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Abstract—Predicting the cost of the development effort is 

essential for successful projects. This helps software project 

managers to allocate resources, and determine budget or delivery 

date. This paper evaluates a set of machine learning algorithms 

and techniques in predicting the development cost of software 

projects. A feature selection algorithm is utilized to enhance the 

accuracy of the prediction process. A set of evaluations are 

presented based on basic classifiers and stacked ensemble 

classifiers with and without the feature selection approach. The 

evaluation study uses a dataset from 76 university students' 

software projects. Results show that using a stacked ensemble 

classifier and feature selection technique can increase the 

accuracy of software cost prediction models. 
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I. INTRODUCTION 

The process of developing software has evolved into a 
fundamental function of modern society as a result of the quick 
development of software in our days. However, a crucial step 
in the lifecycle of software development is software effort 
estimation. The goal of a software development task is to 
deliver the product on time and within budget. The planning 
process for any software project must therefore include early 
software cost estimation. 

Predicting the amount of work required to create a software 
system is a part of software effort estimation. It is expressed in 
terms of the number of working hours or the number of hours 
needed to construct the software. Software testing, 
maintenance, requirements engineering, and other software 
operations are all included in the broad category of software 
effort estimation. 

To produce software projects, various software 
development lifecycle models call for varying amounts of work 
at each stage. Software effort estimation is regarded as one of 
the most significant problems in software engineering. It 
affects the cost of the project and is a problem that many 
engineers and project managers encounter. A major issue that 
could harm software companies is the accuracy of the 
development effort estimation. 

Several scholars as [1] have suggested various models to 
predict the effort of software development. Several researches 
have been done to determine the early software effort estimate 
to determine the significance [2]. Software companies need to 

understand the work required to develop projects in addition to 
how they should proceed about accomplishing this. 

In this paper, the software work is estimated based on 
project attributes using four machine learning techniques. This 
study's primary objective is to assess software effort estimation 
models created using machine learning techniques. 

Before deciding to use a software component as a reusable 
asset, software engineers must analyze the software 
component. Assessing reuse potentials can be aided by 
predicting successful reuse. Datasets are used to train and test 
predictive models. Datasets, however, occasionally include 
attributes that are not useful. The performance of the model 
may suffer as a result of these characteristics. Therefore, 
choosing the key attributes improves the performance of the 
model and yields a more accurate output. 

In this paper, an empirical study utilized a dataset to 
investigate and extract the essential features that lead to a 
successful reuse experience. Usually, the performance of a 
prediction model can be improved with an ideal subset of 
useful features. Feature selection algorithm selects a portion of 
the original dataset's most useful qualities. This subset can 
improve the prediction model's effectiveness and efficiency. 
Additionally, it avoids data overfitting. In this paper, six 
feature selection algorithms were utilized and evaluated to 
enhance accuracy. These algorithms are; Classifier Attribute 
Evaluation, Correlation Attribute Evaluation, InfoGain Subset 
Evaluation, Wrapper Subset Evaluation, Classifier Subset 
Evaluation, and CfsSubset Evaluation. 

There are many benefits of using feature selection 
techniques. For instance, it reduces the training time, helps 
visualize the data, and optimizes the storage requirements. In 
this paper, the primary purpose of using feature selection 
techniques is to improve the prediction model's performance by 
removing the irrelevant attributes [3]. 

The organization of this paper is as follows; the next 
section discusses the literature that concerning software effort 
prediction. The proposed evaluation model is presented in 
Section III followed by a brief description about the used 
dataset in the evaluation process. The experimental results are 
presented in Section V. Finally, Section VI concludes the paper 
and highlights the future work. 
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II. RELATED WORK 

Many approaches have been presented in the literature 
about estimating the development’s efforts of software 
projects. Most of these approaches utilize the machine learning 
and artificial intelligence techniques to predict the effort. 

Rankovic et al. [4] proposed two different architectures of 
Artificial Neural Networks (ANN) for predicting software 
effort. They used exponent-scale factors, cost factors, and 
software size as control variables from COCOMO models. 
BaniMustafa [5] predicted the effort estimation by applying 
machine learning techniques and data mining. He applied 
Naïve Bayes, Logistic Regression and Random Forests. Priya 
Varshini et al. [6] proposed stacking using random forest for 
effort estimation. They used ensemble techniques to create and 
combine multiple models termed base-level classifiers. The 
works in [7, 8] applied Artificial Neural Network (ANN), 
Support Vector Machines (SVM), K-star, and Linear 
Regression to estimate software effort based on project 
features. Mahdie et al. [9] provided a detailed review about the 
application of Machine Learning in software project 
management which includes effort estimation. Another 
systematic performance evaluation study for software effort 
estimation accuracy prediction of ML techniques is presented 
in [2]. 

A different prediction technique has been presented by 
Nassif et al.  [10]. They proposed an approach called 
regression fuzzy logic that is based on fuzzy logic models and 
regression analysis. Also, Fadhil et al, [11] used swarm 
intelligence techniques from the AI field. They applied two 
models based on dolphin algorithm and the hybrid dolphin and 
bat algorithm. 

Rai et al. [12] proposed a hybrid model, based on team size 
using Support Vector Regression (SVR) and constructive cost 
model (COCOMO) approaches. Van Hai et al. [13] proposed a 
model called effort estimation using machine learning applied 
to the clusters (EEAC).  The goal of the model is to evaluate 
the influence of data clustering on software development effort 
estimation. 

III. PROPOSED SOFTWARE COST PREDICTION MODEL 

This work proposes an evaluation framework to evaluate 
the effectiveness of using basic machine learning and ensemble 
classifiers, as well as, feature selection algorithms to build a 
software cost estimation model.  Fig. 1 depicts the proposed 
prediction framework. As shown in Fig. 1, the first prediction 
model is set with the basic standalone machine learning 
algorithms, while the second model is built using the stacked 
ensemble approach. Both models are evaluated using the full 
dataset and with a set of the selected features. The purpose of 
introducing feature selection to the proposed prediction models 
is to extract the most relevant features from the dataset. Since, 
the redundant and irrelevant features increase the data 
dimensionality without adding new information to the dataset. 
This could negatively affect the performance of the prediction 
models. 

 

Fig. 1. The proposed software cost prediction framework. 

Four machine learning algorithms were applied in the 
prediction process. These ML algorithms are: 

 The Artificial Neural Networks (ANN): ANN system 
considers unsupervised learning as one of the training 
algorithms in a command to build an unlabeled data 
[14]. It consists of an input layer, hidden layers, and an 
output layer. 

 K-Star: K-star is a machine learning algorithm that uses 
the entropic distance from the information theory to 
measure the similarities among the data elements and 
cases. [15]. 

 Support Vector Machine (SVM): SVM uses Sequential 
Minimal Optimization (SMO) algorithm, which 
transfers all nominal attributes and null values into 
binary ones. Then, the algorithms try to identify a 
margin that divides the data into different classes [16]. 

 Random Forest (RF): RF works by building multiple 
decision trees and then combining their results to make 
predictions. Each tree is trained on a randomly selected 
subset of the training data and a randomly selected 
subset of the features. By doing this, the algorithm can 
reduce errors and improve accuracy. To make a 
prediction, the algorithm takes in a set of features and 
passes them down each of the decision trees in the 
forest. Then it combines the results of all the trees to 
arrive at a final prediction [17]. 

 

Fig. 2. The proposed ensemble stacked cost prediction classifier. 

Ensemble learning is a method that combines more than 
one learning classifiers. Combining machine learning 
classifiers is primarily done to reduce risks and errors 
associated with employing a single classifier [18]. 
Additionally, ensemble learning enhances prediction 
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performance by balancing out the shortcomings of a single 
classifier. Additionally, issues with training the classifier may 
arise due to the size of the dataset. For instance, using a single 
classifier on a sizable dataset is impracticable. The dataset 
should therefore be divided into subgroups, with each subset 
being used to train a different classifier. Additionally, ensemble 
learning might be able to alleviate issues brought about by 
utilizing a tiny dataset [19]. In ensemble learning, different 
classifiers can be added using Stacking, Bagging, and Voting 
approaches. In this paper, stacking ensemble approach is used 
to build different software cost prediction model. 

Stacking ensemble classifier is one of the most used 
approach in ensemble learning to combines multiple 
classification algorithms. Fig. 2 shows the basic levels of the 
used stacking ensemble classifiers. The learning process of 
stacking learning consists of two levels. The first level 
combines different machine learning classifiers   
*  (   )        +,  which are called base classifiers. Each 
base classifier utilizes the training set ƒ. In the second learning 
level, which is the meta-learning process, a single machine 
learning classifier µ uses the outputs on the base classifiers as 
an input to generate the ensemble learning final prediction [20], 
Therefore: 

      ( )    (   ) (1) 

where       ( ) is the final stacking prediction of the input 
s. As shown in Fig. 2, the used four basic ML classifiers are 
combined in the first learning level of the proposed ensemble 
classifier. For the meta learning level, each basic ML classifier 
is used as based meta-learner classifier to create different 
stacked ensemble prediction model. The goal is to evaluate all 
possible combinations of these basic ML classifiers. As a 
results, the generated ensemble classifiers are: 

 ANN-based Stacked classifier 

 K-star-based Stacked classifier 

 SVM-based Stacked classifier 

 RF-based Stacked classifier 

All previous basic and ensemble software cost prediction 
models are evaluated using the full features of software 
projects, as well as, a set of selected features. In this paper the 
wrapper method algorithm is used by applying the Classifier 
Subset Evaluation (CSE) technique [21]. 

CSE approach is a popular feature selection technique that 
evaluates the performance of a specific classifier for each 
subset of features. Fig. 3 shows the basic steps for the used 
CSE approach. It starts by creating all possible subsets of 
software features. Then, randomly select a set of features to 
evaluate it using the target software cost prediction model. This 
process is repeated until achieving the optimal accuracy for this 
model. Once the best feature subset is recognized, it is used for 
the final model training process. 

 

Fig. 3. The used wrapper CSE feature selection approach. 

IV. USED DATASET 

Due to the lack of software expense data, gathering public 
software effort data is a difficult undertaking. This is owing to 
the fact that software companies generally keep software 
cost data private. Usp05-tf, a publicly accessible dataset for 
empirical software engineering data, is made available online 
through the promise online repository 
(http://tunedit.org/repo/PROMISE/EffortPrediction), which 
was used in this study. Data from 76 university students' 
software projects are included in this dataset. Every project has 
13 attributes. A list of these attributes is shown in Table I. 

TABLE I. THE 13 ATTRIBUTES OF THE STUDIED PROJECTS 

# 
Project 

attributes 
Description Values 

1 IntComplx  
The complexity of the 

internal project calculations 
1 (lowest) to 5 (highest) 

2 DataFile  
Total number of accessed 
data files 

Positive integer 

3 DataEn  
The number of entry data 

items  
Positive integer 

4 DataOut  
The number of output data 

items  
Positive integer 

5 Lang  
The used programming 

language  
C++, Java, HTML, etc. 

6 UFP  
Unadjusted Function Point 

Count  
Positive integer 

7 Tools  
The used platforms and 
tools  

VJ++, Delphi, Junit, etc 

8 ToolExpr  
The experience level of the 
developer team  

Range of number of 
months, e.g. [3, 7] 

9 AppExpr  
The applications experience 
level  

1(lowest)  to 5 (highest) 

10 DBMS  The used database system  
SQLServer, Oracle, 
MySQL, etc. 

11 TeamSize  
The size of the developer 

team  

Range of min-max 

number of developers, 
e.g. [3, 6] 

12 AppType 
The used system 

architecture  
B/S, C/S, Centered, etc. 

13 Effort  

The actual effort (in hours) 

expended on 

implementation tasks by all 
participating developers  

Positive float 

The features listed in Table I are not all numerical. This is 
crucial to verifying the machine learning approach's capacity 
for learning. The historical data is utilized as a learning tool to 
anticipate the work required for future software systems. 
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V. EXPERIMENTAL RESULTS 

The evaluation criteria and the results of the experiments 
are discussed in the following two sections. 

A. Evaluation Criteria 

In order to assess the performance of the prediction 
algorithms, five statistical criteria were used. The following is 
a description of these criteria: 

 Statistics Kappa (KS) 

 Mean Absolute Error (MAE) 

 Root Mean Square (RMSE) 

 Error in Relative Absolute (RAE) 

 Root Relative Squared Error (RRSE) 

Statistics Kappa (KS) is the degree of agreement between 
the classifier's output and the actual classification is measured 
by KS. KS values vary from 0 to 1. The closer to 1 KS gets, the 
better. The following equation is used to compute KS: 

KS = PA − PC / (1 − PC) 

where PC is the percentage of agreement by chance and PA 
is the percentage of actual agreement. 

Mean Absolute Error (MAE) calculates how well the actual 
classification matches the anticipated classification. The value 
of MAE is calculated using the formula below: 

    ∑|        |

 

   

 

where n = 1 through m, m is the total number of instances, 
an is the actual reuse output, and a`n is the predicated reuse 
output. The performance of the prediction model is good if the 
MAE value is low. 

Root Mean Square (RMSE) is difference between data that 
was expected and actual data is measured by the quadratic 
mean known as RMSE. The accuracy of the model is inversely 
correlated with the RMSE. High precision is indicated by a low 
RMSE score. The error value can be calculated using the 
formula below: 

     √
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When n ranges from 1 to m, an represents the observed 
values, and a`n represents the anticipated values. 

Error in Relative Absolute (RAE) is calculated by dividing 
the total absolute error by the total absolute error of the trivial 
model, RAE normalizes the total absolute error. RAE is 
obtained by the following equation: 

    ∑ |        | 
    / ∑ |         | 

    

where an is the predicted value, a`n is the target value, a``n is 
the mean of an, m is the number of instances, and n = 1 through 
m. 

Root Relative Squared Error (RRSE) is calculated by 
dividing the total relative error of the naive model by the 
square root of the total relative error. Equation used to 
calculate RRSE is as follows: 

     √ ∑(       )   
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where an is the predicted value, a`n is the target value, a``n is 
the mean of an, m is the number of instances, and n = 
{1,2,...,m}. 

B. Experimental Results 

The experiments were conducted using WEKA 3, a 
machine learning software platform written in Java 
(https://www.cs.waikato.ac.nz/ml/weka/). The ten folds cross-
validation training technique was used to evaluate all software 
cost prediction models. In this technique, the training and 
testing the prediction models is repeated in iterations. 
Moreover, the dataset is divided equally into ten subsets called 
folds. In each iteration, the prediction model uses nine folds for 
training and one-fold for testing. This process is ended when 
the classifier tests all the dataset. 

Table II shows the selected features of software projects 
after applying the feature selection approach for each base 
classifier. Number of the selected feature for K-star, RF, ANN, 
and SVM are 10, 5, 9, 13 respectively. The smallest number of 
selected features was produced with the RF classifier while the 
biggest number happed with SVM classifier. 

TABLE II. THE SELECTED FEATURES FOR EACH CLASSIFIER 

Classifier Selected Features 

K-star 
ID, IntComplx, DataFile, DataEn, DataOut, UFP, Lang, 

ToolExpr, AppExpr, TeamSize 

RF ID, IntComplx, DataOut, Tools, TeamSize 

ANN 
ID, IntComplx, UFP, Lang, Tools, ToolExpr, AppExpr, 
TeamSize, Method 

SVM 

ID, IntComplx, DataFile, DataEn, DataOut, UFP, Lang, 

Tools, ToolExpr, AppExpr, TeamSize, DBMS,           

AppType 

Table III presents the selected features of software projects 
using the feature selection approach for each stacking 
classifier. As shown in the table, the feature selection approach 
is more effective in reducing number of selected features 
needed to learn the stacking classifier than basic classifier. This 
can be helpful to software project engineers. It can point out a 
smaller set of key project features which can impact on the 
project’s cost. In this study, number of the selected feature for 
stacking based K-star, RF, Stacking based ANN, and Stacking 
based SVM classifiers are 5, 6, 5, 9 respectively. 

Fig. 4 shows the MAE values for the four basic classifiers 
in the used dataset before and after using the feature selection 
approach. As shown in the figure, the value of MAE is reduced 
when using the feature selection algorithm. The lowest MAE is 
obtained when using the RF classifier, were the MAE is 
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reduced from 2.5025 to 2.3154 after applying the RF on the 
selected feature instead of using the full features. 

TABLE III. THE SELECTED FEATURES FOR EACH STACKING CLASSIFIER 

Stacking classifier Selected Features 

Stacking based K-star DataFile, DataOut, Lang, TeamSize, AppType,  

RF 
IntComplx, DataEn, DataOut, ToolExpr, 

TeamSize,  Method 

Stacking based ANN IntComplx, DataEn, UFP, Lang, TeamSize 

Stacking based SVM 
ID, IntComplx, DataFile, DataOut, Lang, 
ToolExpr, TeamSize, Method, AppType 

 

Fig. 4. MAE values before and after using feature selection. 

Fig. 5 shows the values of RMSE for the four classifier on 
the full features and on the selected features. Same as MAE 
values, the RMSE values were reduced after selecting a subset 
of the software projects’ features. The lowest RMSE value is 
produced when using RF classifier. For RF classifier the 
RMSE value was 4.8546 and 4.4979 with and without the 
feature selection algorithm respectively. 

 

Fig. 5. RMSE values before and after using feature selection. 

From pervious results, we can conclude the using the 
feature selection approach can increase the accuracy of 
software cost prediction model. Moreover, to evaluate other 
criteria, Table IV presents the KS, RAE, and RRSE evaluations 
before and after using feature selection method for the four 
classifiers. As shown in the table, RF is the best classifier 
among all others with highest KS and lower RAE and RRSE. 
However, feature selection approach is able to enhance the 
performance of all classifiers for all evaluation criteria. 

TABLE IV. KS, RAE, AND RRSE EVALUATION RESULTS BEFORE AND 

AFTER USING FEATURE SELECTION 

 
KS– 

Full 

features 

KS–

selected 

features 

RAE – 

Full 

features 

RAE – 

Selected 

features 

RRSE– 

Full 

features 

RRSE– 

Selected 

features 

SVM 0.7504 0.8098 
44.3547 
% 

43.6098 
% 

64.6744 
% 

63.5698 
% 

ANN 0.7981 0.8098 
48.8383 

% 

46.9337 

% 

64.6744 

% 

63.5698 

% 

RF 0.8441 0.8826 
41.7323 
% 

38.6118 
% 

55.6778 
% 

51.5873 
% 

K-

star 
0.7797 0.7823 

45.4795 

% 

44.0878 

% 

69.0658 

% 

67.9704 

% 

The second part of this experiment is set to evaluate the 
effectiveness of using stacked classifier on predicting the 
software cost. Fig. 6 and 7 show the MAE and RMSE 
evaluation values for the four possible combinations of stacked 
classifiers over the full features and the selected features. 
Stacked classifier with SVM is based classifier has the lowest 
MAE and RMSE with values of 2.4391 and 4.3705 
respectively. After applying the feature selection approach, the 
MAE and RMSE values were reduced to 2.1801 and 4.0779 
respectively. On the other hand, the ANN based stacked 
classifier has the highest MAE and RMSE values with 4.6594 
and 8.1786 respectively. 

 

Fig. 6. MAE evaluation of stacked classifiers for full and selected features. 
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Results in Fig. 6 and 7 show that the using the feature 
selection approach can increase the accuracy of software cost 
prediction model based on stacked classifier. Moreover, to 
evaluate other criteria, Table V presents the KS, RAE, and 
RRSE evaluations before and after using feature selection 
method for the four stacked classifiers. As shown in the table, 
the stacked based RF classifier is the best classifier among all 
others with highest KS and lower RAE and RRSE. Moreover, 
feature selection approach is able to enhance the performance 
of all stacked classifiers for all evaluation criteria. 

 

Fig. 7. MAE evaluation of stacked classifiers for full and selected features. 

TABLE V. KS, RAE, AND RRSE EVALUATIONS BEFORE AND AFTER 

USING FEATURE SELECTION 

 

KS – 

Full 

feature

s 

KS–

selecte

d 

feature

s 

RAE – 

Full 

feature

s 

RAE – 

Selecte

d 

feature

s 

RRSE– 

Full 

feature

s 

RRSE– 

Selecte

d 

feature

s 

Stacke

d based 

SVM 

0.7504 0.8098 
44.3547 

% 

43.6098 

% 

64.6744 

% 

63.5698 

% 

Stacke

d based 

ANN 

0.5168 0.5506 
77.7009 

% 

80.4054 

% 

64.6744 

% 

63.5698 

% 

Stacke

d based 

RF 

0.8441 0.8826 
41.7323 

% 

38.6118 

% 

55.6778 

% 

51.5873 

% 

Stacke

d based 

K-star 

0.6635 0.7823 
50.559  

% 

40.8892 

% 

75.5606 

% 

62.1436 

% 

VI. CONCLUSIONS AND FUTURE WORK 

An evaluation model has been presented for effort 
estimation. The model utilizes a set of machine learning 
algorithms and techniques to predict the effort. The model was 
evaluated using basic standalone machine learning algorithms 
and using the stacked ensemble ML approach. The evaluation 
is done on full features and a set of selected features that have 
been previously extracted using feature selection technique. 
Results showed that a stacked ensemble classifier with feature 

selection technique achieved higher accuracy for software cost 
prediction.   Our future work aims to expand the evaluation 
process by including deep learning techniques. Another issue 
under investigation is the utilization of more project attributes 
to enhance the prediction results. 
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