token length of 3.6 characters.

A. Dataset for Spelling Correction and Word Segmentation
Models

To develop the dataset for spelling correction, the first step
was to obtain raw sentences. We used our Pashto text corpus,
which consisting around 400K sentences. Our goal was to
annotate each sentence for explicit word-boundary information.
However, manually annotating such a large dataset was not
feasible. So, we initially employed a lexicon-based approach
to mark word boundaries.

Lexicon-based segmentation is an intuitive technique often
used to divide text into words [20], [21]. It involves scanning
a sequence of input characters and matching them against a
lexicon of words. If the sequence is found in the lexicon, it
is considered a word. To ensure matching the longest possible
sequence, a variant of the lexicon-based approach called the
Longest Matching (LM) algorithm is used. The LM is a greedy
algorithm that strives to find the longest sequence. Since the
LM algorithm starts the search from the beginning and moves
forward, it is also called Forward Longest Matching (FLM).
Another variant of the LM algorithm performs the search in
the backward direction, known as Reverse Longest Matching
(RLM). Sometimes, both FLM and RLM are combined to form
Bidirectional Longest Matching (BMM).

To annotate our corpus, we incorporated the BLM tech-
nique with a small modification. Instead of looking up
sequences of characters, we looked up sequences of tokens
obtained from whitespace tokenization. A space in Pashto
can either be a word delimiter or part of the word, where
the purpose of annotation was to discriminate these spaces and
mark them with explicit labels. We used the label ”B” for word
delimiters and ”S” for the spaces that were part of the words.
In the first round, after passing all 400K sentences through the
lexicon-based model, 95K sentences were ”fully” annotated,
where no out-of-vocabulary (OOV) tokens were found. The
”partially” annotated sentences, where at least one token was
OOV, were further processed. The OOV tokens were extracted,
manually inspected, and added to the lexicon if they were valid
Pashto words. These partially annotated sentences once again
passed through the lexicon-based segmenter, where some more
sentences were fully annotated. This process was repeated
several times with an updated lexicon each time. Finally, the
size of the dataset reached 150K sentences (nearly 4 million
words). It is worth mentioning that we used the same dataset
for training both the spelling correction and word segmentation
models.

B. Part-of-Speech Dataset

To develop the POS dataset, we annotated the spelling
correction and word segmentation dataset with POS informa-
tion. For POS annotation, we initially employed the lexicon-
based approach, in which the words in the sentences are
looked up one by one in the lexicon and labeled with the
corresponding POS tags. It is a context-free approach in
which the surrounding information of the taken are not taken
into consideration. In the first round, after passing all 150K
sentences through the lexicon-based model, 80K sentences
were fully annotated, with every word assigned a POS tag. Two
example sentences are given in Fig. 2, annotated using this
approach. In both sentences, the word تور has been assigned
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the Singular Masculine Noun tag, though, in the first sentence
تور means (black), which is an Adjective.

 

 

 

ی  PRPiii_هغۀ NNM_تور NNM_کوټ NNM_غوست 

wearing jacket black he 

Meaning ≈ He is wearing a black jacket 

 

ر VBP_لګوي  PRPiii_هغوي IN_د VBPC_دي NNM_تور IN_په NNM_ولسمش 
…ing president on blame of the they 

Meaning ≈ They blame president for that 

 
Figure 2. Example sentences, annotated using the lexicon-based technique.

After the lexicon-based annotation, we randomly selected
10K of the sentences for manual correction. Using a spe-
cialized web application we developed, sentences from the
database were presented one by one to the annotators (human
experts), with each word already assigned a static tag (by
the lexicon-based tagger), and the job of the annotators was
to verify or change the tags. This way, all 10K sentences
were annotated for POS information with 100% (theoretical)
accuracy. By analyzing the results of manual correction, we
found that changes were made to around 7% of the tags by
human annotators. It shows that the lexicon-based POS tagger
can achieve an accuracy of 93%.

C. Pashto Offensive Language Dataset
The Pashto Offensive Language Dataset (POLD) is a

collection of tweets manually categorized into two classes:
”offensive” and ”not-offensive” (Fig. 3). The first step in
creating the POLD dataset was to collect raw tweets in Pashto
from Twitter. However, offensive tweets only make up a small
portion of overall tweets, therefore, annotating random tweets
was inefficient. To increase the size of the offensive class, we
used a seed list of offensive words to filter tweets. To minimize
bias and maintain diversity in the dataset, firstly, we made the
seed list large and inclusive, and secondly, we analyzed many
tweets and observed common patterns in offensive tweets, such
as the use of second-person pronouns, i.e., تا (you: singular) or
تاسو (you: plural), and included these patterns in the seed list.
Using the Twitter Search API, we searched for each word and
pattern in the seed list and collected nearly 300K raw tweets
between January 10 and February 10, 2023.

The tweets corpus underwent several pre-processing steps,
which involved removing HTML tags, URLs, usernames,
and other special characters. Digits in non-Pashto format
were normalized to the Pashto format, i.e., 1234 became ����.
Duplicate tweets were deleted, and tweets with less than 10
characters or more than 150 characters were also discarded.
The final corpus size dropped to 70K tweets, from that we
randomly selected 35K (50%) for manual annotation.

The manual annotation was carried out by a total of five
participants, including one of the authors and four paid pro-
fessionals. Tweets containing any type of offensive language,
such as hate speech, cyberbullying, aggression, abuse, or
profanity, were assigned the label ”1” (offensive), and the rest
(normal or positive tweets) were assigned the label ”0” (non-
offensive). Each annotator individually tagged the complete

corpus without knowing the decisions of other annotators. The
decision regarding the final status of the tweets made by a
majority vote. The final POLD dataset consists of 34,400
tweets, with 12,400 labeled as offensive and 22,000 labeled
as non-offensive.

V. WORD EMBEDDINGS

Word embedding is a process that involves mapping words
from a vocabulary to vectors of real numbers. The basic idea
behind word embeddings is to learn a distributed representation
of words based on their co-occurrence in a large corpus of
text. A neural network is trained to capture the syntactic and
semantic meaning of the words in the text. The network learns
to associate words that appear in similar contexts with similar
vector representations. The resulting vector representations
can then be used as input for other machine learning models.
NLP researchers generally prefer to utilize pre-trained word
embeddings, typically trained on extensive corpora. However,
for Pashto, no pre-trained word embeddings are currently
available except fastText. Nevertheless, we pre-trained static
word embeddings and a BERT model for the Pashto language
and included them in NLPashto.

A. Static Word Embeddings

We used the Pashto text corpus and trained the three
popular types of static word embeddings: Word2Vec, fastText,
and GloVe, and included them in the toolkit. For all three
models, most of the hyper-parameters were kept uniform. The
vector size was fixed at 100, the window size at 5, and the
minimum count at 2, which is the minimum frequency needed
for a word to be included in the final vocabulary. We chose the
skip-gram architecture for Word2Vec and fastText and trained
each model for 5 epochs. The GloVe model was trained using
the GloVe package, while Word2Vec and fastText were trained
using the Gensim and fastText Python libraries.

B. Pashto BERT

The recent progress in Large Language Models (LLMs)
has revolutionized the field of NLP. Some of the most popular
LLMs in use today include BERT [22], GPT [23], XLM-R
[24], and RoBERTa [25], to name a few. LLM takes into
account the context in which a word appears in a sentence
when generating the embeddings, which allows the model

Seed List of
offensive words

and patterns

Manual
Annotation

POLD Dataset

offensive "1" not-offensive "0"

Pre-processing
(cleaning and
normalization)

Twitter
Search

Figure 3. Procedure of POLD dataset development.
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to capture the meaning and nuances of words in different
contexts. These models are usually trained on multilingual
data and can understand and generate text in several languages.
However, for language-specific tasks, monolingual models
generally outperform the multilingual models. In this study,
we have trained a Pashto monolingual language model and
included it in the NLPashto toolkit as well as publicly uploaded
it to the Huggingface hub.

The model we utilized for training Pashto BERT is the
BERTBase, which has 12 layers, 768 hidden states, 12 attention
heads, and 110M parameters. Training data is our Pashto text
corpus of 15 million tokens. To tokenize the input sequences,
we used WordPiece tokenizer [26], which is the recommended
tokenizer for BERTBase. We fixed the vocabulary size at
30K words and used special [CLS] and [SEP] tokens at the
beginning and end of the sequences, respectively. To enable
the model to differentiate between original and padded tokens,
we employed an attention mask to generate a vector of 1s
and 0s for each input sequence, where 0s indicate the padded
tokens and 1s indicate the original ones. The hyper-parameters
setup for pre-training is shown in Table I. We implemented the
model architecture and training pipeline using PyTorch and the
Huggingface transformers library, where training of the model
performed on a cloud GPU – NVIDIA Tesla P100 that took
nearly 2 hours to complete.

TABLE I. HYPER-PARAMETERS SETUP FOR PRE-TRAINING THE PASHTO BERT
MODEL

Hyper-parameters Values
Batch Size 32
Sequence Length 128
Padding Post-padded
Learning Rate 1e-4
Linear Warmup Schedule 10K steps
β1 and β2 0.9, 0.999
L2 Weight Decay 0.01
Epsilon 1e-8

VI. MODELS

The initial prototype of the NLPashto toolkit includes
four SOTA AI models for (i) Spelling Correction, (ii) Word
Segmentation, (iii) POS tagging, and (iv) Offensive Language
Detection. The first three are essentially sequence tagging
models that involve assigning a label or tag to each element
in the sequence of input data. For sequence tagging tasks,
NLP researchers use several supervised machine learning
algorithms, such as HMM (Hidden Markov Model) [27], [28],
RNN (Recurrent Neural Networks) [29], [30], [31], [32],
[33], and CRF (Conditional Random Fields) [34], [35], [36],
[37]. For various sequence tagging tasks, such as Word
Segmentation and POS tagging, the CRF usually outperforms
the other models. We have also incorporated CRF for training
the three sequence tagging models. On the other hand, the
model for offensive language detection is essentially a (binary)
sequence classifier, which discriminates the input sequences
into two categories, offensive and not-offensive. For that, we
fine-tuned our pre-trained Pashto BERT model.

A. Spelling Correction Model

The spelling correction module is aimed to remove the
two typical spelling errors, the space-omission, and space-
insertion. This model will predict the correct position of space
in the text, insert a space where necessary, remove extra spaces
from the sequence, and will return the noise-free text with the
minimum required spaces.

1) Features for Spelling Correction Model: For modeling
the spelling correction task, the “character” was considered
as the basic text unit (like Chinese), and Pashto text was
formalized as a series of characters and intervals as shown
in Eq 1.

C1I.C2I.C3I...ICn for Iϵ{J, S} (1)

where C means a character, and I means an interval between
the two characters, where the interval can be a space or ”none”.
Each character in the dataset was assigned with one of the
two tags: an “S” if the character is followed by a space or
a “J” otherwise, where ”J” stands for “Joined”. Features for
training the spelling correction model are the target character
itself and n-grams of characters before and after the target
character, based on which the CRF algorithm predicts whether
the character is followed by a space or not. A summary of the
features for the spelling correction model is as follows:

• The target character C

• Check if C is the first character in the sentence, last
on neither

• n-grams of characters before and after C, where the
value of n ranges between 1 and 4

2) Experimental Results: For the experiment, we used the
sklearn-crfsuite library in Python. Hyper-parameters were
tweaked for optimal results, where both c1 and c2 were set
to 0.1, representing L1 and L2 regularization, respectively.
The L-BFGS method was selected as the training algorithm.
The dataset of labeled characters was converted into a CRF-
friendly dataset of features. 80% of the dataset was used for
training, and the remaining portion was used to test the model.

The spelling correction model achieved an F1-score of
99.16% with an accuracy of 99.35%. The contribution of
different pairs of n-grams and their combined effect is given in
Table II. The model performed its best for n-gram in the rage
between 1 and 4, which is very logical considering the average
token length of 3.6 characters. By utilizing 4-grams before and
after the target character, the model captures information from
a total of 9 characters. Overall the model’s performance is
quite satisfactory, making it useful in practical applications.

TABLE II. CONTRIBUTION OF THE PREVIOUS AND NEXT N-GRAMS AND THEIR
COMBINED EFFECT IN MODEL’S PERFORMANCE, IN TERMS OF F1-SCORE (%)

n-grams Previous Next Combined
1 82.42 88.18 91.22
2 88.25 93.78 96.99
3 92.86 96.61 98.87
4 94.61 97.44 99.16
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B. Word Segmenter

Similar to the spelling correction model, the word seg-
menter is also a sequence tagging model based on the CRF
algorithm. However, the word segmenter considers the token-
level information instead of character-level information. A
token is the basic unit for feature extraction, which can be
the character in Chinese [31] and Javanese [34], syllable in
Burmese [38], or character cluster (KCC) in Khmer [39].
In the proposed Pashto word segmenter, a token is a space-
delimited “string” of characters, which can be a single char-
acter, such as د (of), or a string of any arbitrary length like
افغانستان (Afghanistan), which has nine characters.

1) Features for Word Segmenter: For modeling the word
segmentation task, the token was considered as the basic unit,
and Pashto text was formalized as a series of tokens and
intervals as shown in Eq. 2.

T1I.T2I.T3I...ITn for Tϵ{S,B} (2)

where T means a token, and I means Interval (or space)
between two tokens. The space can be a word-delimiter
or a separator between two ligatures of a compound word.
All the tokens in the dataset were assigned one of the two
tags, an “S” if the token is followed by a ”simple” space
or a “B” if the token is followed by a word-breaker (word
boundary). Pashto is a language with a rich morphology,
and words are inflected to express various grammatical and
syntactic information. These inflections are mostly exhibited
in the form of prefixes and suffixes of the words, which are
very informative and, in most cases, enough for locating the
word boundary. The features for the word segmenter include
these morphological attributes and context information of the
token. Following is the list of features, finalized after trial and
error:

• The token

• Length of the token

• One and two characters prefixes and suffixes of the
token

• All the above features for previous and next token

• Three-characters prefix and suffix of the token

• Is token first in the sentence, last or neither

• Is token numeric

• Previous and next tokens up to two places

2) Experimental Results: The contribution of various fea-
tures and their combined effect on the model’s performance is
presented in Table III. The results show that without context
information (Previous and Next tokens), the model achieves
an F1-score of 79.87%. However, combining the features
of surrounding tokens increases the F1-score to 96.81%. It
demonstrates the model’s ability to predict the boundary of
the word, even if it has not been encountered before, thereby
overcoming OOV errors that occur in the baseline lexicon-
based segmentation approach.

C. Part-of-Speech Tagger
Similar to the previous two models, the POS tagger is also

modeled as a sequence tagger based on the CRF algorithm.
However, the dataset for the POS tagger has 10K sentences,
which is comparatively smaller. Unlike the lexicon-based
word segmenter, the lexicon-based POS tagger yields a very
high error rate (around 5%), leads to a laborious and time-
consuming manual correction phase. To extend the size of the
dataset with reasonable speed, we adapted an iterative approach
where the model training and dataset development were carried
out in parallel in several rounds, as shown in Fig. 4.

In the first round, we used the POS dataset of 10K sen-
tences to train the initial prototype of the model. This model
was then used to annotate another chunk of 10K sentences,
followed by a manual correction phase add then added to
the dataset. This process was repeated for several rounds,
where each round has basically two phases, an automatic POS
assignment, and manual correction. In each round, the amount
of training data was increased by an amount of 10K sentences,
and consequently, the accuracy of the model increased as well.
With the reduction in the error-rate of the model, the burden on
human annotators reduced as well, and the manual correction
phase became less time-consuming.

1) Tagset: A Tagset is a list of POS labels/tags used to
indicate the part-of-speech of each word in a text corpus. In
this study, we used the tagset proposed in [40], which follows
the naming convention similar to the Penn Treebank [41]
that is one of the commonly adopted conventions by various
corpora. Our tagset has a total of 38 tags, which is very concise
and pragmatic and enough to encompass all the words. The
disagreement of the researchers is respected, and a non-tagged
version of the corpus is also included in the toolkit, which can
be tagged using any preferred tagset.

2) Features for Part-of-Speech Tagger: The contexts used
to predict the POS tag in Pashto are roughly similar to that
used for English. These are the surrounding words and word
components. Pashto has a similar or maybe richer morphology
than English, where words are enriched by various affixes that

TABLE III. CONTRIBUTION OF VARIOUS FEATURE SETS AND THEIR COMBINED
EFFECT ON MODEL’S PERFORMANCE

Feature set Accuracy (%) F1-score (%)
Token 98.12 79.87
Previous 98.31 81.24
Next 98.61 86.34
Combined 99.65 96.81

POS Dataset
Features
Extraction

EvaluationManual
Correction

ML-based
POS Tagging

Figure 4. Iterative training of the POS tagger.
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Figure 5. Improvement in performance of the POS tagger with the
increasing dataset size. Lx.B represents the lexicon-based segmentation.

can be exploited for feature extraction. For training the POS
tagger, we considered the same features as the word segmenter
model, which are the morphological components of the token
and the neighboring tokens.

3) Experimental Results: For the implementation and train-
ing of the POS tagger, we followed the same experimen-
tal setup as the previous two models, including the hyper-
parameters and ratio of the dataset train and test splits. How-
ever, we trained the POS tagger in several rounds, starting from
a dataset of 10K sentences and gradually increasing the dataset
size until the model achieved significant performance. The
model’s performance was evaluated after each round, as plotted
in the graph in Fig. 5. In the first round, the model secured
an accuracy of 97.2% with an F1-score of 91.0%, which was
an improvement of 4.2% in terms of accuracy in comparison
to the baseline lexicon-based approach, which achieves an
accuracy of 93.0%. After six rounds of training, the dataset
size reached 60K sentences (nearly 1.5 million words), and
consequently, the accuracy of the model reached 99.2% with
an F1-score of 97.5%. This performance is significantly better
than the baseline.

D. Offensive Language Detection Model

The model for Offensive language detection is based on
the transfer learning approach. Conventional machine learning
generally involves training a model from scratch using a large
dataset, whereas transfer learning uses a pre-trained model as a
starting point to solve a new task, called fine-tuning. The pre-
trained model we fine-tuned is our Pashto BERT model, which
is pre-trained on a generic text corpus; where the purpose
of fine-tuning is to adapt it to the specific task of offensive
language detection by fine-tuning its parameters on the labeled
dataset, POLD.

To our knowledge, no previous research work is available
on Pashto offensive language detection. Hence, for the evalua-
tion, we also fine-tuned a multilingual language model, XLM-
R [24]. Several other multilingual models are also available,

TABLE IV. PARAMETERS FOR FINE-TUNING THE TRANSFORMER MODELS

Parameters XLM-R Ps-BERT
Learning Rate 2e-5 5e-5
Batch Size 16 16
Sequence Length 100 100
β1, β2 (0.9, 0.999) (0.9, 0.999)

though most of these are missing Pashto, while XLM-R can
understand text in 100 languages, including Pashto. Be-
sides transfer learning, we also investigated the classic neural
network-based models, such as CNNs and various types of
RNNs, using the static word embeddings, Word2Vec, GloVe,
and fastText as features.

1) Fine-tuning BERT models: Fine-tuning a BERT model
involves adding a classification layer on top of the model and
training it on a specific dataset. For sequence classification,
BERT takes the final hidden state of the classification token,
identified by [CLS], as the representation of the whole se-
quence of text. We fine-tuned both the multilingual XLM-
R and monolingual Pashto BERT on the task-specific POLD
dataset. We tokenized the tweets and added special tokens
[CLS] and [SEP] to mark the beginning and end of the
sequence, respectively. However, the tokenizers used by the
XLM-R and vanilla BERT are different, where XLM-R uses
SentencePiece [42] tokenizer, while BERT expects the text to
be tokenized by the WordPiece tokenizer. We implemented
the models in PyTorch and Huggingface transformers library
and used a GPU-facilitated Kaggle platform to conduct the
experiments. We used the hyper-parameters given in Table IV
and trained each model for 3 epochs.

2) Neural Network-based Models: As the baseline classi-
fiers, we examined the performance of five neural networks, the
CNNs, and four types of RNNs (LSTM, Bi-LSTM, GRU, and
Bi-GRU), across three types of word embeddings: Word2Vec,
fastText, and GloVe, as features. The primary components
of our neural network models are the embedding layer, hidden
layer, and output layer. The Embedding layer is the first hidden
layer, which is a matrix of size pq, where p is the vocabulary
size, and q is the sequence length, fixed at 64 tokens. To
prevent overfitting, We used a dropout of 0.2. The output layer
employs the Sigmoid activation function and Adam optimizer
and uses cross-entropy loss to predict the tweet’s category.

Besides the upper-mentioned common components, each
model has its own adaptation and hyper-parameters setup. For
CNNs, we constructed a 1D convolutional layer with 100 filters
and a kernel size of 4. The next layer is max-pooling, followed
by a dropout layer, and finally the output layer. The LSTM
model has one LSTM layer with 100 units and a dropout layer,
followed by a classification layer. The same architecture is
used for the GRU model also, with the LSTM layer replaced
by GRU. To build the Bidirectional LSTM, we construct one
Bi-LSTM layer with 100 hidden units. The output vectors are
flattened and fed to the classification layer. The Bi-GRU is
using the same configuration of Bi-LSTM, except for the first
layer which is replaced by the Bi-GRU. We used the batch size
of 32 and trained each model for 5 epochs.

3) Experimental Results: We performed a series of exper-
iments investigating various models for the task of Pashto
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TABLE V. COMPARISON OF ALL THE MODELS FOR OFFENSIVE LANGUAGE
DETECTION

Model Accuracy (%) F1-score (%)
Features Classifier

Word2Vec

BiGRU 92.33 91.50
BiLSTM 92.85 92.09
CNN 90.29 89.08
GRU 92.94 92.18
LSTM 93.23 92.52

GloVe

BiGRU 93.40 92.74
BiLSTM 93.40 92.76
CNN 92.97 92.24
GRU 93.43 92.75
LSTM 93.40 92.78

fastText

BiGRU 93.46 92.82
BiLSTM 93.49 92.81
CNN 92.24 91.44
GRU 93.49 92.82
LSTM 93.72 93.08

XLM-R 94.48 94.01
Ps-BERT 94.77 94.34

offensive language detection. A performance evaluation is
presented in Table V. The results exhibit that the transformer
models achieve comparatively better performance than the
classic neural networks. Among all the models we examined,
the fine-tuned monolingual Pashto BERT demonstrates the best
performance which yields an F1-score of 94.34% with an
accuracy of 94.77%. The XLM-R performed poorly compared
to the Pashto BERT, yet better than the neural networks. Con-
cerning the neural network models, the results indicate that the
RNNs performed better than CNNs, where the LSTM classifier
with fastText embeddings outperforms the other models and
achieve an F1-score of 93.08% with an accuracy of 93.72%.
In bidirectional RNNs, BiGRU performs the best with fastText
features and achieves an F1-score of 92.82% with an accuracy
of 93.46%. On the downside, the CNN model with Word2Vec
embeddings exhibits the lowest performance.

E. Comparison of Static Word Embeddings

Fig. 6 illustrates the performance comparison of the static
word embeddings, using the LSTM classifier. The results show
that the fastText achieves the highest F1-score of 93.08% with
an accuracy of 93.72%. One reason is that the fastText model
uses sub-word tokenization, which is particularly useful for
the task of offensive language detection, as the OSN users
commonly write half words instead of the full form, or use
alteration. For example, on English social media, words like
“f*ck, “b!tch”, “c#ck”, etc., are commonly used, where the
same convention is used in Pashto also. This way of writing
often leads to OOV errors in Word2Vec and GloVe, while in
fastText, if a word is not present in the vocabulary the sub-
words might be, which is useful in obtaining representations
for altered, misspelled, or half-words.

VII. CONCLUSIONS

Pashto is a low-resource language and lakes the basic
tools and resources required for NLP. This study aimed to
develop SOTA models, benchmark datasets, and other prelim-
inary resources necessary for the research in Pashto NLP. To
facilitate the reuse of our findings, we packaged everything

in a toolkit called NLPashto and distributed it publicly on
GitHub1 and PyPi2 hub. The initial prototype of NLPashto
consists of three general-purpose models for basic text pre-
processing, a spelling correction model, a word segmenter
and a POS tagger, and a special-purpose model for detecting
offensive language (particularly on social media). Additionally,
the toolkit includes three pre-trained static word embeddings:
Word2Vec, fastText, and GloVe, as well as a pre-trained
monolingual Pashto BERT for dynamic word embeddings. All
the SOTA AI models we developed are based on the supervised
learning approach, trained on labeled datasets. The toolkit
also includes the benchmark datasets we developed for training
and evaluating the models. The evaluation results show that
our Pashto BERT model outperforms the multilingual XLM-R,
even though the corpus used for training the Pashto BERT is
much smaller in comparison to the XLM-R corpus. Similarly,
all the other models included in the NLPashto toolkit perform
quite satisfactorily on their respective tasks and can be used
in practical applications. In summary, this is a pioneering
study on Pashto NLP, and we hope that our findings and the
resources and tools we developed will facilitate and speed up
future research in this domain.

Toolkit development is an ongoing process, and we are
continuously working to add more modules in the upcoming
prototypes of NLPashto, such as NER and Constituency and
Dependency Parsing. Apart from that, there are several
research areas yet to be explored in Pashto NLP, such as
stemming, lemmatization, machine translation, text-to-speech,
and speech-to-text.
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