
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

207 | P a g e

www.ijacsa.thesai.org

Hierarchical Convolutional Neural Networks using

CCP-3 Block Architecture for Apparel Image

Classification

Natthamon Chamnong
1
, Jeeraporn Werapun

2
, Anantaporn Hanskunatai

3
Data Science and Computational Intelligence Lab-Department of Computer Science-School of Science, King Mongkut‟s Institute

of Technology Ladkrabang, Bangkok, 10520, Thailand
1, 2, 3

Abstract—In fashion applications, deep learning has been

applied automatically to recognize and classify the apparel

images under the massive visual data, emerged on social

networks. To classify the apparel correctly and quickly is

challenging due to a variety of apparel features and complexity of

the classification. Recently, the hierarchical convolutional neural

networks (H–CNN) with the VGGNet architecture was proposed

to classify the fashion-MNIST datasets. However, the VGGNet

(many layers) required many filters (in the convolution layer)

and many neurons (in the fully connected layer), leading to

computational complexity and long training-time. Therefore, this

paper proposes to classify the apparel images by the H–CNN in

cooperated with the new shallow-layer CCP-3-Block

architecture, where each building block consists of two

convolutional layers (CC) and one pooling layer (P). In the CCP-

3-Block, the number of layers can be reduced (in the network),

the number of filters (in the convolution layer), and the number

of neurons (in the fully connected layer), while adding a new

connection between the convolution layer and the pooling layer

plus a batch-normalization technique before passing the

activation so that networks can learn independently and train

quickly. Moreover, dropout techniques were utilized in the

feature mapping and fully connected to reduce overfitting, and

the optimizer adaptive moment estimation was utilized to solve

the decaying of gradients, which can improve the network-

performance. The experimental results showed that the improved

H–CNN model with our CCP-3-Block outperformed the recent

H–CNN model with the VGGNet in terms of decreased loss,

increased accuracy, and faster training.

Keywords—Convolutional neural networks (CNN), hierarchi-

cal CNN (H-CNN), CCP-3 block (two convolutional layers (CC)

and one pooling layer (P) per block), apparel image classification,

fashion applications

I. INTRODUCTION

In the Big-data era, social media platforms generate a
tremendous volume of image data. There have been initiatives
to utilize the valuable image data in a variety of industries,
including the business and medical sectors. Due to a vast
amount of accessible image data for training and the state-of-
the-art technology that provides superior processing capability
via the GPU, the unstructured visual data can now be
implemented in statistical and data mining applications. Under
the GPU technology, it is really simple and fast to analyze the
image data. In a previous study, the image data were analyzed
using traditional machine learning and image processing

techniques [1]. However, typical machine learning and image
processing approaches are still limited in their processing
capabilities when working with large image data. To overcome
the processing restrictions associated with big picture data
analysis, deep learning techniques such as Deep Neural
Networks (DNN) are applied in the form of Convolutional
Neural Networks (CNN) [2]. Currently, a deep learning model,
when applied to the image data, provides a CNN architecture
that performs well in classifying the image data.

Because apparel products in fashion applications are
diverse and difficult to describe, the automatic CNN is
frequently used to classify the apparel image data. A fashion-
classification system uses a hierarchical structure that can be
divided from the coarse to fine hierarchies. Each item in the
fine hierarchy can be defined as a higher-level item, such as a
t-shirt pullover and a shirt. These three different types of shirts
are classified separately but can be combined in the same
coarse layered Tops category because of their similarity.
However, the classification of features for each hierarchy of
items lacks the specific classification criteria and instead is
classified based on similar features [3, 4]. As a result, the better
categorizing the apparel products by using the CNN
architecture is challenging. Applying the efficient CNN
method of image classification, which has the advantage of
assisting in filtering, categorizing, and product inspection,
helps the apparel industry reduce the cost and time, while
improving business efficiency [3, 5]. While CNN approaches
are popular to the categorization of apparel image data, their
tradeoff results (in terms of accuracy and speed) have been
questioned. Therefore, many attempts have been made to
develop more efficient strategies for optimizing the CNN
models for the apparel classification. To improve the
classification accuracy [6], a hierarchical classification strategy
was used to classify the apparel image.

Recently, the fashion images were classified by using a
hierarchical classification system [7]. In a hierarchical structure
of fashion types, the Hierarchical Convolutional Neural
Networks (H-CNN) was proposed and focused on the VGGNet
architecture. The H-CNN was applied to the “Fashion-MNIST”
dataset, an improved public image dataset for direct analysis. It
is a 28 x 28 grayscale image of 10 classes comprised of 60,000
training photos and 10,000 test images, separated into 3 levels
of coarseness: coarse 1, coarse 2, and fine. However, the
existing H-CNN and the VGGNet were computed sequentially
in deep architectures, where the VGGNet (many layers)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

208 | P a g e

www.ijacsa.thesai.org

required many filters (in the convolution layer) and many
neurons (in the fully connected layer), leading to computational
complexity and long training-time. On the other hand, the H-
CNN has not yet been implemented to improve the
performance in shallow architectures.

Therefore, this study proposes to use the H-CNN in
conjunction with our new CCP-3 block architecture, a
minimalistic size founded on the concept of a shallow
architecture (instead of a deep architecture) to achieve the
better performance for not only the accuracy but also the
computing time. Based on the popular models from the LeNet
and AlexNet designs, the new CCP-3 block was introduced by
reducing the number of layers in the network, the number of
filters in the convolution layer, and the number of neurons in
the fully connected layer, along with a new connection
between the convolution layer and the pooling layer. In
addition, a batch normalization technique was employed before
passing the activation function so that networks can learn
independently and train quickly. Moreover, dropout techniques
were utilized in the feature map and fully connected to reduce
overfitting, and the optimizer adaptive moment estimation was
utilized to solve the decaying of gradients. In this study, the
hypothesis is that “the integration of selected appropriate
architectures in the H-CNN can improve the network
performance”. In the performance evaluation, The CCP-3
Block architecture has been implemented in the H-CNN model
to observe the improvement of the classification accuracy for
the apparel image data and observe the speedup of the training
time (on the GPU machine) in an experiment. Performance
results showed that the CCP-3 Block architecture in the H-
CNN model decreases training time significantly and improves
the classification accuracy for apparel picture data over the
recent VGGNet architecture in the existing H-CNN.

In summary, the main contributions of this study are as
follows:

 This study proposes a novel CCP-3 Block architecture
to optimize the H-CNN model for the efficient
classification of the apparel images.

 This study compares the performance of the H-CNN
models based on the existing VGGNet architecture and
new CCP- 3 Block architecture.

The remainder sections of this paper are organized as
follows. Section II summarizes the CNN architectures and the
related works. Section III presents the proposed CCP-3 Block
architecture. Section IV illustrates the experiment on the
fashion-MINIST dataset. Section V presents the experimental
results and Section VI discusses the conclusion of this study
and the future study.

II. RELATED WORKS

In this section, an overview of the convolutional neural
networks (CNN), the modern CNN architectures, and the
optimization techniques of CNN are reviewed and a related
work, called the hierarchical CNN (H-CNN) using VGG16 and
VGG19 architectures, was presented to classify the apparel
images.

A. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a neural network
model of the human-vision emulation that perceives a space as
sub-sectors and integrates the sub-sectors together to identify
“what is visible”. Human perceptions of sub-areas are shaped
by sub-area features, such as lines and color contrasts. Humans
recognize that “the focused area is defined by a straight line or
a contrasting color” because they combine both of the

interested area and the surrounding area concurrently [8, 9].
The construction of CNN is divided into two main components
[10-12]: 1. the first one is the feature extraction layer (for
extracting features) and 2. the subsequent section is the
classification layer (to educate and classify), which will ensure
that the connection layer is fully connected. In the feature
extraction layer, there are three sub-layers: Convolution Layer,
ReLU (Rectified Linear Units) Layer, and Pooling Layer. In
the classification layer, there is only one fully connected layer,
which resembles a node in the neural network. Each of those
layers has the particular and different functions.

Fig. 1. Structure of CNN.

Fig. 1 describes the standard structure of the CNN, which
consists of the following layers:

1) Input layer: Read the input data of the image and pass

it to the neural network.

2) Convolutional layer: Create a sliding window (filter or

kernel) that scans the input image to make a feature map.

Initially, it scans the image to extract image elements such as

borders, colors, and shapes, where the working principle starts

with the convolution of the existing input image with the

kernel and shifting it to the position of the next kernel. By

scrolling the kernel position, the scroll distance can be

adjusted. Repeat the same process, until all points of the input

image are concerned. The convolution using the formula given

below.

 () (1)

 () = ∑ ∑

 (2)

 refers to the result of convolution at any position. refers
to image input. refers to kernel. refers to any position.
 refers to the number of rows and columns.

3) Rectified linear unit (ReLU): Perform a nonlinear

activation function. The function given below

Feature Maps

Feature Extraction

Kernel
Convolution + ReLU Convolution + ReLU

Pooling Pooling

Flatten

Output

Classification

Fully Connected

Input

T-Shirt

Pullover

Shirt

Trouser

Dress

Coat

Bag

Sandal

Sneaker

Ankle boot

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

209 | P a g e

www.ijacsa.thesai.org

 () () (3)

4) Pooling layer: After the Convolutional layer(s) in the

structure of a CNN, a Pooling layer is inserted. It calculates

the maximum or average of the input and reduces the output

of the Convolutional layers by sliding the filter with a specific

shape and stride size.

5) Fully connected layer: Configure the output and

display in the form of a multiclass logistic classifier.

6) Output Layer: Display the results of the classification.

However, CNNs can have different layer elements in different

architectures because each CNN consists of a layer

convolutional for creating feature maps and pooling for the

dimensionality of feature maps. By stacking these layers [7],

we can formulate various CNN architectures.

B. Architectures of Convolutional Neural Networks

1) LeNet architecture: The study to optimize the CNN

model with a very well-structured architecture is another

possibility to increase the performance of the CNN model.

LeCun et al., [13] developed LeNet-5 in 1998, a network

based on the CNN concept. In the convolutional layer, there

are seven classification levels for numbers. Numerous banks

employ it to identify the handwritten digits on digital checks

using a 32x32 pixel image. Increasing the processing

capability of higher resolution images requires a larger neural

network layer and many layers. The LeNet-5 architecture is

composed of two convolutional layers, two pooling layers, and

three fully connected layers.

Fig. 2. Architecture of LeNet-5.

Fig. 2 describes the structure of LeNet-5 architecture. There
are three convolution layers within the architecture, with two
pooling and two fully connected. In each of the three
convolution layers, the kernel size is 5x5 and the number of
strides is 1. The distinction lies in the number of filters, with
the first layer, second, and third having 6, 16, and 120 filters,
accordingly. In the pulling layer, the kernel size is 2x2 and the
number of strides is 2, which is identical to both layers. In a
fully connected layer, the number of neurons in the first is 84,
whereas the number of neurons in the second is dependent on
the number of outputs. Sigmoid will be used as the activation
function.

2) AlexNet architecture: AlexNet is a neural network,

developed in 2012 by Krizhevsky et al., [14] which was

intended to classify 1.2 million high-resolution images with

dimensions of 224x224x3, with images classified into 22,000

different classes. AlexNet achieves a top-5 test error rate of

16.4% in the ImageNet LSVRC-2012 contest. The AlexNet

architecture is composed of 5 convolutional layers, 3 pooling

layers, and 3 fully connected layers. In addition, it uses

Rectified Linear Unit (ReLU) for the nonlinearity function,

which is faster than Hyperbolic Tangent (tanh) function.

Fig. 3. Architecture of AlexNet.

Fig. 3 describes the structure of AlexNet architecture.
There are five convolution layers in the architecture, with three
pooling and three fully connected. The kernel sizes for the first
and second convolution layers are 11x11 and 5x5, while the
kernel sizes for the third, fourth, and fifth layers are all 3x3. In
five convolution layers, there are 96, 256, 384, 384, and 256
filters, respectively, with the first layer the number of strides is
1, and in the remaining four layers, the strides are 4. In the
pulling layer, the kernel size is 3x3 and the number of strides is
3, which is identical to all layers. In a fully connected layer, the
number of neurons in the first and second is 4096, and the third
is dependent on the number of outputs. However, in this
architecture, the dropout rate is 0.5 and the activation function
is used as ReLU.

3) VGGNet architecture: VGGNet was invented by the

Visual Geometry Group as an architecture standard of deep

convolutional neural network (deep CNN) with multiple

layers. The most popular depth of the VGGNet architecture is

VGG16 and VGG19 because the VGG16 and VGG19

architectures are the basis of ground-breaking object

recognition models. The VGGNet architecture, developed as a

deep neural network to surpass baselines on many tasks and

datasets beyond ImageNet, consists of 16 and 19 layers of

convolutional and fully connected layers. In competitive

LSVRC-2014, the VGGNet won the 1
st
 runner-up with less

than 10% error rate and deeper layers containing 16

convolutional and fully connected layers. It uses 3 ×3 sized

filters, a stride of 1 and 2 ×2 sized pooling, and a stride of 2

from the beginning to the end of the network. It also uses

ReLU for nonlinearity function and is trained by batch

stochastic gradient descent [15]. The structures of the VGG16

and VGG19 architectures are shown in Fig. 4 and Fig. 5.

In
p

u
t

Im
ag

e

C
on

vo
lu

ti
on

 w
it

h
 5

x5
 k

er
n

el
, 6

 f
il

te
rs

, a
n

d
 s

tr
id

e
1

P
oo

li
n

g
w

it
h

 2
x2

 k
er

n
el

, a
n

d
 s

tr
id

e
2

D
en

se
:

84
 f

u
ll

y
co

n
n

ec
te

d
 n

eu
ro

n
s

si
gm

oi
d

C
on

vo
lu

ti
on

 w
it

h
 5

x5
 k

er
n

el
, 1

6
fi

lt
er

s,
 a

n
d

 s
tr

id
e

1

P
oo

li
n

g
w

it
h

 2
x2

 k
er

n
el

, a
n

d
 s

tr
id

e
2

si
gm

oi
d

C
on

vo
lu

ti
on

 w
it

h
 5

x5
 k

er
n

el
, 1

20
 f

il
te

rs
, a

n
d

 s
tr

id
e

1

D
en

se
:

10
 f

u
ll

y
co

n
n

ec
te

d
 n

eu
ro

n
s

si
gm

oi
d

, f
la

tt
en

si
gm

oi
d

Fully Connected LayersFeature Extraction

In
p

u
t

Im
a

g
e

C
o
n

v
o
lu

ti
o

n
 w

it
h

 1
1
x

11
 k

er
n

el
,

9
6
 f

il
te

rs
,

a
n

d
 s

tr
id

e
4

P
o

o
li

n
g

 w
it

h
 3

x
3

 k
er

n
el

,
a

n
d

 s
tr

id
e

2

R
eL

U

P
o
o

li
n

g
 w

it
h

 3
x
3

 k
er

n
el

,
a
n

d
 s

tr
id

e
2

C
o

n
v

o
lu

ti
o

n
 w

it
h

 5
x

5
 k

er
n

el
,

2
5

6
 f

il
te

rs
,

a
n

d
 s

tr
id

e
1

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

er
n

el
,

3
8

4
 f

il
te

rs
,

a
n

d
 s

tr
id

e
1

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

er
n

el
,

3
8

4
 f

il
te

rs
,

a
n

d
 s

tr
id

e
1

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

er
n

el
,

2
5

6
 f

il
te

rs
,

a
n

d
 s

tr
id

e
1

P
o

o
li

n
g

 w
it

h
 3

x
3

 k
er

n
el

,
a

n
d

 s
tr

id
e

2

D
en

se
:

4
0

9
6

 f
u

ll
y

 c
o

n
n

ec
te

d
 n

eu
ro

n
s

D
en

se
:

1
0

0
0

 f
u

ll
y

 c
o

n
n

ec
te

d
 n

eu
ro

n
s

D
en

se
:

4
0

9
6

 f
u

ll
y

 c
o

n
n

ec
te

d
 n

eu
ro

n
s

R
eL

U

R
eL

U

R
eL

U

R
eL

U

fl
a

tt
en

R
eL

U
,

d
ro

p
o

u
t

p
 =

 0
.5

R
eL

U
,

d
ro

p
o

u
t

p
 =

 0
.5

Fully Connected LayersFeature Extraction

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

210 | P a g e

www.ijacsa.thesai.org

Fig. 4. Architecture of VGG16.

Fig. 5. Architecture of VGG19.

The number 16 and 19 in the name VGG (Visual Geometry
Group) refer to the depth of 16 and 19 layers in the deep CNN.
This means that VGG16 and VGG19 are extensive networks,
where each of them has a total of around 138 million
parameters. While VGGNet is popular in the modern standard,
it is a huge network. However, the simplicity of the VGGNet
architecture makes this network being more appealing. For
example, there are a few convolution layers followed by a
pooling layer that reduces the height as well as the width.
When considering the number of filters, 64 filters are available
and can be double to 128 filters and 256 filters. Finally in the
last layer, we can use 512 filters.

In summary, the major differences of three architectures
(LeNet, AlexNet, VGGNet) are focused on the architecture
size and the activation function. In the initial periods of CNNs,
the CNN architecture was a small structure with limited
computational resources. Later, the larger CNN architectures
have been constructed in response to the development of
computational resources to be able to support the larger
architecture designs. However, in this era the development of
many CNN designs aims to decrease loss and increase
accuracy, while being able to train models in fast or efficient
time.

C. Guide to Improving CNN

1) Optimizer: Optimizers can be explained as a

mathematical function to modify the weights of the network,

according to the gradients and additional information, which

depend on the formulation of the optimizer. The optimizers

are built upon the idea of gradient descent, the greedy

approach of iteratively decreasing the loss function by

following the gradient. However, different optimizers will

affect the model sensitivity and learning accuracy [16-19]. As

a result, it is essential to use an appropriate optimizer for data

and developed models.

2) Regularization: Regularization is the process of

learning from the training datasets and modifying the model to

be more efficient at predicting and reducing loss from the

unseen data. The regularization is used to solve the issues of

underfitting or overfitting. To address the underfitting problem

of the neural network model, usually the number of layers and

nodes in each layer can be increased but this can cause the

overfitting [20-22]. Therefore, the regularization is a

frequently mentioned solution, which is very simple to be

implemented. The regularization technique consists of

augmentation, batch normalization, and dropout, where their

functions are defined as follows:

a) Augmentation: Augmentation is a technique to

increasing the amount of data to train by generating the more

data. In the case of image data, increasing a variety of images

includes rotating images, zooming images, shifting images

horizontally, shifting images vertically, and shear images.

b) Batch normalization: Batch Normalization is a

technique for scaling the data to adjust their values to the

specified limits before exporting from the node to the next

layer input. For example, a feature engineering procedure

converts the grayscale image from 0-255 to 0-1 by dividing

the original color value by 255. For data normalization,

several well-known methods can be utilized, such as min-max

normalization or standardization.

c) Dropout: Dropout is an effective process of

regularizing neural networks to avoid the overfitting. During

training, the dropout layer cripples the neural network by

removing the hidden units stochastically.

fl
a
tt

en

In
p

u
t

Im
a
g
e

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a
x
 p

o
o
li

n
g
 3

x
3
,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a
x
 p

o
o
li

n
g
 3

x
3
,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a
x
 p

o
o
li

n
g
 3

x
3
,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a
x
 p

o
o
li

n
g
 3

x
3
,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

D
en

se
 4

0
9
6
 /

B
a
tc

h
 N

o
rm

 /
D

ro
p

o
u

t
0
.5

D
en

se
 4

0
9
6
 /

B
a
tc

h
 N

o
rm

 /
D

ro
p

o
u

t
0
.5

D
en

se
 1

0

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a

x
 p

o
o

li
n

g
 3

x
3

,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

Fully Connected LayersFeature Extraction

fl
a

tt
en

In
p

u
t

Im
a

g
e

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a

x
 p

o
o

li
n

g
 3

x
3

,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a
x
 p

o
o

li
n

g
 3

x
3
,
st

ri
d

e
2

C
o
n

v
o

lu
ti

o
n

 3
x

3
,
fi

lt
er

s
6

4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o

n
 3

x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a
x
 p

o
o

li
n

g
 3

x
3

,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o

n
 3

x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a
x
 p

o
o

li
n

g
 3

x
3
,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

D
en

se
 4

0
9
6

 /
B

a
tc

h
 N

o
rm

 /
D

ro
p

o
u

t
0

.5

D
en

se
 4

0
9
6

 /
B

a
tc

h
 N

o
rm

 /
D

ro
p

o
u

t
0
.5

D
en

se
 1

0

C
o
n

v
o
lu

ti
o
n

 3
x

3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o
n

 3
x

3
,
fi

lt
er

s
6
4
 /

R
u

L
U

M
a
x
 p

o
o
li

n
g
 3

x
3
,
st

ri
d

e
2

C
o
n

v
o
lu

ti
o
n

 3
x

3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o

lu
ti

o
n

 3
x

3
,
fi

lt
er

s
6
4

 /
R

u
L

U

C
o
n

v
o
lu

ti
o
n

 3
x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

C
o
n

v
o
lu

ti
o

n
 3

x
3
,
fi

lt
er

s
6
4
 /

R
u

L
U

Fully Connected LayersFeature Extraction

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

211 | P a g e

www.ijacsa.thesai.org

3) Efficient shallow learning as an alternative to deep

learning: In 2022, Y. Meir et al. [23] discusses the realization

of complex classification tasks using deep learning

architectures with many convolutional and fully connected

hidden layers. The authors demonstrate that with a fixed ratio

between the depths of the first and second convolutional

layers, the error rates of shallow architectures like the LeNet

and VGG-16 can decay as a power law with the number of

filters in the first convolutional layer. This phenomenon

suggests a quantitative hierarchical time-space complexity

among machine learning architectures and calls for further

examination using various databases and architectures. The

conservation law along the convolutional layers is found to

minimize error rates. The study emphasizes the efficient

shallow learning and its potential for implementation using

dedicated hardware developments.

D. Hierarchical Classification

Hierarchical classification is a system of grouping things
(or objects) according to a hierarchy, such as levels and orders.
A hierarchical classifier classifies the input data according to
the output categories, which are defined subsumptively.
Classification begins at a basic level with the fine-detailed
input data. The classifications of the separate bits of the image
data are then integrated and elevated to a higher level
iteratively until a single or defined output is obtained. This
final output represents the overall result of the data
classification.

In 2015, Yan et al. [24] proposed the first trial of
hierarchical image classification using a deep learning
approach. To resolve class confusion in the proposed model,
Hierarchical Deep Convolutional Neural Networks (HD-CNN)
employed an initial coarse classifier CNN to differentiate easily
separable classes (or coarse classes) from fine classes.
Additionally, the HD-CNN model could be implemented
without increasing the training complexity. However, that
model encountered some limitations, which were that it
required two steps of training. The first step was to train the
coarse and fine categories and the second step was to fine-tune
the coarse and fine categories. Moreover, the HD-CNN model
could not be used to classify many levels of hierarchy since it
included one coarse category and one fine category only for an
overall of two levels.

Later in 2017, the Branch Convolutional Neural Network
(B-CNN) was proposed by Zhu and Bain [25] to solve the
limitation of HD CNN.

Due to previous CNN research during 2015 - 2019, the
hierarchical CNN study along with the particular application
could improve the accuracy in the experiment. Therefore,
implementing the hierarchical classification to optimize the
CNN models to respect the diversity of datasets, applications,
and CNN architectures is interesting.

In 2019, Seo and Shin [7] introduced the Hierarchical
Convolutional Neural Networks (H-CNN) for the categorization
of fashion images in the Fashion MNIST image data, where the
fashion imagery obtained from Zalando is similar to the MNIST
Dataset's handwritten numeric dataset, a refined fashion image.

That study employed the large-scale VGGNet neural networks
as an experimental model. In performance evaluation (on the
Fashion-MNIST dataset), accuracy results of the usage of H-
CNN under the VGGNet architecture outperformed those of the
simple VGGNet network.

In 2021, Q. Zhu et al. [26] discusses the use of drone
imagery in automated inspection for surface defects in
infrastructure. The proposed approach in the paper is a deep
learning method that uses hierarchical convolutional neural
networks with feature preservation (HCNNFP) and an
intercontrast iterative thresholding algorithm for image
binarization. The technique is applied to identify surface cracks
on roads, bridges, or pavements, and is compared with existing
methods on various datasets using evaluation criteria including
the average F-measure. The proposed technique outperforms
existing methods on various tested datasets, especially for the
GAPs dataset, demonstrating the merits of the proposed
HCNNFP architecture for surface defect inspection.

This study is interested in developing the H-CNN
(Hierarchical CNN) under the more efficient architectures for
the fashion applications (in Section III). Therefore, the
previous study [7] is the main related work, see detail in
Section II E.

E. Original Hierarchical Convolutional Neural Network (H –

CNN) Model

With regards to the original H-CNN model under VGG16
and VGG19 architectures [7], both VGG16 and VGG19 are
composed of five building blocks as shown in Fig. 6 and Fig. 7.

Fig. 6. Architecture of VGG16 H–CNN model.

Fig. 7. Architecture of VGG19 H–CNN model.

In the VGG16 H–CNN model, the first and second building
blocks consist of two convolutional layers and 1 pooling layer,
the third and fourth blocks consist of 3 convolutional layers
and 1 pooling layer, and the fifth building block has 3
convolutional layers.

Block 1

3x
3

co
n

v.
 6

4

3x
3

co
n

v.
 6

4

2x
2

m
ax

-p
oo

li
n

g

Block 3

3x
3

co
n

v.
 2

56

3x
3

co
n

v.
 2

56

2x
2

m
ax

-p
oo

li
n

g

3x
3

co
n

v.
 2

56

Block 2
3x

3
co

n
v.

 1
28

3x
3

co
n

v.
 1

28

2x
2

m
ax

-p
oo

li
n

g

Block 4

3x
3

co
n

v.
 5

12

3x
3

co
n

v.
 5

12

2x
2

m
ax

-p
oo

li
n

g

3x
3

co
n

v.
 5

12

Block 5

3x
3

co
n

v.
 5

12

3x
3

co
n

v.
 5

12

Input Image

28x28

3x
3

co
n

v.
 5

12

Prediction

256 256 2

Coarse 1

Block

Prediction

1024 1024 6

Coarse 2

Block

Prediction

4096 4096 10

Fine

Block

Block 1

3x
3

co
n

v.
 6

4

3x
3

co
n

v.
 6

4

2x
2

m
ax

-p
oo

li
n

g

Block 3

3x
3

co
n

v.
 2

56

3x
3

co
n

v.
 2

56

3x
3

co
n

v.
 2

56

Block 2

3x
3

co
n

v.
 1

28

3x
3

co
n

v.
 1

28

2x
2

m
ax

-p
oo

li
n

g

Block 4

3x
3

co
n

v.
 5

12

3x
3

co
n

v.
 5

12

2x
2

m
ax

-p
oo

li
n

g

3x
3

co
n

v.
 5

12

Block 5

3x
3

co
n

v.
 5

12

3x
3

co
n

v.
 5

12

Input Image

28x28 2x
2

m
ax

-p
oo

li
n

g

3x
3

co
n

v.
 2

56

3x
3

co
n

v.
 5

12

3x
3

co
n

v.
 5

12

3x
3

co
n

v.
 5

12

Prediction

256 256 2

Coarse 1

Block

Prediction

1024 1024 6

Coarse 2

Block

Prediction

4096 4096 10

Fine

Block

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

212 | P a g e

www.ijacsa.thesai.org

In the VGG19 H–CNN model, the first and second building
blocks have 2 convolutional layers and 1 pooling layer, the
third and fourth blocks have 4 convolutional layers and 1
pooling layer, and the fifth building block consists of 4
convolutional layers.

The filter size and number of filters in the convolution layer
are the same for both VGGNet architectures, with the filter size
being 3x3 throughout the model. For the number of filters, they
can be divided as follows: In the first block, there are 64 filters,
the second block 128 filters, the third block 256 filters, and the
fourth and fifth blocks 512 filters.

Moreover, these H–CNN models also use ReLU for
activation function, batch normalization for initialization, and
dropout for regularization. In the final block denoted as the fine
prediction block, the softmax function is used to classify 10
fine classes.

However, this model has three additional blocks below
followed by a prediction block. In each block, there are labels
for 3 levels of classification, which makes it different from the
basic model. The first block is for course-level, the second
block is for course-level, and the last block is for fine-level. All
three additional blocks are composed of fully connected neural
networks. As the input image goes through the H–CNN model,
three prediction values of coarse 1 level, coarse 2 level, and
fine level will be computed in order. For example, when an
input image of a sweater is inserted, the first coarse level block
will indicate „clothes‟, the second coarse level block will
indicate „tops‟, and the final block will indicate „pullover‟ as
output predictions.

III. PROPOSED METHOD

Applying the convolutional neural network (CNN),
especially the efficient deep learning, to fashion applications
(to achieve not only the high accuracy but also the fast
training) is challenging under the massive visual data emerged
on the current social networks. Recently (2019), the
hierarchical CNN (H–CNN) was proposed to classify the
fashion-MNIST datasets with a capability of high accuracy.
However, in that H-CNN the applied VGGNet (the deep
architecture) is composed of many layers, many filters (in the
convolution layer), and many neurons (in the fully connected
layer), leading to computational complexity and long training-
time.

According to the hypothesis (in the fashion classification)
believe that the shallow architecture plus a few proper
functions can yield good results as the deep architecture, while
can take faster training-time to solve computational complexity
problems. In benefit summary of existing architectures, the
(deep) VGGNet architecture requires many layers, many
filters, and many neurons with long training-time for high
accuracy, while the (shallow) AlexNet architecture require less
training time (with shallow layers) but less accuracy.
Therefore, we focus on studying the novelty and strength of the
architecture for the H-CNN model to decrease loss, increase
accuracy, and fast training-time.

This study proposes to classify the apparel images with the
H–CNN model using the new CCP-3 Block architecture to
retain the accuracy as the VGGNet architecture within the less

training-time as the AlexNet architecture, where each building
block consists of double convolutional layers (CC) and one
pooling layer (P). As mentioned earlier, our proposed CCP-3
Block architecture was inspired by the fast LeNet and AlexNet
microarchitectures (with shallow layers).

In Section III A, the new CCP-3 Block architecture is
proposed first for classifying the apparel/fashion image. In
Section III B, the H–CNN model using the CCP-3 Block
architecture is presented for the completed classification. In
Section 4, the experiment is conducted on the fashion-MNIST
datasets to compare the performance of CCP-3 Block
architecture. Finally, the experimental results are presented in
Section V.

A. CCP-3 Block Architecture

The CCP-3 Block architecture is a shallow-layer
architecture, see details in Fig. 8, which can reduce the number
of layers (in the network), the number of filters (in the
convolution layer), and the number of neurons (in the fully
connected layer) of the deep-layer architecture, while adding a
new connection between the convolution layer and the pooling
layer.

The CCP-3 Block architecture has only three blocks shown
in Fig. 9. Each building block consists of two convolutional
layers and one pooling layer. The 3×3 sized filters with a stride
of 1 are used in all convolutional layers. In the first building
block, 64 filters are concatenated and in the second block, first
convolution has 128 filters, second convolution has 256 filters
and 512 filters in the third block. For the pooling layers, the
2×2 size max-pooling is done with a stride of 2. In a fully
connected layer, there are 3 layers, where in the first and
second layers we define the number of neurons as 1024
neurons, and in the last layer, we define 10 neurons into 10
classes using the softmax function.

Moreover, ReLU was used for the activation function,
batch normalization for initialization, and dropout for
regularization. In the structure of CCP-3 Block architecture,
batch normalization will be implemented in order to ensure that
for any parameter value after the convolution layer, the
network always produces activations with the desired
distribution. So, the batch normalization layer is inserted right
after the convolution layer, but before feeding into ReLu
activation [27]. To reduce overfitting, dropout was added into
both building blocks and the fully connected layer. In the
building block, dropout was defined between the convolution
layer and after the pooling layer. The fully connected, dropout
was defined after batch normalization layer. Throughout the
architecture, we set the dropout value to 0.3.

Fig. 8. Details of CCP-3 block architecture.

In
p

u
t

Im
a

g
e

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 6
4

 f
il

te
r
s,

 a
n

d
 s

tr
id

e
 1

R
e
L

U
,
d

ro
p

o
u

t
p

 =
 0

.3

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 6
4

 f
il

te
r
s,

 a
n

d
 s

tr
id

e
 1

B
a

tc
h

 n
o

r
m

a
li

z
a

ti
o

n

B
a

tc
h

 n
o

r
m

a
li

z
a

ti
o

n

R
e
L

U

M
a

x
 p

o
o

li
n

g
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 a
n

d
 s

tr
id

e
 2

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 1
2

8
 f

il
te

r
s,

 a
n

d
 s

tr
id

e
 1

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 2
5

6
 f

il
te

r
s,

 a
n

d
 s

tr
id

e
 1

B
a

tc
h

 n
o

r
m

a
li

z
a

ti
o

n

B
a

tc
h

 n
o

r
m

a
li

z
a

ti
o

n

R
e
L

U

M
a

x
 p

o
o

li
n

g
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 a
n

d
 s

tr
id

e
 2

d
ro

p
o

u
t

p
 =

 0
.3

R
e
L

U
,

d
ro

p
o

u
t

p
 =

 0
.3

d
ro

p
o

u
t

p
 =

 0
.3

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 5
1

2
 f

il
te

r
s,

 a
n

d
 s

tr
id

e
 1

R
e
L

U
,

d
ro

p
o

u
t

p
 =

 0
.3

C
o

n
v

o
lu

ti
o

n
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 5
1

2
 f

il
te

r
s,

 a
n

d
 s

tr
id

e
 1

B
a
tc

h
 n

o
r
m

a
li

z
a
ti

o
n

B
a

tc
h

 n
o

r
m

a
li

z
a

ti
o

n

R
e
L

U

M
a

x
 p

o
o

li
n

g
 w

it
h

 3
x

3
 k

e
r
n

e
l,

 a
n

d
 s

tr
id

e
 2

d
ro

p
o

u
t

p
 =

 0
.3

,
fl

a
tt

e
n

D
e
n

se
:

1
0

2
4

 f
u

ll
y

 c
o

n
n

e
c
te

d
 n

e
u

ro
n

s

B
a

tc
h

 n
o

r
m

a
li

z
a

ti
o

n

d
ro

p
o

u
t

p
 =

 0
.3

D
e
n

se
:

1
0

2
4

 f
u

ll
y

 c
o

n
n

e
c
te

d
 n

e
u

ro
n

s

B
a

tc
h

 n
o

r
m

a
li

z
a

ti
o

n

d
ro

p
o

u
t

p
 =

 0
.3

D
e
n

se
:

1
0

 f
u

ll
y

 c
o

n
n

e
c
te

d
 n

e
u

ro
n

s

Block 1 Block 3Block 2 Fully Connected Layers

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

213 | P a g e

www.ijacsa.thesai.org

B. H-CNN using CCP-3 Block Architecture

The H-CNN model was implemented in conjunction with
CCP-3 Block architecture by adding additional blocks below
each main block, followed by a prediction block, shown in Fig.
9. The additional blocks have the same functions and
properties as those blocks in the original H-CNN. Each
additional block contains labels indicating one of three
classification levels. The first block is intended for course-level
instruction, the second block is intended for course-level
instruction, and the final block is intended for fine-level
instruction. Each of these three blocks is composed entirely of
fully connected neural networks. As the input image passes
through the H–CNN model, three prediction values will be
computed in order: coarse 1 level, coarse 2 levels, and fine
level.

Fig. 9. Architecture of H–CNN CCP-3 block model.

IV. EXPERIMENTS

To evaluate the performance of CCP-3 block architecture,
the H-CNN model was implemented in incorporated with
CCP-3 Block architecture. The experimental results were
compared to those of the original H-CNN model using VGG16
and VGG19 architectures on the same environment. See the
improved results in Section V in terms of increased accuracy
and decreased computing-time.

A. Environment Setup

This experiment implemented and operated the above 3-
model programs on the google colaboratory. This
programming environment investigated a GPU runtime (speed
up execution), the GPU machine used in this operation is the
Tesla P100-PCIe.

B. Dataset

This paper uses Fashion MNIST image dataset (see Table
I). This fashion image dataset is collected from Zalando, which
is similar to the MNIST dataset handwritten digit classification.
In this standard dataset, each grayscale image is a square size
of 28 ×28 pixels and all images are divided into 10 classes: t-
shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
and ankle boot. Each class contains an equal number of
samples. The 60,000 samples are used for training and the
10,000 samples are used for testing. In the hierarchical

structure, these 10 classes can be restructured into two coarse
classes and one fine class as shown in Fig. 10.

Each first-level coarse class consists of the second-level
coarse classes and each second-level class consists of the fine-
level classes. The first-level coarse class consists of 'clothes'
and 'goods'. In the second-level coarse class, the 'clothes'
contain 'tops', 'bottoms', 'dresses', and 'outers' as well as the
'goods' contain 'accessories' and 'shoes'. Below the second-level
coarse classes, there are fine-level classes consisting of 't-shirt',
'pullover', and 'shirt' in 'tops', 'trouser' in 'bottoms', 'dress' in
'dresses', 'coat' in „outers', 'bag' in 'accessories'; 'sandals',
'sneaker', and 'ankle boots' in 'shoes'. For hierarchical matching
in the H-CNN models, the first-level coarse classes are
represented by green, second-level classes are represented by
pink, and fine-level classes are represented by blue [7]. Each
color in Fig. 10 matches the original H-CNN models in Fig. 6

and Fig. 7 and the H-CNN using CCP-3 Block architecture in
Fig. 9.

TABLE I. FASHION-MNIST DATASET

Label Description Example

0 T-Shirt/Top

1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandals

6 Shirt

7 Sneaker

8 Bag

9 Ankle boots

Fig. 10. Hierarchical classes of dataset of the original H-CNN.

C. Parameter Setting

1) Parameter setting of the original H-CNN using VGG16

and VGG19 [7, 16, 28, 29]: To train two original H-CNN

models, the parameters were set as follows: A number of

epochs were set to 60 times and the size of the batch was set to

Block 1

3x
3

co
n

v.
 6

4

3x
3

co
n

v.
 6

4

2x
2

m
ax

-p
oo

li
n

g

Input Image

28x28

3x
3

co
n

v.
 1

28

2x
2

m
ax

-p
oo

li
n

g

3x
3

co
n

v.
 2

56

3x
3

co
n

v.
 5

12

3x
3

co
n

v.
 5

12

2x
2

m
ax

-p
oo

li
n

g

Block 2 Block 3

Prediction

1024 1024 2

Coarse 1

Block

Prediction

1024 1024 6

Coarse 2

Block

Prediction

1024 1024 10

Fine

Block

Clothes

Goods

Tops

Bottoms

Dresses

Outers

Accessories

Shoes

T-Shirt

Pullover

Shirt

Trouser

Dress

Coat

Bag

Sandal

Sneaker

Ankle boot

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

214 | P a g e

www.ijacsa.thesai.org

128. There were variations in learning rate as 0.001 used in

the initial stages, 0.0002 after the 42
th

 epoch, and 0.00005

after the 52
th

 epoch. Stochastic gradient descent was applied

by using 0.9 of momentum. To reflect differences in the

importance of each level of the class the loss weight values

were added when training models. The changes in loss

weights were set to [0.98, 0.01, 0.01] in the first epoch, [0.10,

0.80, 0.10] in the 15
th

 epoch, [0.1, 0.2, 0.7] in the 25
th

epoch,

[0, 0, 1] in the 35
th

 epoch.

2) Parameter setting of the H-CNN using CCP-3-Block:

In this study, we set similar parameters as the original H-CNN

models, such as a number of epochs, learning rates, the

changes in loss weights. However, the stochastic gradient

descent is not used in the model because the architecture of

the CCP-3 block is small. In addition, an appropriate

optimizer was used to reduce overall losses and improve

accuracy [30, 31]. Adaptive moment estimation is applied by

using 0.9 of beta1, 0.999 of beta2, and 1e-07 of epsilon.

V. RESULTS

In order to evaluate the performance of the H-CNN model
using CCP-3 Block architecture, the performance was
compared of the H-CNN CCP-3 Block model to the original H-
CNN models using VGG16 and VGG19 architectures. Table II
shows the results (the final loss, accuracy of the test, and the

training time) of each model. The CCP-3 Block architecture

has a loss of 0.2714, while the VGG16 and VGG19

architectures have the loss of 0.3781 and 0.3863. About the

accuracy of 0.9490, while the others have the accuracy of

0.9352 and 0.9341. The CCP-3 Block model has the fastest
training time of 18.21 minutes, while the others have 20.33 and

27.28 minutes (H-CNN CCP-3 Block is 10.32 percent faster
than H-CNN VGG16 and 32.87 percent faster than H-CNN

VGG19.). In comparison, the CCP-3 Block model has lower
loss, greater accuracy, and less training time than the other two
models.

Table III shows the test accuracy results (0.8970-0.9410) of
previous researches (i.e., data mining methods and other CNN
models), compared to the test accuracy (0.9490) of the CCP-3
Block architecture on the Fashion MNIST dataset. The existing
CNN2 and CNN2 + BatchNorm + Skip models were presented
by Bhatnagar, Ghosal, and Kolekar (2017), where the CNN
model consisting of two convolutional and max-pooling layers
(or CNN2), trained by batch normalization (or BatchNorm)
with residual skip connections (or skip) to compare the results
with those of Support Vector Classifier (SVC) and
Evolutionary Deep Learning (EDEN). Later, the accuracy

results were improved by the VGG16 and VGG19 based
models. Finally, the accuracy result was improved by the CCP-

3 Block based model and in this study the CCP-3 Block
architecture could generate the best test accuracy when
combined with the hierarchical CNN (H-CNN) model.

This study focused to improve the H–CNN model by using
the CCP-3 Block architecture over the VGGNet architecture
(VGG16 and VGG19). Overall, the loss and accuracy were
compared (in training and testing) of each H-CNN model in
Table IV. For testing set, the H–CNN using the CCP-3 Block

architecture (H-CNN CCP-3 Block) has lower loss (0.2714)
than those (0.3781 and 0.3863) of VGG16 and VGG19 and
higher accuracy (0.9490) than those (0.9352 and 0.9341) of
VGG16 and VGG19. However, when looking at the training
set, the H-CNN CCP-3 Block model had a loss of 0.0218 and
an accuracy of 0.9920, while the original H-CNN (VGG16,
VGG19) models have the better training results because in the
H–CNN CCP-3 Block model we added the dropout to both of
the building block and in the fully connected layer to solve the
overfitting problem, leading to a reliable final-loss and a
realistic accuracy (0.9920 < 1.0 (overfitting)) in the training but
the better performance in the testing (on the unseen data) with
the less final-loss and the higher accuracy.

TABLE II. THE COMPARISON OF FINAL LOSS, ACCURACY, AND TRAINING

TIME OF THE EXISTING H-CNN MODELS (H–CNN VGG16, H–CNN VGG19)

AND OUR H–CNN CCP-3 BLOCK MODEL

Model Test Training

Time

(minutes)
Loss Accuracy

H-CNN VGG16 0.3781 0.9352 20.33

H-CNN VGG19 0.3863 0.9341 27.28

H-CNN CCP-3-Block 0.2714 0.9490 18.21

TABLE III. THE COMPARISON OF CLASSIFICATION RESULTS ON FASHION

MNIST DATASET BY PREVIOUS AND OUR RESEARCHES

Model Test accuracy

SVC 0.8970

EDEN 0.9060

CNN2 0.9117

CNN2 + Batch Norm + Skip 0.9254

VGG16 based model 0.9289

VGG19 based model 0.9290

CCP-3 Block based model 0.9410

H-CNN CCP-3 Block model 0.9490

TABLE IV. THE TRAIN AND TEST COMPARISON (IN FINAL LOSS AND

ACCURACY) OF THE EXISTING H-CNN MODELS (VGG16 H–CNN, VGG19 H–
CNN) AND OUR CCP-3 BLOCK H–CNN MODEL

 Train Test

 Loss Accuracy Loss Accuracy

H-CNN VGG16 0.0002 1.0000 0.3781 0.9352

H-CNN VGG19 0.0004 1.0000 0.3863 0.9341

H-CNN CCP-3-Block 0.0218 0.9920 0.2714 0.9490

Moreover, observe that the H–CNN CCP-3 Block model
could converge faster than the H–CNN VGG16 and VGG19
models, as shown in Fig. 11 (H-CNN VGG16), Fig. 13 (H-
CNN VGG19), and Fig. 15 (H-CNN CCP-3 Block). The more
epochs the less in loss until 60 epochs the losses were stable.
Meanwhile, the accuracy value of our H–CNN CCP-3 Block
model was greater and converged more quickly than the
existing models, as shown in Fig. 12 (H-CNN VGG16), Fig. 14
(H-CNN VGG19), and Fig. 16 (H-CNN CCP-3 Block). In

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

215 | P a g e

www.ijacsa.thesai.org

particular, Table V shows the improved performance (a
numbers of specific loss and accuracy values) in each epoch
(from epoch 1 to epoch 60) of each model.

In summary, the H–CNN CCP-3 Block model can achieve
the better performance than the H-CNN VGG16 and VGG19

models (Table II, Table IV, Table V) and other state-of-the-art
models (Table III) to classify images in the Fashion-MNIST
dataset based on deep learning architectures. The CCP-3

TABLE V. LOSS AND ACCURACY PER EPOCH OF THREE H-CNN MODELS (VGG16, VGG19, AND OUR CCP-3 BLOCK)

 H-CNN VGG16 Model H-CNN VGG19 Model H-CNN CCP-3-Block Model

 Train Test Train Test Train Test

Epoch Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy

1 2.4639 0.3160 1.0611 0.6521 2.8517 0.2341 1.2562 0.5871 0.6346 0.7744 0.6681 0.7867

5 0.7418 0.7664 0.5173 0.8187 0.7884 0.7494 0.5454 0.8048 0.2772 0.8963 0.2869 0.8949

10 0.5202 0.8335 0.4425 0.8560 0.5629 0.8204 0.4583 0.8445 0.2307 0.9137 0.3253 0.8861

15 0.4298 0.8609 0.4331 0.8630 0.4351 0.8601 0.4154 0.8646 0.1846 0.9311 0.2048 0.9283

20 0.3224 0.8936 0.2938 0.9005 0.3410 0.8875 0.3643 0.8803 0.1572 0.9417 0.1972 0.9315

25 0.1999 0.9315 0.2874 0.9095 0.1978 0.9312 0.2881 0.9049 0.1241 0.9532 0.2135 0.9279

30 0.1332 0.9533 0.2820 0.9142 0.1419 0.9504 0.2725 0.9198 0.0998 0.9625 0.2017 0.9374

35 0.0515 0.9823 0.3646 0.9138 0.0533 0.9811 0.3678 0.9097 0.0763 0.9716 0.2112 0.9370

40 0.0471 0.9837 0.3758 0.9147 0.0480 0.9834 0.3415 0.9201 0.0627 0.9770 0.2309 0.9410

45 0.0044 0.9988 0.3598 0.9313 0.0043 0.9988 0.3353 0.9304 0.0364 0.9865 0.2395 0.9473

50 0.0012 0.9998 0.3494 0.9328 0.0013 0.9997 0.3708 0.9325 0.0293 0.9895 0.2600 0.9459

55 0.0007 1.0000 0.3768 0.9348 0.0005 1.0000 0.3832 0.9338 0.0228 0.9918 0.2689 0.9495

60 0.0002 1.0000 0.3781 0.9352 0.0004 1.0000 0.3863 0.9342 0.0218 0.9920 0.2741 0.9490

Fig. 11. Loss per epoch in H–CNN VGG16 model.

Fig. 12. Accuracy per epoch in H–CNN VGG16 model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

216 | P a g e

www.ijacsa.thesai.org

Fig. 13. Loss per epoch in H–CNN VGG19 model.

Fig. 14. Accuracy per epoch in H–CNN VGG19 model.

Fig. 15. Loss per epoch in H–CNN CCP-3 Block model.

Fig. 16. Accuracy per epoch in H–CNN CCP-3 Block model.

Block design starts with a shallow-layered architecture
(combine two convolution layers followed by a pooling layer)
and redesign with only three blocks followed by the fully
connected layers and add the batch normalization before the
activation function so that networks can learn independently
and train quickly as well as add the dropout layer in feature
extraction and fully connected to reduce the overfitting.
Moreover, an optimizer (adaptive moment estimation) was
used to solve the decaying of gradients, which can improve the
network performance. As a result, the H–CNN CCP-3 Block
model has a faster training time and the better performance in
testing (decreased loss and increased accuracy). For the image
classification in the Fashion-MNIST dataset, the problem of
multi-class classification error can be solved by the H–CNN
CCP-3 Block model.

VI. DISCUSSION

As presented in the test results section, the H– CNN model
uses a shallow layered CCP-3 Block architecture, which
provides the best performance in both training speed and
classification accuracy. However, when considering the CCP-3
Block architecture used in the classification of apparel images,
our design is simplified combine two convolution layers
followed by a pooling layer, designed with only three blocks
followed by fully connected layers, and adding batch
normalization before the activation function. Moreover,
adaptive moment estimation is also used to optimize the model
(see detail in Section III A). We call this the CCP-3 block base
model. Table V shows the test accuracy of the CCP-3 Block
base model is 0.9410, which is more accurate than the H-CNN
used VGG16 and VGG19 architectures but we perceive
something in the table confusion matrix of the CCP-3 Block
base model.

Table VI shows the confusion matrix of the CCP-3 block
base model. In the case of the shirt category, misclassification
samples of 88 T-shirt images, 43 pullover images, and 49 coat
images reveal that these three categories locate closer among
the 10 categories. The same is the case for the ankle boots
category, with misclassification samples of 6 sandal images,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

217 | P a g e

www.ijacsa.thesai.org

and 34 sneaker images; when these categories are similar. It is
reasonable to categorize similar images into a hierarchy.

Observing Table VI, it is possible that the accuracy of the
CCP-3 block base model could be increased further if the
training images were hierarchically categorized. Therefore, we
have applied the Seo and Shin [7] fashion image classification
inference to categorize images into a hierarchy as shown in
Fig. 10. It is used in conjunction with the CCP-3 Block
architecture, which we have designed to support hierarchical
classification (see detail in Section III B). The results showed
that with the use of hierarchical image classification in
combination with the CCP-3 block architecture, accuracy
increased to 94.90%. (shown in Table III). When considered in
the confusion matrix of the H-CNN CCP-3 Block model
(shown in Table VII), in the case of the shirt category, the
misclassification was reduced. T-shirt, pullover, and coat were
previously misclassified from 88, 43, and 49 images reduced to
66, 33, and 40 images respectively. The same is the case for the
ankle boots category, the misclassification is reduced as well.
Sandal and sneaker were previously misclassified from 6 and

34 images and reduced to 4 and 26 images respectively.
Therefore, categorizing similar images into a hierarchy for
classification can increase their accuracy.

The CCP-3 Block base model, a simplified version of the
H-CNN model, achieves high accuracy in apparel image
classification. However, the model experiences
misclassificationions within visually similar categories such as
shirts and ankle boots. To address this, we propose a
hierarchical classification approach using the Seo and Shin
fashion image classification inference. By combining this
approach with the CCP-3 Block architecture, the model's
accuracy improves significantly to 94.90%. The hierarchical
classification effectively reduces misclassifications within
similar categories, demonstrating the value of categorizing
visually similar images into a hierarchy for improved accuracy.
Additionally, pre-defining hierarchical labels of the dataset can
also be done by the data-driven method before training the
model we want. By considering the classification of the data
based on the consideration of the result of the confusion metric.

TABLE VI. CONFUSION MATRIX OF CLASSIFICATION RESULT WITH FASHION MNIST DATASET USING CCP-3 BLOCK BASE MODEL

 Predict label

 T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle Boots

T
ru

e
la

b
el

T-shirt 896 2 15 10 3 1 69 0 4 0

Trouser 2 991 2 4 0 0 1 0 0 0

Pullover 15 1 916 5 44 0 19 0 0 0

Dress 9 2 7 954 18 0 10 0 0 0

Coat 0 0 13 19 928 0 40 0 0 0

Sandal 0 0 0 0 0 989 0 7 0 4

Shirt 88 0 43 22 49 0 796 0 2 0

Sneaker 0 0 0 0 0 2 0 989 0 9

Bag 2 1 1 2 2 1 0 0 991 0

Ankle Boots 0 0 0 0 0 6 0 34 0 960

TABLE VII. CONFUSION MATRIX OF CLASSIFICATION RESULT WITH FASHION MNIST DATASET USING H-CNN CCP-3 BLOCK MODEL

 Predict label

 T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle Boots

T
ru

e
la

b
el

T-shirt 898 1 17 8 2 1 71 0 2 0

Trouser 0 990 0 6 1 0 1 0 2 0

Pullover 15 1 937 6 19 0 22 0 0 0

Dress 7 4 8 952 12 0 17 0 0 0

Coat 0 0 23 11 931 0 35 0 0 0

Sandal 0 0 0 0 0 991 0 8 0 1

Shirt 66 0 33 18 40 0 840 0 3 0

Sneaker 0 0 0 0 0 1 0 990 0 9

Bag 4 0 0 3 0 1 0 0 992 0

Ankle Boots 0 0 0 0 0 4 0 26 0 970

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

218 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSION

CNN has been applied in a wide variety of fields as a
powerful result of the development of deep learning
techniques. In fashion application, CNN can support human
tasks in image detection, apparel classification, apparel
retrieval, and automatic apparel tagging, while the complexity
of hierarchy and categories is a challenge in fashion
classification. In the past, a hierarchical image classification
process was considered in previous studies to improve the
accuracy of the classification of apparel. Recently, a hierarchy
was used in the Fashion-MNIST data which is 28 ×28 sized
grayscale images of 10 classes consisting of 60,000 training
images and 10,000 test images, where the Hierarchical
Convolutional Neural Network (H–CNN) was proposed in
combination with VGGNet architectures (VGG16 and
VGG19). Each of these deep VGGNet architectures consists of
five building blocks of multiple convolutional, max-pooling,
and fully connected layers. However, many filters (in the
convolution layer) and many neurons (in the fully connected
layer) of each VGGNet (for the Fashion-MNIST data) a
required the long training-time.

This study focuses on designing a new efficient architecture
for H–CNN to improve not only the accuracy of apparel
classification but also the training time. Therefore, the CCP-3-
Block architecture was proposed, a shallow-level architecture.
A new design combines two convolution layers followed by a
pooling layer, designed with only three blocks followed by
fully connected layers, and adding batch normalization before
the activation function so that networks can learn
independently and train quickly, as well as adding the dropout
layer in feature extraction and fully connected to reduce
overfitting. Moreover, an optimizer (adaptive moment
estimation) is added to solve the decaying of gradients, which
can improve the overall network performance. In the
experiment, the performance was compared of the H-CNN

CCP-3-Block model and the original H-CNN VGGNet model
(using VGG16 and VGG19 architectures). The results showed
that the H–CNN CCP-3Block model performed the better
performance with lower loss, higher accuracy, and faster
training time than the original H–CNN (VGG16, VGG19)
models. This result confirmed the hypothesis that the shallow
layered CCP-3 Block architecture performs better performance
than the deep VGGNet architectures in the hierarchical
classification (H-CNN) of apparel images on the Fashion-
MNIST dataset. Thus, for fashion business/applications, the H–
CNN CCP-3-Block model can be applied on a variety of real
online apparel images with the hierarchical classification.

ACKNOWLEDGMENT

The authors wish to gratefully thank the School of Science,
King Mongkut‟s Institute of Technology Lardkrabang
(KMITL), Bangkok, Thailand for the scholarship to Mr.
Natthamon Chamnong, a master student in Computer Science,
during 2020 – present.

REFERENCES

[1] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, "Deepface: Closing
the gap to human-level performance in face verification," in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2014, pp. 1701-1708.

[2] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521,
no. 7553, pp. 436-444, 2015.

[3] A. Iliukovich-Strakovskaia, A. Dral, and E. Dral, "Using pre-trained
models for fine-grained image classification in fashion field," in
Proceedings of the First International Workshop on Fashion and KDD,
KDD, 2016, pp. 31-40.

[4] A. Iliukovich-Strakovskaia, V. Tsvetkova, E. Dral, and A. Dral, "Non-
personalized fashion outfit recommendations," in World Conference on
Information Systems and Technologies, 2018: Springer, pp. 41-52.

[5] S. Bhatnagar, D. Ghosal, and M. H. Kolekar, "Classification of fashion
article images using convolutional neural networks," in 2017 Fourth
International Conference on Image Information Processing (ICIIP),
2017: IEEE, pp. 1-6.

[6] Y. Liu, G. Luo, and F. Dong, "Convolutional Network Model using
Hierarchical Prediction and its Application in Clothing Image
Classification," in 2019 3rd International Conference on Data Science
and Business Analytics (ICDSBA), 2019: IEEE, pp. 157-160.

[7] Y. Seo and K.-s. Shin, "Hierarchical convolutional neural networks for
fashion image classification," Expert Systems with Applications, vol.
116, pp. 328-339, 2019/02/01/ 2019, doi:
https://doi.org/10.1016/j.eswa.2018.09.022.

[8] F. Chollet, "Keras: The python deep learning library," Astrophysics
source code library, p. ascl: 1806.022, 2018.

[9] R. Shanmugamani, Deep Learning for Computer Vision: Expert
techniques to train advanced neural networks using TensorFlow and
Keras, 1st ed. Packt Publishing, 2018.

[10] N. Raksaard and O. Surinta, "Comparative Study Between Local
Descriptors and Deep Learning for Silk Pattern Image Retrieval,"
Journal of Science and Technology Mahasarakham University, vol. 37,
no. 6, pp. 736-746, 2018.

[11] A. Palananda and W. Kimpan, "Classification of Adulterated Particle
Images in Coconut Oil Using Deep Learning Approaches," Applied
Sciences, vol. 12, no. 2, p. 656, 2022.

[12] K. Xie, L. Huang, W. Zhang, Q. Qin, and L. Lyu, "A CNN-based multi-
task framework for weather recognition with multi-scale weather cues,"
Expert Systems with Applications, p. 116689, 2022.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based
learning applied to document recognition," Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification
with deep convolutional neural networks," Advances in neural
information processing systems, vol. 25, 2012.

[15] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[16] I. Loshchilov and F. Hutter, "Sgdr: Stochastic gradient descent with
warm restarts," arXiv preprint arXiv:1608.03983, 2016.

[17] L. Luo, Y. Xiong, Y. Liu, and X. Sun, "Adaptive gradient methods with
dynamic bound of learning rate," arXiv preprint arXiv:1902.09843,
2019.

[18] J. Zhuang et al., "Adabelief optimizer: Adapting stepsizes by the belief
in observed gradients," Advances in neural information processing
systems, vol. 33, pp. 18795-18806, 2020.

[19] J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for
online learning and stochastic optimization," Journal of machine
learning research, vol. 12, no. 7, 2011.

[20] E. Charniak, Introduction to deep learning. Cambridge, Massachusetts:
Random House Publishing Group, 2019.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge,
Massachusetts, 2016.

[22] P. Nuttachot. "Modern Regularization with Augmentation, Batch
Normalization and Dropout Techniques." https://blog.pjjop.org/modern-
regularization-with-data-augmentation-batch-normalization-and-
dropout/ (accessed 19 November, 2021).

[23] Y. Meir, O. Tevet, Y. Tzach, S. Hodassman, R. D. Gross, and I. Kanter,
"Efficient shallow learning as an alternative to deep learning," arXiv
preprint arXiv:2211.11106, 2022.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

219 | P a g e

www.ijacsa.thesai.org

[24] Z. Yan et al., "HD-CNN: hierarchical deep convolutional neural
networks for large scale visual recognition," in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 2740-2748.

[25] X. Zhu and M. Bain, "B-CNN: branch convolutional neural network for
hierarchical classification," arXiv preprint arXiv:1709.09890, 2017.

[26] Q. Zhu, T. Hiep Dinh, M. Duong Phung, and Q. Phuc Ha, "Hierarchical
Convolutional Neural Network with Feature Preservation and Autotuned
Thresholding for Crack Detection," p. arXiv:2104.10511doi:
10.48550/arXiv.2104.10511.

[27] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep
network training by reducing internal covariate shift," in International
conference on machine learning, 2015: PMLR, pp. 448-456.

[28] M. Hardt, B. Recht, and Y. Singer, "Train faster, generalize better:
Stability of stochastic gradient descent," in International conference on
machine learning, 2016: PMLR, pp. 1225-1234.

[29] I. Loshchilov and F. Hutter, "Decoupled weight decay regularization,"
arXiv preprint arXiv:1711.05101, 2017.

[30] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization,"
arXiv preprint arXiv:1412.6980, 2014.

[31] N. S. Keskar and R. Socher, "Improving generalization performance by
switching from adam to sgd," arXiv preprint arXiv:1712.07628, 2017.

