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Abstract—In fashion applications, deep learning has been 

applied automatically to recognize and classify the apparel 

images under the massive visual data, emerged on social 

networks. To classify the apparel correctly and quickly is 

challenging due to a variety of apparel features and complexity of 

the classification. Recently, the hierarchical convolutional neural 

networks (H–CNN) with the VGGNet architecture was proposed 

to classify the fashion-MNIST datasets. However, the VGGNet 

(many layers) required many filters (in the convolution layer) 

and many neurons (in the fully connected layer), leading to 

computational complexity and long training-time. Therefore, this 

paper proposes to classify the apparel images by the H–CNN in 

cooperated with the new shallow-layer CCP-3-Block 

architecture, where each building block consists of two 

convolutional layers (CC) and one pooling layer (P). In the CCP-

3-Block, the number of layers can be reduced (in the network), 

the number of filters (in the convolution layer), and the number 

of neurons (in the fully connected layer), while adding a new 

connection between the convolution layer and the pooling layer 

plus a batch-normalization technique before passing the 

activation so that networks can learn independently and train 

quickly. Moreover, dropout techniques were utilized in the 

feature mapping and fully connected to reduce overfitting, and 

the optimizer adaptive moment estimation was utilized to solve 

the decaying of gradients, which can improve the network-

performance. The experimental results showed that the improved 

H–CNN model with our CCP-3-Block outperformed the recent 

H–CNN model with the VGGNet in terms of decreased loss, 

increased accuracy, and faster training. 

Keywords—Convolutional neural networks (CNN), hierarchi-

cal CNN (H-CNN), CCP-3 block (two convolutional layers (CC) 

and one pooling layer (P) per block), apparel image classification, 

fashion applications 

I. INTRODUCTION 

In the Big-data era, social media platforms generate a 
tremendous volume of image data. There have been initiatives 
to utilize the valuable image data in a variety of industries, 
including the business and medical sectors. Due to a vast 
amount of accessible image data for training and the state-of-
the-art technology that provides superior processing capability 
via the GPU, the unstructured visual data can now be 
implemented in statistical and data mining applications. Under 
the GPU technology, it is really simple and fast to analyze the 
image data. In a previous study, the image data were analyzed 
using traditional machine learning and image processing 

techniques [1]. However, typical machine learning and image 
processing approaches are still limited in their processing 
capabilities when working with large image data. To overcome 
the processing restrictions associated with big picture data 
analysis, deep learning techniques such as Deep Neural 
Networks (DNN) are applied in the form of Convolutional 
Neural Networks (CNN) [2]. Currently, a deep learning model, 
when applied to the image data, provides a CNN architecture 
that performs well in classifying the image data. 

Because apparel products in fashion applications are 
diverse and difficult to describe, the automatic CNN is 
frequently used to classify the apparel image data. A fashion-
classification system uses a hierarchical structure that can be 
divided from the coarse to fine hierarchies. Each item in the 
fine hierarchy can be defined as a higher-level item, such as a 
t-shirt pullover and a shirt. These three different types of shirts 
are classified separately but can be combined in the same 
coarse layered Tops category because of their similarity. 
However, the classification of features for each hierarchy of 
items lacks the specific classification criteria and instead is 
classified based on similar features [3, 4]. As a result, the better 
categorizing the apparel products by using the CNN 
architecture is challenging. Applying the efficient CNN 
method of image classification, which has the advantage of 
assisting in filtering, categorizing, and product inspection, 
helps the apparel industry reduce the cost and time, while 
improving business efficiency [3, 5]. While CNN approaches 
are popular to the categorization of apparel image data, their 
tradeoff results (in terms of accuracy and speed) have been 
questioned. Therefore, many attempts have been made to 
develop more efficient strategies for optimizing the CNN 
models for the apparel classification. To improve the 
classification accuracy [6], a hierarchical classification strategy 
was used to classify the apparel image. 

Recently, the fashion images were classified by using a 
hierarchical classification system [7]. In a hierarchical structure 
of fashion types, the Hierarchical Convolutional Neural 
Networks (H-CNN) was proposed and focused on the VGGNet 
architecture. The H-CNN was applied to the “Fashion-MNIST” 
dataset, an improved public image dataset for direct analysis. It 
is a 28 x 28 grayscale image of 10 classes comprised of 60,000 
training photos and 10,000 test images, separated into 3 levels 
of coarseness: coarse 1, coarse 2, and fine. However, the 
existing H-CNN and the VGGNet were computed sequentially 
in deep architectures, where the VGGNet (many layers) 
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required many filters (in the convolution layer) and many 
neurons (in the fully connected layer), leading to computational 
complexity and long training-time. On the other hand, the H-
CNN has not yet been implemented to improve the 
performance in shallow architectures. 

Therefore, this study proposes to use the H-CNN in 
conjunction with our new CCP-3 block architecture, a 
minimalistic size founded on the concept of a shallow 
architecture (instead of a deep architecture) to achieve the 
better performance for not only the accuracy but also the 
computing time. Based on the popular models from the LeNet 
and AlexNet designs, the new CCP-3 block was introduced by 
reducing the number of layers in the network, the number of 
filters in the convolution layer, and the number of neurons in 
the fully connected layer, along with a new connection 
between the convolution layer and the pooling layer. In 
addition, a batch normalization technique was employed before 
passing the activation function so that networks can learn 
independently and train quickly. Moreover, dropout techniques 
were utilized in the feature map and fully connected to reduce 
overfitting, and the optimizer adaptive moment estimation was 
utilized to solve the decaying of gradients. In this study, the 
hypothesis is that “the integration of selected appropriate 
architectures in the H-CNN can improve the network 
performance”. In the performance evaluation, The CCP-3 
Block architecture has been implemented in the H-CNN model 
to observe the improvement of the classification accuracy for 
the apparel image data and observe the speedup of the training 
time (on the GPU machine) in an experiment. Performance 
results showed that the CCP-3 Block architecture in the H-
CNN model decreases training time significantly and improves 
the classification accuracy for apparel picture data over the 
recent VGGNet architecture in the existing H-CNN. 

In summary, the main contributions of this study are as 
follows: 

 This study proposes a novel CCP-3 Block architecture 
to optimize the H-CNN model for the efficient 
classification of the apparel images. 

 This study compares the performance of the H-CNN 
models based on the existing VGGNet architecture and 
new CCP- 3 Block architecture. 

The remainder sections of this paper are organized as 
follows. Section II summarizes the CNN architectures and the 
related works. Section III presents the proposed CCP-3 Block 
architecture. Section IV illustrates the experiment on the 
fashion-MINIST dataset. Section V presents the experimental 
results and Section VI discusses the conclusion of this study 
and the future study. 

II. RELATED WORKS 

In this section, an overview of the convolutional neural 
networks (CNN), the modern CNN architectures, and the 
optimization techniques of CNN are reviewed and a related 
work, called the hierarchical CNN (H-CNN) using VGG16 and 
VGG19 architectures, was presented to classify the apparel 
images. 

A. Convolutional Neural Network (CNN) 

A convolutional neural network (CNN) is a neural network 
model of the human-vision emulation that perceives a space as 
sub-sectors and integrates the sub-sectors together to identify 
“what is visible”. Human perceptions of sub-areas are shaped 
by sub-area features, such as lines and color contrasts. Humans 
recognize that “the focused area is defined by a straight line or 
a contrasting color” because they combine both of the 

interested area and the surrounding area concurrently [8, 9]. 
The construction of CNN is divided into two main components 
[10-12]: 1. the first one is the feature extraction layer (for 
extracting features) and 2. the subsequent section is the 
classification layer (to educate and classify), which will ensure 
that the connection layer is fully connected. In the feature 
extraction layer, there are three sub-layers: Convolution Layer, 
ReLU (Rectified Linear Units) Layer, and Pooling Layer. In 
the classification layer, there is only one fully connected layer, 
which resembles a node in the neural network. Each of those 
layers has the particular and different functions. 

 

Fig. 1. Structure of CNN. 

Fig. 1 describes the standard structure of the CNN, which 
consists of the following layers: 

1) Input layer: Read the input data of the image and pass 

it to the neural network. 

2) Convolutional layer: Create a sliding window (filter or 

kernel) that scans the input image to make a feature map. 

Initially, it scans the image to extract image elements such as 

borders, colors, and shapes, where the working principle starts 

with the convolution of the existing input image with the 

kernel and shifting it to the position of the next kernel. By 

scrolling the kernel position, the scroll distance can be 

adjusted. Repeat the same process, until all points of the input 

image are concerned. The convolution using the formula given 

below. 

    (   )      (1) 

               (   )   =  ∑ ∑         
   

   

   

   
     (2) 

  refers to the result of convolution at any position.   refers 
to image input.   refers to kernel.     refers to any position. 
    refers to the number of rows and columns. 

3) Rectified linear unit (ReLU): Perform a nonlinear 

activation function. The function given below 
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4) Pooling layer: After the Convolutional layer(s) in the 

structure of a CNN, a Pooling layer is inserted. It calculates 

the maximum or average of the input and reduces the output 

of the Convolutional layers by sliding the filter with a specific 

shape and stride size. 

5) Fully connected layer: Configure the output and 

display in the form of a multiclass logistic classifier. 

6) Output Layer: Display the results of the classification. 

However, CNNs can have different layer elements in different 

architectures because each CNN consists of a layer 

convolutional for creating feature maps and pooling for the 

dimensionality of feature maps. By stacking these layers [7], 

we can formulate various CNN architectures. 

B. Architectures of Convolutional Neural Networks 

1) LeNet architecture: The study to optimize the CNN 

model with a very well-structured architecture is another 

possibility to increase the performance of the CNN model. 

LeCun et al., [13] developed LeNet-5 in 1998, a network 

based on the CNN concept. In the convolutional layer, there 

are seven classification levels for numbers. Numerous banks 

employ it to identify the handwritten digits on digital checks 

using a 32x32 pixel image. Increasing the processing 

capability of higher resolution images requires a larger neural 

network layer and many layers. The LeNet-5 architecture is 

composed of two convolutional layers, two pooling layers, and 

three fully connected layers. 

 
Fig. 2. Architecture of LeNet-5. 

Fig. 2 describes the structure of LeNet-5 architecture. There 
are three convolution layers within the architecture, with two 
pooling and two fully connected. In each of the three 
convolution layers, the kernel size is 5x5 and the number of 
strides is 1. The distinction lies in the number of filters, with 
the first layer, second, and third having 6, 16, and 120 filters, 
accordingly. In the pulling layer, the kernel size is 2x2 and the 
number of strides is 2, which is identical to both layers. In a 
fully connected layer, the number of neurons in the first is 84, 
whereas the number of neurons in the second is dependent on 
the number of outputs. Sigmoid will be used as the activation 
function. 

2) AlexNet architecture: AlexNet is a neural network, 

developed in 2012 by Krizhevsky et al., [14] which was 

intended to classify 1.2 million high-resolution images with 

dimensions of 224x224x3, with images classified into 22,000 

different classes. AlexNet achieves a top-5 test error rate of 

16.4% in the ImageNet LSVRC-2012 contest. The AlexNet 

architecture is composed of 5 convolutional layers, 3 pooling 

layers, and 3 fully connected layers. In addition, it uses 

Rectified Linear Unit (ReLU) for the nonlinearity function, 

which is faster than Hyperbolic Tangent (tanh) function. 

 
Fig. 3. Architecture of AlexNet. 

Fig. 3 describes the structure of AlexNet architecture. 
There are five convolution layers in the architecture, with three 
pooling and three fully connected. The kernel sizes for the first 
and second convolution layers are 11x11 and 5x5, while the 
kernel sizes for the third, fourth, and fifth layers are all 3x3. In 
five convolution layers, there are 96, 256, 384, 384, and 256 
filters, respectively, with the first layer the number of strides is 
1, and in the remaining four layers, the strides are 4. In the 
pulling layer, the kernel size is 3x3 and the number of strides is 
3, which is identical to all layers. In a fully connected layer, the 
number of neurons in the first and second is 4096, and the third 
is dependent on the number of outputs. However, in this 
architecture, the dropout rate is 0.5 and the activation function 
is used as ReLU. 

3) VGGNet architecture: VGGNet was invented by the 

Visual Geometry Group as an architecture standard of deep 

convolutional neural network (deep CNN) with multiple 

layers. The most popular depth of the VGGNet architecture is 

VGG16 and VGG19 because the VGG16 and VGG19 

architectures are the basis of ground-breaking object 

recognition models. The VGGNet architecture, developed as a 

deep neural network to surpass baselines on many tasks and 

datasets beyond ImageNet, consists of 16 and 19 layers of 

convolutional and fully connected layers. In competitive 

LSVRC-2014, the VGGNet won the 1
st
 runner-up with less 

than 10% error rate and deeper layers containing 16 

convolutional and fully connected layers. It uses 3 ×3 sized 

filters, a stride of 1 and 2 ×2 sized pooling, and a stride of 2 

from the beginning to the end of the network. It also uses 

ReLU for nonlinearity function and is trained by batch 

stochastic gradient descent [15]. The structures of the VGG16 

and VGG19 architectures are shown in Fig. 4 and Fig. 5. 
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Fig. 4. Architecture of VGG16. 

 
Fig. 5. Architecture of VGG19.

The number 16 and 19 in the name VGG (Visual Geometry 
Group) refer to the depth of 16 and 19 layers in the deep CNN. 
This means that VGG16 and VGG19 are extensive networks, 
where each of them has a total of around 138 million 
parameters. While VGGNet is popular in the modern standard, 
it is a huge network. However, the simplicity of the VGGNet 
architecture makes this network being more appealing. For 
example, there are a few convolution layers followed by a 
pooling layer that reduces the height as well as the width. 
When considering the number of filters, 64 filters are available 
and can be double to 128 filters and 256 filters. Finally in the 
last layer, we can use 512 filters. 

In summary, the major differences of three architectures 
(LeNet, AlexNet, VGGNet) are focused on the architecture 
size and the activation function. In the initial periods of CNNs, 
the CNN architecture was a small structure with limited 
computational resources. Later, the larger CNN architectures 
have been constructed in response to the development of 
computational resources to be able to support the larger 
architecture designs. However, in this era the development of 
many CNN designs aims to decrease loss and increase 
accuracy, while being able to train models in fast or efficient 
time. 

C. Guide to Improving CNN 

1) Optimizer: Optimizers can be explained as a 

mathematical function to modify the weights of the network, 

according to the gradients and additional information, which 

depend on the formulation of the optimizer. The optimizers 

are built upon the idea of gradient descent, the greedy 

approach of iteratively decreasing the loss function by 

following the gradient.  However, different optimizers will 

affect the model sensitivity and learning accuracy [16-19]. As 

a result, it is essential to use an appropriate optimizer for data 

and developed models. 

2) Regularization: Regularization is the process of 

learning from the training datasets and modifying the model to 

be more efficient at predicting and reducing loss from the 

unseen data. The regularization is used to solve the issues of 

underfitting or overfitting. To address the underfitting problem 

of the neural network model, usually the number of layers and 

nodes in each layer can be increased but this can cause the 

overfitting [20-22]. Therefore, the regularization is a 

frequently mentioned solution, which is very simple to be 

implemented. The regularization technique consists of 

augmentation, batch normalization, and dropout, where their 

functions are defined as follows: 

a) Augmentation: Augmentation is a technique to 

increasing the amount of data to train by generating the more 

data. In the case of image data, increasing a variety of images 

includes rotating images, zooming images, shifting images 

horizontally, shifting images vertically, and shear images. 

b) Batch normalization: Batch Normalization is a 

technique for scaling the data to adjust their values to the 

specified limits before exporting from the node to the next 

layer input. For example, a feature engineering procedure 

converts the grayscale image from 0-255 to 0-1 by dividing 

the original color value by 255. For data normalization, 

several well-known methods can be utilized, such as min-max 

normalization or standardization. 

c) Dropout: Dropout is an effective process of 

regularizing neural networks to avoid the overfitting. During 

training, the dropout layer cripples the neural network by 

removing the hidden units stochastically. 
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3) Efficient shallow learning as an alternative to deep 

learning: In 2022, Y. Meir et al. [23] discusses the realization 

of complex classification tasks using deep learning 

architectures with many convolutional and fully connected 

hidden layers. The authors demonstrate that with a fixed ratio 

between the depths of the first and second convolutional 

layers, the error rates of shallow architectures like the LeNet 

and VGG-16 can decay as a power law with the number of 

filters in the first convolutional layer. This phenomenon 

suggests a quantitative hierarchical time-space complexity 

among machine learning architectures and calls for further 

examination using various databases and architectures. The 

conservation law along the convolutional layers is found to 

minimize error rates. The study emphasizes the efficient 

shallow learning and its potential for implementation using 

dedicated hardware developments. 

D. Hierarchical Classification 

Hierarchical classification is a system of grouping things 
(or objects) according to a hierarchy, such as levels and orders. 
A hierarchical classifier classifies the input data according to 
the output categories, which are defined subsumptively. 
Classification begins at a basic level with the fine-detailed 
input data. The classifications of the separate bits of the image 
data are then integrated and elevated to a higher level 
iteratively until a single or defined output is obtained. This 
final output represents the overall result of the data 
classification. 

In 2015, Yan et al. [24] proposed the first trial of 
hierarchical image classification using a deep learning 
approach. To resolve class confusion in the proposed model, 
Hierarchical Deep Convolutional Neural Networks (HD-CNN) 
employed an initial coarse classifier CNN to differentiate easily 
separable classes (or coarse classes) from fine classes. 
Additionally, the HD-CNN model could be implemented 
without increasing the training complexity. However, that 
model encountered some limitations, which were that it 
required two steps of training. The first step was to train the 
coarse and fine categories and the second step was to fine-tune 
the coarse and fine categories. Moreover, the HD-CNN model 
could not be used to classify many levels of hierarchy since it 
included one coarse category and one fine category only for an 
overall of two levels. 

Later in 2017, the Branch Convolutional Neural Network 
(B-CNN) was proposed by Zhu and Bain [25] to solve the 
limitation of HD CNN. 

Due to previous CNN research during 2015 - 2019, the 
hierarchical CNN study along with the particular application 
could improve the accuracy in the experiment. Therefore, 
implementing the hierarchical classification to optimize the 
CNN models to respect the diversity of datasets, applications, 
and CNN architectures is interesting. 

In 2019, Seo and Shin [7] introduced the Hierarchical 
Convolutional Neural Networks (H-CNN) for the categorization 
of fashion images in the Fashion MNIST image data, where the 
fashion imagery obtained from Zalando is similar to the MNIST 
Dataset's handwritten numeric dataset, a refined fashion image. 

That study employed the large-scale VGGNet neural networks 
as an experimental model. In performance evaluation (on the 
Fashion-MNIST dataset), accuracy results of the usage of H-
CNN under the VGGNet architecture outperformed those of the 
simple VGGNet network. 

In 2021, Q. Zhu et al. [26] discusses the use of drone 
imagery in automated inspection for surface defects in 
infrastructure. The proposed approach in the paper is a deep 
learning method that uses hierarchical convolutional neural 
networks with feature preservation (HCNNFP) and an 
intercontrast iterative thresholding algorithm for image 
binarization. The technique is applied to identify surface cracks 
on roads, bridges, or pavements, and is compared with existing 
methods on various datasets using evaluation criteria including 
the average F-measure. The proposed technique outperforms 
existing methods on various tested datasets, especially for the 
GAPs dataset, demonstrating the merits of the proposed 
HCNNFP architecture for surface defect inspection. 

This study is interested in developing the H-CNN 
(Hierarchical CNN) under the more efficient architectures for 
the fashion applications (in Section III). Therefore, the 
previous study [7] is the main related work, see detail in 
Section II E. 

E. Original Hierarchical Convolutional Neural Network (H –

CNN) Model 

With regards to the original H-CNN model under VGG16 
and VGG19 architectures [7], both VGG16 and VGG19 are 
composed of five building blocks as shown in Fig. 6 and Fig. 7. 

 

Fig. 6. Architecture of VGG16 H–CNN model. 

 
Fig. 7. Architecture of VGG19 H–CNN model. 

In the VGG16 H–CNN model, the first and second building 
blocks consist of two convolutional layers and 1 pooling layer, 
the third and fourth blocks consist of 3 convolutional layers 
and 1 pooling layer, and the fifth building block has 3 
convolutional layers. 
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In the VGG19 H–CNN model, the first and second building 
blocks have 2 convolutional layers and 1 pooling layer, the 
third and fourth blocks have 4 convolutional layers and 1 
pooling layer, and the fifth building block consists of 4 
convolutional layers. 

The filter size and number of filters in the convolution layer 
are the same for both VGGNet architectures, with the filter size 
being 3x3 throughout the model. For the number of filters, they 
can be divided as follows: In the first block, there are 64 filters, 
the second block 128 filters, the third block 256 filters, and the 
fourth and fifth blocks 512 filters. 

Moreover, these H–CNN models also use ReLU for 
activation function, batch normalization for initialization, and 
dropout for regularization. In the final block denoted as the fine 
prediction block, the softmax function is used to classify 10 
fine classes. 

However, this model has three additional blocks below 
followed by a prediction block. In each block, there are labels 
for 3 levels of classification, which makes it different from the 
basic model. The first block is for course-level, the second 
block is for course-level, and the last block is for fine-level. All 
three additional blocks are composed of fully connected neural 
networks. As the input image goes through the H–CNN model, 
three prediction values of coarse 1 level, coarse 2 level, and 
fine level will be computed in order. For example, when an 
input image of a sweater is inserted, the first coarse level block 
will indicate „clothes‟, the second coarse level block will 
indicate „tops‟, and the final block will indicate „pullover‟ as 
output predictions. 

III. PROPOSED METHOD 

Applying the convolutional neural network (CNN), 
especially the efficient deep learning, to fashion applications 
(to achieve not only the high accuracy but also the fast 
training) is challenging under the massive visual data emerged 
on the current social networks. Recently (2019), the 
hierarchical CNN (H–CNN) was proposed to classify the 
fashion-MNIST datasets with a capability of high accuracy. 
However, in that H-CNN the applied VGGNet (the deep 
architecture) is composed of many layers, many filters (in the 
convolution layer), and many neurons (in the fully connected 
layer), leading to computational complexity and long training-
time. 

According to the hypothesis (in the fashion classification)  
believe that the shallow architecture plus a few proper 
functions can yield good results as the deep architecture, while 
can take faster training-time to solve computational complexity 
problems. In benefit summary of existing architectures, the 
(deep) VGGNet architecture requires many layers, many 
filters, and many neurons with long training-time for high 
accuracy, while the (shallow) AlexNet architecture require less 
training time (with shallow layers) but less accuracy. 
Therefore, we focus on studying the novelty and strength of the 
architecture for the H-CNN model to decrease loss, increase 
accuracy, and fast training-time. 

This study proposes to classify the apparel images with the 
H–CNN model using the new CCP-3 Block architecture to 
retain the accuracy as the VGGNet architecture within the less 

training-time as the AlexNet architecture, where each building 
block consists of double convolutional layers (CC) and one 
pooling layer (P). As mentioned earlier, our proposed CCP-3 
Block architecture was inspired by the fast LeNet and AlexNet 
microarchitectures (with shallow layers). 

In Section III A, the new CCP-3 Block architecture is 
proposed first for classifying the apparel/fashion image. In 
Section III B, the H–CNN model using the CCP-3 Block 
architecture is presented for the completed classification. In 
Section 4, the experiment is conducted on the fashion-MNIST 
datasets to compare the performance of CCP-3 Block 
architecture. Finally, the experimental results are presented in 
Section V. 

A. CCP-3 Block Architecture 

The CCP-3 Block architecture is a shallow-layer 
architecture, see details in Fig. 8, which can reduce the number 
of layers (in the network), the number of filters (in the 
convolution layer), and the number of neurons (in the fully 
connected layer) of the deep-layer architecture, while adding a 
new connection between the convolution layer and the pooling 
layer. 

The CCP-3 Block architecture has only three blocks shown 
in Fig. 9. Each building block consists of two convolutional 
layers and one pooling layer. The 3×3 sized filters with a stride 
of 1 are used in all convolutional layers. In the first building 
block, 64 filters are concatenated and in the second block, first 
convolution has 128 filters, second convolution has 256 filters 
and 512 filters in the third block. For the pooling layers, the 
2×2 size max-pooling is done with a stride of 2. In a fully 
connected layer, there are 3 layers, where in the first and 
second layers we define the number of neurons as 1024 
neurons, and in the last layer, we define 10 neurons into 10 
classes using the softmax function. 

Moreover, ReLU was used for the activation function, 
batch normalization for initialization, and dropout for 
regularization. In the structure of CCP-3 Block architecture, 
batch normalization will be implemented in order to ensure that 
for any parameter value after the convolution layer, the 
network always produces activations with the desired 
distribution. So, the batch normalization layer is inserted right 
after the convolution layer, but before feeding into ReLu 
activation [27]. To reduce overfitting, dropout was added into 
both building blocks and the fully connected layer. In the 
building block, dropout was defined between the convolution 
layer and after the pooling layer. The fully connected, dropout 
was defined after batch normalization layer. Throughout the 
architecture, we set the dropout value to 0.3. 

 

Fig. 8. Details of CCP-3 block architecture. 
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B. H-CNN using CCP-3 Block Architecture 

The H-CNN model was implemented in conjunction with 
CCP-3 Block architecture by adding additional blocks below 
each main block, followed by a prediction block, shown in Fig. 
9. The additional blocks have the same functions and 
properties as those blocks in the original H-CNN. Each 
additional block contains labels indicating one of three 
classification levels. The first block is intended for course-level 
instruction, the second block is intended for course-level 
instruction, and the final block is intended for fine-level 
instruction. Each of these three blocks is composed entirely of 
fully connected neural networks. As the input image passes 
through the H–CNN model, three prediction values will be 
computed in order: coarse 1 level, coarse 2 levels, and fine 
level. 

 
Fig. 9. Architecture of H–CNN CCP-3 block model. 

IV. EXPERIMENTS 

To evaluate the performance of CCP-3 block architecture, 
the H-CNN model was implemented in incorporated with 
CCP-3 Block architecture. The experimental results were 
compared to those of the original H-CNN model using VGG16 
and VGG19 architectures on the same environment. See the 
improved results in Section V in terms of increased accuracy 
and decreased computing-time. 

A. Environment Setup 

This experiment implemented and operated the above 3-
model programs on the google colaboratory. This 
programming environment investigated a GPU runtime (speed 
up execution), the GPU machine used in this operation is the 
Tesla P100-PCIe. 

B. Dataset 

This paper uses Fashion MNIST image dataset (see Table 
I). This fashion image dataset is collected from Zalando, which 
is similar to the MNIST dataset handwritten digit classification. 
In this standard dataset, each grayscale image is a square size 
of 28 ×28 pixels and all images are divided into 10 classes: t-
shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, 
and ankle boot. Each class contains an equal number of 
samples. The 60,000 samples are used for training and the 
10,000 samples are used for testing. In the hierarchical 

structure, these 10 classes can be restructured into two coarse 
classes and one fine class as shown in Fig. 10. 

Each first-level coarse class consists of the second-level 
coarse classes and each second-level class consists of the fine-
level classes. The first-level coarse class consists of 'clothes' 
and 'goods'. In the second-level coarse class, the 'clothes' 
contain 'tops', 'bottoms', 'dresses', and 'outers' as well as the 
'goods' contain 'accessories' and 'shoes'. Below the second-level 
coarse classes, there are fine-level classes consisting of 't-shirt', 
'pullover', and 'shirt' in 'tops', 'trouser' in 'bottoms', 'dress' in 
'dresses', 'coat' in „outers', 'bag' in 'accessories'; 'sandals', 
'sneaker', and 'ankle boots' in 'shoes'. For hierarchical matching 
in the H-CNN models, the first-level coarse classes are 
represented by green, second-level classes are represented by 
pink, and fine-level classes are represented by blue [7]. Each 
color in Fig. 10 matches the original H-CNN models in Fig. 6 

and Fig. 7 and the H-CNN using CCP-3 Block architecture in 
Fig. 9. 

TABLE I. FASHION-MNIST DATASET 

Label Description Example 

0 T-Shirt/Top  

1 Trouser 

2 Pullover 

3 Dress 

4 Coat 

5 Sandals 

6 Shirt 

7 Sneaker 

8 Bag 

9 Ankle boots 

 

Fig. 10. Hierarchical classes of dataset of the original H-CNN. 

C. Parameter Setting 

1) Parameter setting of the original H-CNN using VGG16 

and VGG19 [7, 16, 28, 29]: To train two original H-CNN 

models, the parameters were set as follows: A number of 

epochs were set to 60 times and the size of the batch was set to 
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128. There were variations in learning rate as 0.001 used in 

the initial stages, 0.0002 after the 42
th

 epoch, and 0.00005 

after the 52
th

 epoch. Stochastic gradient descent was applied 

by using 0.9 of momentum. To reflect differences in the 

importance of each level of the class the loss weight values 

were added when training models. The changes in loss 

weights were set to [0.98, 0.01, 0.01] in the first epoch, [0.10, 

0.80, 0.10] in the 15
th

 epoch, [0.1, 0.2, 0.7] in the 25
th 

epoch, 

[0, 0, 1] in the 35
th

 epoch. 

2) Parameter setting of the H-CNN using CCP-3-Block: 

In this study, we set similar parameters as the original H-CNN 

models, such as a number of epochs, learning rates, the 

changes in loss weights. However, the stochastic gradient 

descent is not used in the model because the architecture of 

the CCP-3 block is small. In addition, an appropriate 

optimizer was used to reduce overall losses and improve 

accuracy [30, 31]. Adaptive moment estimation is applied by 

using 0.9 of beta1, 0.999 of beta2, and 1e-07 of epsilon. 

V. RESULTS 

In order to evaluate the performance of the H-CNN model 
using CCP-3 Block architecture, the performance was 
compared of the H-CNN CCP-3 Block model to the original H-
CNN models using VGG16 and VGG19 architectures. Table II 
shows the results (the final loss, accuracy of the test, and the 

training time) of each model. The CCP-3 Block architecture 

has a loss of 0.2714, while the VGG16 and VGG19 

architectures have the loss of 0.3781 and 0.3863. About the 

accuracy of 0.9490, while the others have the accuracy of 

0.9352 and 0.9341. The CCP-3 Block model has the fastest 
training time of 18.21 minutes, while the others have 20.33 and 

27.28 minutes (H-CNN CCP-3 Block is 10.32 percent faster 
than H-CNN VGG16 and 32.87 percent faster than H-CNN 

VGG19.). In comparison, the CCP-3 Block model has lower 
loss, greater accuracy, and less training time than the other two 
models. 

Table III shows the test accuracy results (0.8970-0.9410) of 
previous researches (i.e., data mining methods and other CNN 
models), compared to the test accuracy (0.9490) of the CCP-3 
Block architecture on the Fashion MNIST dataset. The existing 
CNN2 and CNN2 + BatchNorm + Skip models were presented 
by Bhatnagar, Ghosal, and Kolekar (2017), where the CNN 
model consisting of two convolutional and max-pooling layers 
(or CNN2), trained by batch normalization (or BatchNorm) 
with residual skip connections (or skip) to compare the results 
with those of Support Vector Classifier (SVC) and 
Evolutionary Deep Learning (EDEN). Later, the accuracy 

results were improved by the VGG16 and VGG19 based 
models. Finally, the accuracy result was improved by the CCP-

3 Block based model and in this study the CCP-3 Block 
architecture could generate the best test accuracy when 
combined with the hierarchical CNN (H-CNN) model. 

This study focused to improve the H–CNN model by using 
the CCP-3 Block architecture over the VGGNet architecture 
(VGG16 and VGG19). Overall, the loss and accuracy were 
compared (in training and testing) of each H-CNN model in 
Table IV. For testing set, the H–CNN using the CCP-3 Block 

architecture (H-CNN CCP-3 Block) has lower loss (0.2714) 
than those (0.3781 and 0.3863) of VGG16 and VGG19 and 
higher accuracy (0.9490) than those (0.9352 and 0.9341) of 
VGG16 and VGG19. However, when looking at the training 
set, the H-CNN CCP-3 Block model had a loss of 0.0218 and 
an accuracy of 0.9920, while the original H-CNN (VGG16, 
VGG19) models have the better training results because in the 
H–CNN CCP-3 Block model we added the dropout to both of 
the building block and in the fully connected layer to solve the 
overfitting problem, leading to a reliable final-loss and a 
realistic accuracy (0.9920 < 1.0 (overfitting)) in the training but 
the better performance in the testing (on the unseen data) with 
the less final-loss and the higher accuracy. 

TABLE II. THE COMPARISON OF FINAL LOSS, ACCURACY, AND TRAINING 

TIME OF THE EXISTING H-CNN MODELS (H–CNN VGG16, H–CNN VGG19) 

AND OUR H–CNN CCP-3 BLOCK MODEL 

Model Test Training 

Time 

(minutes) 
Loss Accuracy 

H-CNN VGG16 0.3781 0.9352 20.33 

H-CNN VGG19 0.3863 0.9341 27.28 

H-CNN CCP-3-Block 0.2714 0.9490 18.21 

TABLE III. THE COMPARISON OF CLASSIFICATION RESULTS ON FASHION 

MNIST DATASET BY PREVIOUS AND OUR RESEARCHES 

Model Test accuracy 

SVC 0.8970 

EDEN 0.9060 

CNN2 0.9117 

CNN2 + Batch Norm + Skip 0.9254 

VGG16 based model 0.9289 

VGG19 based model 0.9290 

CCP-3 Block based model 0.9410 

H-CNN CCP-3 Block model 0.9490 

TABLE IV. THE TRAIN AND TEST COMPARISON (IN FINAL LOSS AND 

ACCURACY) OF THE EXISTING H-CNN MODELS (VGG16 H–CNN, VGG19 H–
CNN) AND OUR CCP-3 BLOCK H–CNN MODEL 

 Train Test 

 Loss Accuracy Loss Accuracy 

H-CNN VGG16 0.0002 1.0000 0.3781 0.9352 

H-CNN VGG19 0.0004 1.0000 0.3863 0.9341 

H-CNN CCP-3-Block 0.0218 0.9920 0.2714 0.9490 

Moreover, observe that the H–CNN CCP-3 Block model 
could converge faster than the H–CNN VGG16 and VGG19 
models, as shown in Fig. 11 (H-CNN VGG16), Fig. 13 (H-
CNN VGG19), and Fig. 15 (H-CNN CCP-3 Block). The more 
epochs the less in loss until 60 epochs the losses were stable. 
Meanwhile, the accuracy value of our H–CNN CCP-3 Block 
model was greater and converged more quickly than the 
existing models, as shown in Fig. 12 (H-CNN VGG16), Fig. 14 
(H-CNN VGG19), and Fig. 16 (H-CNN CCP-3 Block). In 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

215 | P a g e  

www.ijacsa.thesai.org 

particular, Table V shows the improved performance (a 
numbers of specific loss and accuracy values) in each epoch 
(from epoch 1 to epoch 60) of each model. 

In summary, the H–CNN CCP-3 Block model can achieve 
the better performance than the H-CNN VGG16 and VGG19 

models (Table II, Table IV, Table V) and other state-of-the-art 
models (Table III) to classify images in the Fashion-MNIST 
dataset based on deep learning architectures. The CCP-3

TABLE V. LOSS AND ACCURACY PER EPOCH OF THREE H-CNN MODELS (VGG16, VGG19, AND OUR CCP-3 BLOCK) 

 H-CNN VGG16 Model H-CNN VGG19 Model H-CNN CCP-3-Block Model 

 Train Test Train Test Train Test 

Epoch Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy 

1 2.4639 0.3160 1.0611 0.6521 2.8517 0.2341 1.2562 0.5871 0.6346 0.7744 0.6681 0.7867 

5 0.7418 0.7664 0.5173 0.8187 0.7884 0.7494 0.5454 0.8048 0.2772 0.8963 0.2869 0.8949 

10 0.5202 0.8335 0.4425 0.8560 0.5629 0.8204 0.4583 0.8445 0.2307 0.9137 0.3253 0.8861 

15 0.4298 0.8609 0.4331 0.8630 0.4351 0.8601 0.4154 0.8646 0.1846 0.9311 0.2048 0.9283 

20 0.3224 0.8936 0.2938 0.9005 0.3410 0.8875 0.3643 0.8803 0.1572 0.9417 0.1972 0.9315 

25 0.1999 0.9315 0.2874 0.9095 0.1978 0.9312 0.2881 0.9049 0.1241 0.9532 0.2135 0.9279 

30 0.1332 0.9533 0.2820 0.9142 0.1419 0.9504 0.2725 0.9198 0.0998 0.9625 0.2017 0.9374 

35 0.0515 0.9823 0.3646 0.9138 0.0533 0.9811 0.3678 0.9097 0.0763 0.9716 0.2112 0.9370 

40 0.0471 0.9837 0.3758 0.9147 0.0480 0.9834 0.3415 0.9201 0.0627 0.9770 0.2309 0.9410 

45 0.0044 0.9988 0.3598 0.9313 0.0043 0.9988 0.3353 0.9304 0.0364 0.9865 0.2395 0.9473 

50 0.0012 0.9998 0.3494 0.9328 0.0013 0.9997 0.3708 0.9325 0.0293 0.9895 0.2600 0.9459 

55 0.0007 1.0000 0.3768 0.9348 0.0005 1.0000 0.3832 0.9338 0.0228 0.9918 0.2689 0.9495 

60 0.0002 1.0000 0.3781 0.9352 0.0004 1.0000 0.3863 0.9342 0.0218 0.9920 0.2741 0.9490 

 

 

 

Fig. 11. Loss per epoch in H–CNN VGG16 model. 

 
Fig. 12. Accuracy per epoch in H–CNN VGG16 model. 
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Fig. 13. Loss per epoch in H–CNN VGG19 model. 

 

Fig. 14. Accuracy per epoch in H–CNN VGG19 model.

 

Fig. 15. Loss per epoch in H–CNN CCP-3 Block model. 

 

Fig. 16. Accuracy per epoch in H–CNN CCP-3 Block model. 

Block design starts with a shallow-layered architecture 
(combine two convolution layers followed by a pooling layer) 
and redesign with only three blocks followed by the fully 
connected layers and add the batch normalization before the 
activation function so that networks can learn independently 
and train quickly as well as add the dropout layer in feature 
extraction and fully connected to reduce the overfitting. 
Moreover, an optimizer (adaptive moment estimation) was 
used to solve the decaying of gradients, which can improve the 
network performance. As a result, the H–CNN CCP-3 Block 
model has a faster training time and the better performance in 
testing (decreased loss and increased accuracy). For the image 
classification in the Fashion-MNIST dataset, the problem of 
multi-class classification error can be solved by the H–CNN 
CCP-3 Block model. 

VI. DISCUSSION 

As presented in the test results section, the H– CNN model 
uses a shallow layered CCP-3 Block architecture, which 
provides the best performance in both training speed and 
classification accuracy. However, when considering the CCP-3 
Block architecture used in the classification of apparel images, 
our design is simplified combine two convolution layers 
followed by a pooling layer, designed with only three blocks 
followed by fully connected layers, and adding batch 
normalization before the activation function. Moreover, 
adaptive moment estimation is also used to optimize the model 
(see detail in Section III A). We call this the CCP-3 block base 
model. Table V shows the test accuracy of the CCP-3 Block 
base model is 0.9410, which is more accurate than the H-CNN 
used VGG16 and VGG19 architectures but we perceive 
something in the table confusion matrix of the CCP-3 Block 
base model. 

Table VI shows the confusion matrix of the CCP-3 block 
base model. In the case of the shirt category, misclassification 
samples of 88 T-shirt images, 43 pullover images, and 49 coat 
images reveal that these three categories locate closer among 
the 10 categories. The same is the case for the ankle boots 
category, with misclassification samples of 6 sandal images, 
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and 34 sneaker images; when these categories are similar. It is 
reasonable to categorize similar images into a hierarchy. 

Observing Table VI, it is possible that the accuracy of the 
CCP-3 block base model could be increased further if the 
training images were hierarchically categorized. Therefore, we 
have applied the Seo and Shin [7] fashion image classification 
inference to categorize images into a hierarchy as shown in 
Fig. 10. It is used in conjunction with the CCP-3 Block 
architecture, which we have designed to support hierarchical 
classification (see detail in Section III B). The results showed 
that with the use of hierarchical image classification in 
combination with the CCP-3 block architecture, accuracy 
increased to 94.90%. (shown in Table III). When considered in 
the confusion matrix of the H-CNN CCP-3 Block model 
(shown in Table VII), in the case of the shirt category, the 
misclassification was reduced. T-shirt, pullover, and coat were 
previously misclassified from 88, 43, and 49 images reduced to 
66, 33, and 40 images respectively. The same is the case for the 
ankle boots category, the misclassification is reduced as well. 
Sandal and sneaker were previously misclassified from 6 and 

34 images and reduced to 4 and 26 images respectively. 
Therefore, categorizing similar images into a hierarchy for 
classification can increase their accuracy. 

The CCP-3 Block base model, a simplified version of the 
H-CNN model, achieves high accuracy in apparel image 
classification. However, the model experiences 
misclassificationions within visually similar categories such as 
shirts and ankle boots. To address this, we propose a 
hierarchical classification approach using the Seo and Shin 
fashion image classification inference. By combining this 
approach with the CCP-3 Block architecture, the model's 
accuracy improves significantly to 94.90%. The hierarchical 
classification effectively reduces misclassifications within 
similar categories, demonstrating the value of categorizing 
visually similar images into a hierarchy for improved accuracy. 
Additionally, pre-defining hierarchical labels of the dataset can 
also be done by the data-driven method before training the 
model we want. By considering the classification of the data 
based on the consideration of the result of the confusion metric. 

TABLE VI. CONFUSION MATRIX OF CLASSIFICATION RESULT WITH FASHION MNIST DATASET USING CCP-3 BLOCK BASE MODEL 

  Predict label 

  T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle Boots 

T
ru

e 
la

b
el

 

T-shirt 896 2 15 10 3 1 69 0 4 0 

Trouser 2 991 2 4 0 0 1 0 0 0 

Pullover 15 1 916 5 44 0 19 0 0 0 

Dress 9 2 7 954 18 0 10 0 0 0 

Coat 0 0 13 19 928 0 40 0 0 0 

Sandal 0 0 0 0 0 989 0 7 0 4 

Shirt 88 0 43 22 49 0 796 0 2 0 

Sneaker 0 0 0 0 0 2 0 989 0 9 

Bag 2 1 1 2 2 1 0 0 991 0 

Ankle Boots 0 0 0 0 0 6 0 34 0 960 

TABLE VII. CONFUSION MATRIX OF CLASSIFICATION RESULT WITH FASHION MNIST DATASET USING H-CNN CCP-3 BLOCK MODEL 

  Predict label 

  T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle Boots 

T
ru

e 
la

b
el

 

T-shirt 898 1 17 8 2 1 71 0 2 0 

Trouser 0 990 0 6 1 0 1 0 2 0 

Pullover 15 1 937 6 19 0 22 0 0 0 

Dress 7 4 8 952 12 0 17 0 0 0 

Coat 0 0 23 11 931 0 35 0 0 0 

Sandal 0 0 0 0 0 991 0 8 0 1 

Shirt 66 0 33 18 40 0 840 0 3 0 

Sneaker 0 0 0 0 0 1 0 990 0 9 

Bag 4 0 0 3 0 1 0 0 992 0 

Ankle Boots 0 0 0 0 0 4 0 26 0 970 
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VII. CONCLUSION 

CNN has been applied in a wide variety of fields as a 
powerful result of the development of deep learning 
techniques. In fashion application, CNN can support human 
tasks in image detection, apparel classification, apparel 
retrieval, and automatic apparel tagging, while the complexity 
of hierarchy and categories is a challenge in fashion 
classification. In the past, a hierarchical image classification 
process was considered in previous studies to improve the 
accuracy of the classification of apparel. Recently, a hierarchy 
was used in the Fashion-MNIST data which is 28 ×28 sized 
grayscale images of 10 classes consisting of 60,000 training 
images and 10,000 test images, where the Hierarchical 
Convolutional Neural Network (H–CNN) was proposed in 
combination with VGGNet architectures (VGG16 and 
VGG19). Each of these deep VGGNet architectures consists of 
five building blocks of multiple convolutional, max-pooling, 
and fully connected layers. However, many filters (in the 
convolution layer) and many neurons (in the fully connected 
layer) of each VGGNet (for the Fashion-MNIST data) a 
required the long training-time. 

This study focuses on designing a new efficient architecture 
for H–CNN to improve not only the accuracy of apparel 
classification but also the training time. Therefore, the CCP-3-
Block architecture was proposed, a shallow-level architecture. 
A new design combines two convolution layers followed by a 
pooling layer, designed with only three blocks followed by 
fully connected layers, and adding batch normalization before 
the activation function so that networks can learn 
independently and train quickly, as well as adding the dropout 
layer in feature extraction and fully connected to reduce 
overfitting. Moreover, an optimizer (adaptive moment 
estimation) is added to solve the decaying of gradients, which 
can improve the overall network performance.  In the 
experiment, the performance was compared of the H-CNN 

CCP-3-Block model and the original H-CNN VGGNet model 
(using VGG16 and VGG19 architectures). The results showed 
that the H–CNN CCP-3Block model performed the better 
performance with lower loss, higher accuracy, and faster 
training time than the original H–CNN (VGG16, VGG19) 
models. This result confirmed the hypothesis that the shallow 
layered CCP-3 Block architecture performs better performance 
than the deep VGGNet architectures in the hierarchical 
classification (H-CNN) of apparel images on the Fashion-
MNIST dataset. Thus, for fashion business/applications, the H–
CNN CCP-3-Block model can be applied on a variety of real 
online apparel images with the hierarchical classification. 
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