
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

183 | P a g e

www.ijacsa.thesai.org

Software Cost Estimation using Stacked Ensemble

Classifier and Feature Selection

Mustafa Hammad

Department of Software Engineering

Mutah University

Al-Karak, Jordan

Abstract—Predicting the cost of the development effort is

essential for successful projects. This helps software project

managers to allocate resources, and determine budget or delivery

date. This paper evaluates a set of machine learning algorithms

and techniques in predicting the development cost of software

projects. A feature selection algorithm is utilized to enhance the

accuracy of the prediction process. A set of evaluations are

presented based on basic classifiers and stacked ensemble

classifiers with and without the feature selection approach. The

evaluation study uses a dataset from 76 university students'

software projects. Results show that using a stacked ensemble

classifier and feature selection technique can increase the

accuracy of software cost prediction models.

Keywords—Software project management; effort estimation;

prediction model; machine learning

I. INTRODUCTION

The process of developing software has evolved into a
fundamental function of modern society as a result of the quick
development of software in our days. However, a crucial step
in the lifecycle of software development is software effort
estimation. The goal of a software development task is to
deliver the product on time and within budget. The planning
process for any software project must therefore include early
software cost estimation.

Predicting the amount of work required to create a software
system is a part of software effort estimation. It is expressed in
terms of the number of working hours or the number of hours
needed to construct the software. Software testing,
maintenance, requirements engineering, and other software
operations are all included in the broad category of software
effort estimation.

To produce software projects, various software
development lifecycle models call for varying amounts of work
at each stage. Software effort estimation is regarded as one of
the most significant problems in software engineering. It
affects the cost of the project and is a problem that many
engineers and project managers encounter. A major issue that
could harm software companies is the accuracy of the
development effort estimation.

Several scholars as [1] have suggested various models to
predict the effort of software development. Several researches
have been done to determine the early software effort estimate
to determine the significance [2]. Software companies need to

understand the work required to develop projects in addition to
how they should proceed about accomplishing this.

In this paper, the software work is estimated based on
project attributes using four machine learning techniques. This
study's primary objective is to assess software effort estimation
models created using machine learning techniques.

Before deciding to use a software component as a reusable
asset, software engineers must analyze the software
component. Assessing reuse potentials can be aided by
predicting successful reuse. Datasets are used to train and test
predictive models. Datasets, however, occasionally include
attributes that are not useful. The performance of the model
may suffer as a result of these characteristics. Therefore,
choosing the key attributes improves the performance of the
model and yields a more accurate output.

In this paper, an empirical study utilized a dataset to
investigate and extract the essential features that lead to a
successful reuse experience. Usually, the performance of a
prediction model can be improved with an ideal subset of
useful features. Feature selection algorithm selects a portion of
the original dataset's most useful qualities. This subset can
improve the prediction model's effectiveness and efficiency.
Additionally, it avoids data overfitting. In this paper, six
feature selection algorithms were utilized and evaluated to
enhance accuracy. These algorithms are; Classifier Attribute
Evaluation, Correlation Attribute Evaluation, InfoGain Subset
Evaluation, Wrapper Subset Evaluation, Classifier Subset
Evaluation, and CfsSubset Evaluation.

There are many benefits of using feature selection
techniques. For instance, it reduces the training time, helps
visualize the data, and optimizes the storage requirements. In
this paper, the primary purpose of using feature selection
techniques is to improve the prediction model's performance by
removing the irrelevant attributes [3].

The organization of this paper is as follows; the next
section discusses the literature that concerning software effort
prediction. The proposed evaluation model is presented in
Section III followed by a brief description about the used
dataset in the evaluation process. The experimental results are
presented in Section V. Finally, Section VI concludes the paper
and highlights the future work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

184 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

Many approaches have been presented in the literature
about estimating the development’s efforts of software
projects. Most of these approaches utilize the machine learning
and artificial intelligence techniques to predict the effort.

Rankovic et al. [4] proposed two different architectures of
Artificial Neural Networks (ANN) for predicting software
effort. They used exponent-scale factors, cost factors, and
software size as control variables from COCOMO models.
BaniMustafa [5] predicted the effort estimation by applying
machine learning techniques and data mining. He applied
Naïve Bayes, Logistic Regression and Random Forests. Priya
Varshini et al. [6] proposed stacking using random forest for
effort estimation. They used ensemble techniques to create and
combine multiple models termed base-level classifiers. The
works in [7, 8] applied Artificial Neural Network (ANN),
Support Vector Machines (SVM), K-star, and Linear
Regression to estimate software effort based on project
features. Mahdie et al. [9] provided a detailed review about the
application of Machine Learning in software project
management which includes effort estimation. Another
systematic performance evaluation study for software effort
estimation accuracy prediction of ML techniques is presented
in [2].

A different prediction technique has been presented by
Nassif et al. [10]. They proposed an approach called
regression fuzzy logic that is based on fuzzy logic models and
regression analysis. Also, Fadhil et al, [11] used swarm
intelligence techniques from the AI field. They applied two
models based on dolphin algorithm and the hybrid dolphin and
bat algorithm.

Rai et al. [12] proposed a hybrid model, based on team size
using Support Vector Regression (SVR) and constructive cost
model (COCOMO) approaches. Van Hai et al. [13] proposed a
model called effort estimation using machine learning applied
to the clusters (EEAC). The goal of the model is to evaluate
the influence of data clustering on software development effort
estimation.

III. PROPOSED SOFTWARE COST PREDICTION MODEL

This work proposes an evaluation framework to evaluate
the effectiveness of using basic machine learning and ensemble
classifiers, as well as, feature selection algorithms to build a
software cost estimation model. Fig. 1 depicts the proposed
prediction framework. As shown in Fig. 1, the first prediction
model is set with the basic standalone machine learning
algorithms, while the second model is built using the stacked
ensemble approach. Both models are evaluated using the full
dataset and with a set of the selected features. The purpose of
introducing feature selection to the proposed prediction models
is to extract the most relevant features from the dataset. Since,
the redundant and irrelevant features increase the data
dimensionality without adding new information to the dataset.
This could negatively affect the performance of the prediction
models.

Fig. 1. The proposed software cost prediction framework.

Four machine learning algorithms were applied in the
prediction process. These ML algorithms are:

 The Artificial Neural Networks (ANN): ANN system
considers unsupervised learning as one of the training
algorithms in a command to build an unlabeled data
[14]. It consists of an input layer, hidden layers, and an
output layer.

 K-Star: K-star is a machine learning algorithm that uses
the entropic distance from the information theory to
measure the similarities among the data elements and
cases. [15].

 Support Vector Machine (SVM): SVM uses Sequential
Minimal Optimization (SMO) algorithm, which
transfers all nominal attributes and null values into
binary ones. Then, the algorithms try to identify a
margin that divides the data into different classes [16].

 Random Forest (RF): RF works by building multiple
decision trees and then combining their results to make
predictions. Each tree is trained on a randomly selected
subset of the training data and a randomly selected
subset of the features. By doing this, the algorithm can
reduce errors and improve accuracy. To make a
prediction, the algorithm takes in a set of features and
passes them down each of the decision trees in the
forest. Then it combines the results of all the trees to
arrive at a final prediction [17].

Fig. 2. The proposed ensemble stacked cost prediction classifier.

Ensemble learning is a method that combines more than
one learning classifiers. Combining machine learning
classifiers is primarily done to reduce risks and errors
associated with employing a single classifier [18].
Additionally, ensemble learning enhances prediction

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

185 | P a g e

www.ijacsa.thesai.org

performance by balancing out the shortcomings of a single
classifier. Additionally, issues with training the classifier may
arise due to the size of the dataset. For instance, using a single
classifier on a sizable dataset is impracticable. The dataset
should therefore be divided into subgroups, with each subset
being used to train a different classifier. Additionally, ensemble
learning might be able to alleviate issues brought about by
utilizing a tiny dataset [19]. In ensemble learning, different
classifiers can be added using Stacking, Bagging, and Voting
approaches. In this paper, stacking ensemble approach is used
to build different software cost prediction model.

Stacking ensemble classifier is one of the most used
approach in ensemble learning to combines multiple
classification algorithms. Fig. 2 shows the basic levels of the
used stacking ensemble classifiers. The learning process of
stacking learning consists of two levels. The first level
combines different machine learning classifiers
* () +, which are called base classifiers. Each
base classifier utilizes the training set ƒ. In the second learning
level, which is the meta-learning process, a single machine
learning classifier µ uses the outputs on the base classifiers as
an input to generate the ensemble learning final prediction [20],
Therefore:

 () () (1)

where () is the final stacking prediction of the input
s. As shown in Fig. 2, the used four basic ML classifiers are
combined in the first learning level of the proposed ensemble
classifier. For the meta learning level, each basic ML classifier
is used as based meta-learner classifier to create different
stacked ensemble prediction model. The goal is to evaluate all
possible combinations of these basic ML classifiers. As a
results, the generated ensemble classifiers are:

 ANN-based Stacked classifier

 K-star-based Stacked classifier

 SVM-based Stacked classifier

 RF-based Stacked classifier

All previous basic and ensemble software cost prediction
models are evaluated using the full features of software
projects, as well as, a set of selected features. In this paper the
wrapper method algorithm is used by applying the Classifier
Subset Evaluation (CSE) technique [21].

CSE approach is a popular feature selection technique that
evaluates the performance of a specific classifier for each
subset of features. Fig. 3 shows the basic steps for the used
CSE approach. It starts by creating all possible subsets of
software features. Then, randomly select a set of features to
evaluate it using the target software cost prediction model. This
process is repeated until achieving the optimal accuracy for this
model. Once the best feature subset is recognized, it is used for
the final model training process.

Fig. 3. The used wrapper CSE feature selection approach.

IV. USED DATASET

Due to the lack of software expense data, gathering public
software effort data is a difficult undertaking. This is owing to
the fact that software companies generally keep software
cost data private. Usp05-tf, a publicly accessible dataset for
empirical software engineering data, is made available online
through the promise online repository
(http://tunedit.org/repo/PROMISE/EffortPrediction), which
was used in this study. Data from 76 university students'
software projects are included in this dataset. Every project has
13 attributes. A list of these attributes is shown in Table I.

TABLE I. THE 13 ATTRIBUTES OF THE STUDIED PROJECTS

Project

attributes
Description Values

1 IntComplx
The complexity of the

internal project calculations
1 (lowest) to 5 (highest)

2 DataFile
Total number of accessed
data files

Positive integer

3 DataEn
The number of entry data

items
Positive integer

4 DataOut
The number of output data

items
Positive integer

5 Lang
The used programming

language
C++, Java, HTML, etc.

6 UFP
Unadjusted Function Point

Count
Positive integer

7 Tools
The used platforms and
tools

VJ++, Delphi, Junit, etc

8 ToolExpr
The experience level of the
developer team

Range of number of
months, e.g. [3, 7]

9 AppExpr
The applications experience
level

1(lowest) to 5 (highest)

10 DBMS The used database system
SQLServer, Oracle,
MySQL, etc.

11 TeamSize
The size of the developer

team

Range of min-max

number of developers,
e.g. [3, 6]

12 AppType
The used system

architecture
B/S, C/S, Centered, etc.

13 Effort

The actual effort (in hours)

expended on

implementation tasks by all
participating developers

Positive float

The features listed in Table I are not all numerical. This is
crucial to verifying the machine learning approach's capacity
for learning. The historical data is utilized as a learning tool to
anticipate the work required for future software systems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

186 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTAL RESULTS

The evaluation criteria and the results of the experiments
are discussed in the following two sections.

A. Evaluation Criteria

In order to assess the performance of the prediction
algorithms, five statistical criteria were used. The following is
a description of these criteria:

 Statistics Kappa (KS)

 Mean Absolute Error (MAE)

 Root Mean Square (RMSE)

 Error in Relative Absolute (RAE)

 Root Relative Squared Error (RRSE)

Statistics Kappa (KS) is the degree of agreement between
the classifier's output and the actual classification is measured
by KS. KS values vary from 0 to 1. The closer to 1 KS gets, the
better. The following equation is used to compute KS:

KS = PA − PC / (1 − PC)

where PC is the percentage of agreement by chance and PA
is the percentage of actual agreement.

Mean Absolute Error (MAE) calculates how well the actual
classification matches the anticipated classification. The value
of MAE is calculated using the formula below:

 ∑| |

where n = 1 through m, m is the total number of instances,
an is the actual reuse output, and a`n is the predicated reuse
output. The performance of the prediction model is good if the
MAE value is low.

Root Mean Square (RMSE) is difference between data that
was expected and actual data is measured by the quadratic
mean known as RMSE. The accuracy of the model is inversely
correlated with the RMSE. High precision is indicated by a low
RMSE score. The error value can be calculated using the
formula below:

 √

 ∑()

When n ranges from 1 to m, an represents the observed
values, and a`n represents the anticipated values.

Error in Relative Absolute (RAE) is calculated by dividing
the total absolute error by the total absolute error of the trivial
model, RAE normalizes the total absolute error. RAE is
obtained by the following equation:

 ∑ | |
 / ∑ | |

where an is the predicted value, a`n is the target value, a``n is
the mean of an, m is the number of instances, and n = 1 through
m.

Root Relative Squared Error (RRSE) is calculated by
dividing the total relative error of the naive model by the
square root of the total relative error. Equation used to
calculate RRSE is as follows:

 √ ∑()

∑()

where an is the predicted value, a`n is the target value, a``n is
the mean of an, m is the number of instances, and n =
{1,2,...,m}.

B. Experimental Results

The experiments were conducted using WEKA 3, a
machine learning software platform written in Java
(https://www.cs.waikato.ac.nz/ml/weka/). The ten folds cross-
validation training technique was used to evaluate all software
cost prediction models. In this technique, the training and
testing the prediction models is repeated in iterations.
Moreover, the dataset is divided equally into ten subsets called
folds. In each iteration, the prediction model uses nine folds for
training and one-fold for testing. This process is ended when
the classifier tests all the dataset.

Table II shows the selected features of software projects
after applying the feature selection approach for each base
classifier. Number of the selected feature for K-star, RF, ANN,
and SVM are 10, 5, 9, 13 respectively. The smallest number of
selected features was produced with the RF classifier while the
biggest number happed with SVM classifier.

TABLE II. THE SELECTED FEATURES FOR EACH CLASSIFIER

Classifier Selected Features

K-star
ID, IntComplx, DataFile, DataEn, DataOut, UFP, Lang,

ToolExpr, AppExpr, TeamSize

RF ID, IntComplx, DataOut, Tools, TeamSize

ANN
ID, IntComplx, UFP, Lang, Tools, ToolExpr, AppExpr,
TeamSize, Method

SVM

ID, IntComplx, DataFile, DataEn, DataOut, UFP, Lang,

Tools, ToolExpr, AppExpr, TeamSize, DBMS,

AppType

Table III presents the selected features of software projects
using the feature selection approach for each stacking
classifier. As shown in the table, the feature selection approach
is more effective in reducing number of selected features
needed to learn the stacking classifier than basic classifier. This
can be helpful to software project engineers. It can point out a
smaller set of key project features which can impact on the
project’s cost. In this study, number of the selected feature for
stacking based K-star, RF, Stacking based ANN, and Stacking
based SVM classifiers are 5, 6, 5, 9 respectively.

Fig. 4 shows the MAE values for the four basic classifiers
in the used dataset before and after using the feature selection
approach. As shown in the figure, the value of MAE is reduced
when using the feature selection algorithm. The lowest MAE is
obtained when using the RF classifier, were the MAE is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

187 | P a g e

www.ijacsa.thesai.org

reduced from 2.5025 to 2.3154 after applying the RF on the
selected feature instead of using the full features.

TABLE III. THE SELECTED FEATURES FOR EACH STACKING CLASSIFIER

Stacking classifier Selected Features

Stacking based K-star DataFile, DataOut, Lang, TeamSize, AppType,

RF
IntComplx, DataEn, DataOut, ToolExpr,

TeamSize, Method

Stacking based ANN IntComplx, DataEn, UFP, Lang, TeamSize

Stacking based SVM
ID, IntComplx, DataFile, DataOut, Lang,
ToolExpr, TeamSize, Method, AppType

Fig. 4. MAE values before and after using feature selection.

Fig. 5 shows the values of RMSE for the four classifier on
the full features and on the selected features. Same as MAE
values, the RMSE values were reduced after selecting a subset
of the software projects’ features. The lowest RMSE value is
produced when using RF classifier. For RF classifier the
RMSE value was 4.8546 and 4.4979 with and without the
feature selection algorithm respectively.

Fig. 5. RMSE values before and after using feature selection.

From pervious results, we can conclude the using the
feature selection approach can increase the accuracy of
software cost prediction model. Moreover, to evaluate other
criteria, Table IV presents the KS, RAE, and RRSE evaluations
before and after using feature selection method for the four
classifiers. As shown in the table, RF is the best classifier
among all others with highest KS and lower RAE and RRSE.
However, feature selection approach is able to enhance the
performance of all classifiers for all evaluation criteria.

TABLE IV. KS, RAE, AND RRSE EVALUATION RESULTS BEFORE AND

AFTER USING FEATURE SELECTION

KS–

Full

features

KS–

selected

features

RAE –

Full

features

RAE –

Selected

features

RRSE–

Full

features

RRSE–

Selected

features

SVM 0.7504 0.8098
44.3547
%

43.6098
%

64.6744
%

63.5698
%

ANN 0.7981 0.8098
48.8383

%

46.9337

%

64.6744

%

63.5698

%

RF 0.8441 0.8826
41.7323
%

38.6118
%

55.6778
%

51.5873
%

K-

star
0.7797 0.7823

45.4795

%

44.0878

%

69.0658

%

67.9704

%

The second part of this experiment is set to evaluate the
effectiveness of using stacked classifier on predicting the
software cost. Fig. 6 and 7 show the MAE and RMSE
evaluation values for the four possible combinations of stacked
classifiers over the full features and the selected features.
Stacked classifier with SVM is based classifier has the lowest
MAE and RMSE with values of 2.4391 and 4.3705
respectively. After applying the feature selection approach, the
MAE and RMSE values were reduced to 2.1801 and 4.0779
respectively. On the other hand, the ANN based stacked
classifier has the highest MAE and RMSE values with 4.6594
and 8.1786 respectively.

Fig. 6. MAE evaluation of stacked classifiers for full and selected features.

0 0.5 1 1.5 2 2.5 3 3.5

K-star

RF

ANN

SVM

Selected Features Full Features

0 1 2 3 4 5 6 7

K-star

RF

ANN

SVM

Selected Features Full Features

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

K-star based

Stacked classifer

RF based

Stacked classifer

ANN based

Stacked classifer

SVM based

Stacked classifer

Full Features Selected Features

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

188 | P a g e

www.ijacsa.thesai.org

Results in Fig. 6 and 7 show that the using the feature
selection approach can increase the accuracy of software cost
prediction model based on stacked classifier. Moreover, to
evaluate other criteria, Table V presents the KS, RAE, and
RRSE evaluations before and after using feature selection
method for the four stacked classifiers. As shown in the table,
the stacked based RF classifier is the best classifier among all
others with highest KS and lower RAE and RRSE. Moreover,
feature selection approach is able to enhance the performance
of all stacked classifiers for all evaluation criteria.

Fig. 7. MAE evaluation of stacked classifiers for full and selected features.

TABLE V. KS, RAE, AND RRSE EVALUATIONS BEFORE AND AFTER

USING FEATURE SELECTION

KS –

Full

feature

s

KS–

selecte

d

feature

s

RAE –

Full

feature

s

RAE –

Selecte

d

feature

s

RRSE–

Full

feature

s

RRSE–

Selecte

d

feature

s

Stacke

d based

SVM

0.7504 0.8098
44.3547

%

43.6098

%

64.6744

%

63.5698

%

Stacke

d based

ANN

0.5168 0.5506
77.7009

%

80.4054

%

64.6744

%

63.5698

%

Stacke

d based

RF

0.8441 0.8826
41.7323

%

38.6118

%

55.6778

%

51.5873

%

Stacke

d based

K-star

0.6635 0.7823
50.559

%

40.8892

%

75.5606

%

62.1436

%

VI. CONCLUSIONS AND FUTURE WORK

An evaluation model has been presented for effort
estimation. The model utilizes a set of machine learning
algorithms and techniques to predict the effort. The model was
evaluated using basic standalone machine learning algorithms
and using the stacked ensemble ML approach. The evaluation
is done on full features and a set of selected features that have
been previously extracted using feature selection technique.
Results showed that a stacked ensemble classifier with feature

selection technique achieved higher accuracy for software cost
prediction. Our future work aims to expand the evaluation
process by including deep learning techniques. Another issue
under investigation is the utilization of more project attributes
to enhance the prediction results.

REFERENCES

[1] Przemyslaw Pospieszny, Beata Czarnacka-Chrobot, Andrzej Kobylinski,
(2018) An effective approach for software project effort and duration
estimation with machine learning algorithms, Journal of Systems and
Software, vol. 137, 2018, pp. 184-196.

[2] Mahmood, Y., Kama, N., Azmi, A., Khan, A.S. and Ali, M., 2022.
Software effort estimation accuracy prediction of machine learning
techniques: A systematic performance evaluation. Software: Practice
and experience, 52(1), pp.39-65.

[3] X. Deng, ―An improved method to construct basic probability
assignment based on the confusion matrix for classification problem,‖
Information Sciences 340, 2016.

[4] Rankovic, N., Rankovic, D., Ivanovic, M. and Lazic, L., 2021. A new
approach to software effort estimation using different artificial neural
network architectures and Taguchi orthogonal arrays. IEEE Access, 9,
pp.26926-26936.

[5] BaniMustafa, A., 2018, July. Predicting software effort estimation using
machine learning techniques. In 2018 8th International Conference on
Computer Science and Information Technology (CSIT) (pp. 249-256).

[6] AG, Priya Varshini, and Vijayakumar Varadarajan. "Estimating software
development efforts using a random forest-based stacked ensemble
approach." Electronics 10, no. 10 (2021): 1195.

[7] Hammad, M. and Alqaddoumi, A., 2018, November. Features-level
software effort estimation using machine learning algorithms. In 2018
International Conference on Innovation and Intelligence for Informatics,
Computing, and Technologies (3ICT) (pp. 1-3).

[8] M. M. Al Asheeri and M. Hammad, "Machine Learning Models for
Software Cost Estimation," 2019 International Conference on Innovation
and Intelligence for Informatics, Computing, and Technologies (3ICT),
Sakhier, Bahrain, 2019, pp. 1-6, doi: 10.1109/3ICT.2019.8910327

[9] Mahdi, M.N., Mohamed Zabil, M.H., Ahmad, A.R., Ismail, R., Yusoff,
Y., Cheng, L.K., Azmi, M.S.B.M., Natiq, H. and Happala Naidu, H.,
2021. Software project management using machine learning technique—
A Review. Applied Sciences, 11(11), p.5183.

[10] Nassif, A.B., Azzeh, M., Idri, A. and Abran, A., 2019. Software
development effort estimation using regression fuzzy
models. Computational intelligence and neuroscience, 2019.

[11] Fadhil, A.A., Alsarraj, R.G. and Altaie, A.M., 2020. Software cost
estimation based on dolphin algorithm. IEEE Access, 8, pp.75279-
75287.

[12] Rai, P., Verma, D.K. and Kumar, S., 2021. A hybrid model for
prediction of software effort based on team size. IET Software, 15(6),
pp.365-375.

[13] Van Hai, V., Nhung, H.L.T.K., Prokopova, Z., Silhavy, R. and Silhavy,
P., 2022. Toward Improving the Efficiency of Software Development
Effort Estimation via Clustering Analysis. IEEE Access, 10, pp.83249-
83264.

[14] Dike, H.U., Zhou, Y., Deveerasetty, K.K. and Wu, Q., 2018, October.
Unsupervised learning based on artificial neural network: A review.
In 2018 IEEE International Conference on Cyborg and Bionic Systems
(CBS) (pp. 322-327).

[15] Cleary, J.G.; Trigg, L.E. K*: An instance-based learner using an
entropic distance measure. In Proceedings of the 12th International
Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July
1995; pp. 108–114

[16] Jan Luts, Fabian Ojeda, Raf Van de Plas, Bart De Moor,Sabine Van
Huffel, and Johan AK Suykens (2010). A tutorialon support vector
machine-based methods for classifica-tion problems in chemometrics.
Analytica Chimica Acta,665(2):129–145.

[17] Breiman, L., 2001. Random forests. Machine learning, 45, pp.5-32.

0

1

2

3

4

5

6

7

8

9

Stacked

classifer based
K-star

Stacked

classifer based
RF

Stacked

classifer based
ANN

Stacked

classifer based
SVM

Full Features Selected Features

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

189 | P a g e

www.ijacsa.thesai.org

[18] O. Sagi and L. Rokach, ―Ensemble learning: A survey,‖ WIREs Data
Mining Knowl Discov, vol. 8, no. 4, Jul. 2018, doi: 10.1002/widm.1249.

[19] R. Polikar, ―Ensemble based systems in decision making,‖ IEEE
Circuits and systems magazine, vol. 6, no. 3, 2006.

[20] Sagi, O. and Rokach, L., 2018. Ensemble learning: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4),
p.e1249.

[21] Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection.
Artificial intelligence, 97(1-2), 273-324.

