
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

220 | P a g e  

www.ijacsa.thesai.org 

Towards Point Cloud Classification Network Based 

on Multilayer Feature Fusion and Projected Images 

Tengteng Song
1
, YiZhi He

2
, Muhammad Tahir

3
, Jianbo Li

4
, Zhao Li

5*
, Imran Saeed

6
 

School of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, China
1, 2, 5

 

Department of Computer Science, Mohammad Ali Jinnah University, P.E.C.H.S, Karachi, 75400, Pakistan
3, 6

 

School of Electronic and Electrical Engineering, Zibo Vocational Institute, Zibo, 255000, China
4
 

 

 
Abstract—Deep Learning (DL) based point cloud 

classification techniques now in use suffer from issues such as 

disregarding local feature extraction, missing connections 

between points, and failure to extract two-dimensional 

information features from point clouds. A point cloud 

classification network that utilizes multi-layer feature fusion and 

point cloud projection images is suggested to address the 

aforementioned problems and produce more accurate 

classification outcomes. Firstly, the network extracts local 

characteristics of point clouds through graph convolution to 

strengthen the connection between points. Then, the fusing 

attention mechanism is introduced to aggregate the useful 

characteristics of the point cloud while suppressing the useless 

characteristics, and the point cloud characteristics are fused by 

multi-layer characteristic fusion. Finally, a 3D point cloud 

network plug-in model based on point cloud projection image 

(3D CLIP) is proposed, which can make up for the defects of 

other 3D point cloud classification networks that do not extract 

two-dimensional information characteristics of point clouds, and 

solve the problem of low accuracy of similar category recognition 

in datasets. The ModelNet40 dataset was used for classification 

studies, and the results show that the point cloud classification 

network, without the addition of a 3D CLIP plug-in model, 

achieves a classification accuracy of 92.5%. The point cloud 

classification network with a 3D CLIP plug-in model achieved a 

classification accuracy of 93.6%, demonstrating that this 

technique can successfully raise point cloud classification 

accuracy. 

Keywords—Point cloud; classification; graph convolution; 

attention mechanism; CLIP 

I. INTRODUCTION 

As Artificial Intelligence (AI) has continued to advance, 
point cloud data has also evolved into a type of fundamental 
data [1-3]. To gather point cloud data and perform 3D 
reconstruction, the classification of point cloud data is crucial. 
As a result of the disorderly and irregular nature of data from 
point clouds, this poses a challenge to the task of point cloud 
classification. 

Early Deep Learning (DL) based point cloud classification 
methods transform raw point cloud data into pictures or voxels 
before extracting point cloud characteristics using traditional 
classification networks. However, some of the point cloud 
information disappears during the point cloud transformation 
procedure, which lowers the network classification accuracy [4 
-6]. Researchers have presented point cloud classification 
methods using original point cloud data, which don't require 

the transformation of the point cloud data, in response to the 
drawbacks of the point cloud classification methods. The 
extraction of local information characteristics from the point 
cloud is ignored by the present classification methods. Channel 
information and spatial information in the point cloud are not 
extracted. It is neglected how points relate to one another. The 
point cloud two-dimensional information is not taken into 
consideration. Aiming at the above problems, the primary 
contributions of this research paper are described below: 

 A network GFANet based on fused attention 
mechanism and graph convolution is proposed for 
existing point cloud classification networks that do not 
extract point cloud features well. Using the ModelNet40 
dataset, experimental findings demonstrate that the 
suggested network obtains 92.5% classification 
accuracy. 

 A point cloud classification approach that utilizes a 2D 
point cloud projection image is proposed because 
current point cloud classification networks are not 
focused on the two-dimensional information of the 
point cloud. According to experimental findings, 3D 
CLIP can be plugged into a 3D point cloud 
classification network to increase the network 
classification accuracy. 

 For the proposed two-point cloud classification network 
models, GFANet and 3D CLIP are combined to 
produce superior point cloud classification outcomes. 
On the ModelNet40 dataset, experimental findings 
show the point cloud classification method utilizing 
GFANet and 3D CLIP achieves 93.6% classification 
accuracy.  

Based on the above, the focus of this research paper is on 
ways to improve the extract of the point cloud's local and 
global features as well as its two-dimensional information 
features in hopes of improving the accuracy of the point cloud 
classification network. 

The paper is organized as follows: Section-Ⅱ presents the 
related works for point cloud categorization. Section-Ⅲ 
describes the proposed methodology of GFANet and 3D CLIP. 
Section-Ⅳ discusses the experimental results. Section-Ⅴ 
concludes the overall research paper. 
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II. RELATED WORKS 

The point cloud is a collection of points that can be 
represented as a collection of three-dimensional points (x, y, z). 
In addition to the information on each point location, point 
clouds also include details about its color, illumination level, 
category labels, normal vectors, grayscale values, and other 
characteristics. Applications for classifying point cloud data 
include automated driving [1], facial recognition [2], 3D 
reconstruction [3], and many more. The conventional point 
cloud categorization methods cannot be used directly on point 
clouds due to their irregularity and disorder. 

Considering the disadvantages of conventional point cloud 
categorization techniques [7-9], deep learning techniques are 
now widely used in research to categorize point cloud data 
[10]. Early researchers transformed irregular 3D point cloud 
data into regular 3D grid data or images [11], [12] and then 
used 3D CNN for classification. Voxelating a point cloud 
primarily involves converting the point cloud data fed to the 
network into a grid, after which 3D CNN is used to extract 
features. The point cloud classification task is realized after 
obtaining global features through feature stitching. Other 
networks that convert point clouds into voxelated 
representations include FPNN [13], OctNet [14], and KD-NET 
[15]. The point cloud is projected onto a two-dimensional 
picture such as MVCNN [16], which projects 3D point cloud 
data from multiple perspectives to obtain two-dimensional 
images, uses a convolutional neural network to process and 
extract features, and then inputs the aggregated features into 
the convolutional neural network to realize point cloud 
classification. Other similar networks include GVCNN [17], 
SnapNet [18], and View-GCN [19]. 

The above two point cloud classification methods will lose 
some information during the conversion of point cloud data, 
resulting in a decline in classification accuracy. The point 
cloud classification method that utilizes original points may 
process the original point cloud directly, maximizing the 
retention of original point cloud data and significantly 
enhancing classification accuracy and algorithm performance 
compared to the other two point cloud classification methods 
mentioned above. Qi et al. suggested applying a model using 
deep learning on the PointNet [20] of the original point clouds, 
which performs well in both classifications [21]and 
segmentation tests [22] for point clouds. The network employs 
maximum pooling aggregate point features to ensure 
displacement invariance of point clouds and three-dimensional 
spatially transformed network STNs [23] to guarantee 
rotational consistency for point clouds. Although PointNet has 
several benefits, it simply extracts the point cloud global 
information properties. Based on the shortcomings of PointNet 
such as its inability to obtain local feature information and poor 
classification ability. Qi et al. then proposed an optimized 
network PointNet++ [24]. This network suggests a multi-level 
structure based on the PointNet for layer-by-layer extraction of 
local characteristics from a point cloud. However, PointNet++ 
also independently handles points in the point cloud, without 
paying attention to the connection between points. After that, 
researchers have also proposed some point cloud classification 
networks, such as ECC [25], DGCNN [26], LDGCNN [27], 

and GAPNet [28], but the categorization accuracy of point 
clouds has not been significantly improved. 

Although the categorization of the point cloud method 
based on original points solves the shortcomings brought by 
some characteristics of point clouds [29], there are still 
shortcomings such as insufficient feature extraction and lack of 
point cloud feature information. To efficiently extract both 
local as well as global characteristics of point clouds, enhance 
the network feature extraction capabilities, and make up for the 
lack of two-dimensional information in the point cloud include 
an extraction process, a point cloud classification network 
constructed using multi-layer feature fusion and projected 
images is presented in this paper. 

III. METHODOLOGY 

There are two main components to the entire network, the 
network of one part is called GFANet, and the plug-in network 
of the other part is called 3D CLIP. 

The GFANet, mainly includes the input transformation 
module, Graph Conv module, F-Attention module, and multi-
layer feature fusion module. In the input transformation 
module, the input point cloud data is multiplied with a 
transformation matrix that the T-Net network has learned in 
order to ensure the consistency of the input point cloud data 
sequence and standardize the point cloud. In the Graph Conv 
module, its input is pointing to cloud features of N×f, N, and f 
represent the number and dimension of points respectively. The 
KNN algorithm is used to create a graph out of data from a 
point cloud. Then the graph of point cloud data is passed 
through n multilayer perceptions (mlp {L1, L2, ..., Ln}) to 
extract edge features. And finally, the N×Ln dimension features 
are obtained. The spatial and channel information 
characteristics from the point cloud are extracted using F-
Attention to improve the network's feature extraction 
capabilities. Obtain global and local features of point clouds 
using multi-layer feature fusion. Three completely connected 
layers were used to achieve the point cloud final classification 
outcome. 

The existing 3D point cloud classification network mainly 
extracts 3D point cloud features and then performs 
classification tasks. The point cloud 2D information properties 
are not its primary concern, so some single categories with 
similar features cannot be classified well. The 2D information 
features can provide more object representations in the network 
classification task and improve the network classification 
accuracy. A point cloud categorization approach called 3D 
CLIP is proposed as a result of this issue and relies upon 3D 
point cloud projection images. The point cloud projection 
image features are extracted and categorized using a 2D image 
classification network to increase the 2D representations 
available for 3D point cloud classification tasks and boost 
network accuracy. The key components of 3D CLIP are the 
text encoder and the image encoder. The network mainly uses 
the trained text encoder and image encoder in 2D CLIP to 
obtain the text description features and the projected image 
features of the point cloud. In the text encoder, using text-
transformer to obtain the point cloud's textual description 
features. In the image encoder, the point cloud projection 
image features are extracted using ResNet. Then the 
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correspondence between text features and image features is 
found from the pre-trained model. Finally, the final 

classification results are obtained. The network is shown in 
Fig. 1. 
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Fig. 1. GFANet and 3D CLIP structure.

A. The GFANet 

1) Graph conv module: There are two types of graph 

convolution: spatial domain convolutions of graphs [30] and 

spatially domain graphs convolution [26]. Additionally, the 

information properties of the area of the node can be better 

obtained using the spatial dimension of graphs convolution. 

Therefore, the spatial dimension of convolutions of graphs is 

used to build this model. 

For GFANet, model inputs can be expressed as: 

  1

D

nX x x R , . . . ,
 



Where X is the point clouds collection, xi is a point in the 
collection, and D is each point’s distinctive dimension. 

A directed graph with the formula G = (V, E) represents the 
point cloud local arrangement. where V represents a collection 
of N point locations and E represents the collection of edges 
connecting nodes. 

The directional graph G for GFANet is built using the k-
nearest-neighbor classification (KNN) technique. The central 
node of a point cloud and the K nearest neighbor points which 
include the central node can be calculated using the KNN 
algorithm. 

In the Graph Conv module, local features of point clouds 
are extracted using the edge function and the aggregation 
process. As below: 

 
   i j ih x ,x h x 

  

Where xi and xj are the attributes of node i and its 
neighboring nodes j, hθ is a linear product of parameter x that 

can be learned, and θ is the collection of weight and other 
parameters in the network. 

However, point cloud global information is the sole focus 
of the edge function. The local information was ignored. In 
Formula 3, a new edge function is created that takes into 
account the point cloud local as well as global information. 

    i j i j ih x ,x h x ,x x     

For aggregation operation, xi’ is the collection of edge 
characteristics for the central node xi at the k points about it. 
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 i j i

j: i , j E

x h x x

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 



In Fig. 2, to create a graph structure, the KNN method is 
utilized. And the Graph Conv module is used to learn 
aggregating edge characteristics from one set of point clouds to 
another [31]. 
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Fig. 2. Graph convolution process. 

2) F-attention module: The attention mechanism [32] is 

divided into the space attention mechanism and the channel 

attention mechanism. In order to emphasize useful information 

features for classification tasks while suppressing useless 

information features, a new fusion attention mechanism was 
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designed, which incorporate the point cloud channel 

information characteristics with spatial information 

characteristics. 

The structure of the new fusion attention mechanism (F-
Attention) is shown in Fig. 3. 
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Fig. 3. Fusion attention module (F-Attention). 

a) Spatial attention module: In Fig. 3, A is defined as 

the input point cloud feature matrix and B×N×C is the 

dimension of A in the Spatial attention module. The new 

feature matrices A1 and A2 can be obtained by linear 

transformation by A, which contains more spatial features. 

The two matrices have the dimensions B×N×C. Matrix A1 is 

transposed and multiplied with matrix A2, and then the spatial 

attention coefficient matrix E(C×C) is got using the SoftMax 

function, which is calculated as follows: 

 
 

 

1 1

1 1

1

i j

i j

ji N

i

exp A A
a

exp A A






 



Where aji is the outcome of the SoftMax function 
calculation, which depicts the effect of the location i on j 
within matrices E. 

A3 is a new feature matrix, which is got by inputting A into 
the 1×1 convolutional layer. The dimension of A3 is B×N×C. 
By multiplying matrices A3 and E, an outcome feature with a 
dimension of B×N×C is obtained. In order to adjust weights 
during training, the output feature is given a linear variable λ. 
As illustrated in Formula 6, the final output M of feature A is 
created by adding the elements of the characteristic matrix 
refreshed on the attention mechanism to those of the initial 
characteristic matrix A one by one. 

  3

1
i

N

j ji j

i

M a A A


 
 



To assign more weights by training the network, λ is 
initialized to 0. Both the initial point cloud characteristics and 
the location in space characteristics of the point cloud are 
included in the final feature M. M more effectively aggregates 
the information about the global context. 

b) Channel attention module: The channel attention 

module input feature matrix is also defined as A. And the 

dimension of A is also B×N×C. The matrix A is first inverted. 

After that, the original matrix is multiplied by the transposed 

matrix. The SoftMax function is then used to produce a 

channel attention factor matrix F having a size of C×C. 

As shown in Formula 7: 

 
 

 
1

i j

ji N

i j

i

exp A A
b

exp A A






 



Where bji represents the impact of channel i on channel j. 

The characteristic matrix A and the attention factor matrix 
F are multiplied to obtain a feature output with B×N×C. A 
parameter χ is introduced to adjust the weights in the network 
training. The final result W of characteristic A is derived by 
adding the elements of the original characteristic matrix A and 
the updated feature matrix produced by the channel 
mechanism, as illustrated in Formula 8: 

  
1

N

j ji i j

i

W b A A


 
 



Similarly, to assign more weights by training the network, χ 
is initialized to 0. 

The final characteristic Z is obtained by fusing the 
characteristic M with point cloud spatial information and the 
characteristic W with point cloud channel information. 

3) Multi-layer feature fusion module: In 3D point cloud 

classification tasks, fusing information features of different 

scales can effectively improve the classification performance 

of the network. Low-level features contain more location and 

detail information from point cloud data, but low-level 

features do not undergo much feature extraction, resulting in 

more noise and decreased semantic content. A high-level 

characteristic has more robust semantics, but they have poor 

feature resolution and poor detail perception. Therefore, 

before obtaining global features of point clouds through the 

network, it is necessary to perform feature fusion for features 

of 64, 128, and 256 dimensions. 

In terms of the feature fusion method, select the concat 
feature fusion method, which essentially combines the number 
of feature channels, as shown in Fig. 4. 

Concat
+

 
Fig. 4. Concat feature fusion. 

For the two input features X and Y, if their feature 
dimensions are m and n, the output feature dimension after the 
concat operation is m+n. If the channels of input are X1, X2, …, 
Xc, and Y1, Y2, …, Yc, respectively, the result after concat can be 
written as follows: 
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The 64, 128, and 256-dimensional features obtained from 
the network are spliced using a multi-level feature fusion 
method, enabling the final global features to better focus on the 
global context information of the point cloud, enabling the 
network to achieve better classification accuracy. The fusion 
method is shown in Fig. 5. 
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Fig. 5. Multi-layer feature fusion. 

B. The 3D CLIP 

The 3D CLIP plug-in network can directly perform 
classification tasks without pre-training. In order to obtain the 
text description characteristics of point clouds as well as the 
image features for point cloud projection images, this model 
primarily uses the trained text encoder and image encoder in 
the two-dimensional CLIP [33] and finds the corresponding 
relationship between text features and image features from the 
pre-trained model. Then, each image feature is weighted and 
summed with all text features, and the cosine similarity is 
calculated. The category corresponding to the maximum 
similarity text is the final classification result. 

1) Text encoder: First, construct an appropriate 

descriptive text for each object class in the dataset. Then input 

these description texts into the text encoder to extract text 

features. M text features will be obtained after extracting the 

features through the text encoder. The text features extracted 

by the text encoder can be represented as Wt∈R
M×C

. The 

model text encoder employs text-transform, and the primary 

method of extracting textual characteristics is depicted in Fig. 

6: 

Input

Embedding

Mult i-Head

Attention

Feed

Forward

Add & Norm

Pos itional

Encoding

Add & Norm

X:Input

N×
Text

Encoder

Output

 
Fig. 6. Text feature extraction. 

In this structure, the input of the text encoder is X, which 
represents a sentence. The final text features of the sentence are 
obtained after feature extraction from several modules of the 
encoder. 

The input embedding module, the main purpose of this 
module is to transform the characters in a sentence into a 
vector. X can be converted into a Xembedding vector after this 
module. This vector’s three dimensions stand for the total 
number of sentences, the number of words in a sentence, and 
the size of each individual word. 

In the positional encoding module, the position of each 
word in the input sentence is encoded and marked. The 
encoding calculation process can use the sine and cosine 
function, which is calculated as: 

    2
2 10000 mod eli / d

PE pos, i sin pos /




    2
2 1 10000 mod eli / d

PE pos, i cos pos / 




where i indicates the size of the word vector and pos the 
position of each word within the phrase. 

After the position encoding module, an encoding array Xpos 
with the same dimension as the input sentence can be obtained. 
And the new word vector can be obtained by superimposing 
Xpos with the original vector: 

 
embedding embedding posX X X 

 


In the multi-head attention module, this module enables the 
model to learn the expression of multiple meanings. The 
module uses the self-attention attention mechanism to linearly 
map the inputs to obtain Q, K, V: 

 

embedding* Q

embedding* k

embedding* v

Q X W

K X W

V X W






  



where the dimensions of Q, K, and V are the same as the 
Xembedding dimensions. 

In the add and norm module, the main operations are 
residual concatenation and normalization. The preceding layer 
input X is added to the output via the residual join. The 
normalization operation is to subtract the mean value of each 
row and divide it by the standard deviation of the row to obtain 
the normalized value. 

The feedforward module contains two layers of linear 
mapping and activation using the activation function. The final 
output is obtained after the same add and norm operation. 

2) Image encoder: Because the images input by the CLIP 

model when using the image encoder to extract image features 

are all two-dimensional, it is necessary to perform two-

dimensional processing of three-dimensional point cloud data. 

The specific operation is to project the three-dimensional point 

cloud data in the dataset from multiple perspectives into a 

two-dimensional depth image. 

The spatial coordinates of a point cloud for 3D data in a 
dataset can be represented as (x, y, z). When projecting in the 
z-direction, the point can be transformed into ([x/z], [y/z]). The 
advantage of this projection is that it can make the image closer 
to a natural image. Because the image encoder of the CLIP 
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model processes three-channel RGB images, to obtain point 
cloud-related features from the projected image, the projected 
image is copied twice to become a three-channel image before 
being input to the image encoder. 

The mapping formula for projecting 3D point cloud data 
point A to 2D coordinate system point B is as follows: 

 
x

y

xx C
z

A y B
y

Cz
z





      
     

        



In the selection of the image encoder, since the ResNet [34] 
is used in the 2D CLIP to achieve better results in classification 
tasks, the ResNet will also be used for feature extraction in the 
3D CLIP selection of the image encoder. 

ResNet is a residual network, and a residual network is 
composed of a series of residual blocks. For ResNet, it contains 
two basic modules, identity block, and conv block, and the 
module structure is shown in Fig. 7: 
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Fig. 7. ResNet main module. 

In the identity block module, x is the input and H(x) is the 
output: 

     iH x F x, w x 
 



where F (x, {wi}) denotes the residual, which is the target 
to be learned. It represents the operator relationship between 
the weights and the input, F(x)=H(x)-x. 

Unlike the identity block module, the conv block module 
adds the conv layer convolution operation on top of it. The 
shape of the input matrix can be adjusted so that the residual 
edges and the convolution in the module can be summed. 

 For depth, images projected from V different angles of 
view, use an image encoder to extract image features. The 
extracted image features have a total of fi, where i=1, ..., V. 

During the classification process, since the 3D CLIP has 
already obtained wt text features and fi image features, it is only 
necessary to calculate the classification logitsi of each 
projection view separately. Finally, weighted summation can 
be used to get the point cloud final classification logitsh, and 
the classification outcome. The calculation formula is as 
follows: 

 1T

i i tlog its f W ,i , ,V 
 



 
1

v

h i ilog its log its  


IV. EXPERIMENTS AND RESULT 

A. Datasets 

For accurately assessing the network categorization 
performance for this article, the open dataset ModelNet40 
proposed by Princeton University was selected for training and 
testing the network. There are a total of 12311 CAD models in 
the dataset, with 9843 models used for training and 2468 
models used for testing. Each model has its corresponding 
category and is divided into 40 categories of artificial objects. 
Select four categories from the ModelNet40 dataset: airplane, 
plant, chair, and person for visualization. The results are shown 
in Fig. 8: 

 

Fig. 8. Partial category visualization. 

Because the point cloud set contains a sizable number of 
useless and noise points. The point cloud categorization 
network capacity to extract features will decline. In addition, 
when the number of points used to input the network is too 
large, it can generate many parameters during training. It will 
affect the training speed of the network. The subsampling 
algorithm can remove noise points and ensure the same number 
of points input to the model. 

Fig. 9 displays the visualization of point cloud data 
following sampling. The original point cloud contains 10000 
points. After sampling, 1024 points can be obtained. These 
points can represent the object well and contain rich object 
details. 

 

Fig. 9. Point cloud data sampling. 

B. Experimental Setting 

The hardware environment required for this model is Intel 
core i5-9400, the software environment consists of Python 3.7, 
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CUDA10.1, PyTorch 1.6, and Ubuntu 20.04.2 LTS. The 
learning rate for the experimental parameters has been set to 
0.001. There are 250 iterations in total. 32 is the set batch size. 
The Adam optimizer is used. 

The evaluation metrics of the network are the overall 
classification accuracy (OA) and the average classification 
accuracy (mAcc). As follows: 

 =
TP TN

OA
TP TN FP FN



    


 =
TP

Pr ecision
TP FP  



 1

M

m

m

Pr ecision

mAcc
M




 


where TP is the number of samples with accurate 
predictions. TN represents the number of samples with 
incorrect predictions. The sample quantity of false positives is 
denoted by FP. The sample quantity of false negatives is 
denoted by FN. Precision is the accuracy rate. M is the 
classification number. 

C. Experimental Results Analysis 

1) Pooling method selection: To study the effects of 

various pooling methods on the classification precision of 

network models, max pooling, average pooling, and a 

combination of the two pooling methods were compared in the 

process of getting the global feature. Assume that method A 

uses only average pooling, method B uses only max pooling, 

and method C uses both average pooling and max pooling. 

Where √ indicates using this method, × indicates that this 

method is not used, and the classification accuracy is shown in 

Table Ⅰ. 

TABLE I.  GFANET  CLASSIFICATION ACCURACY UNDER DIFFERENT 

POOLING MODES 

Pooling method Avg.  

Pooling 

Max Pooling mAcc/% OA/% 

A √ × 89.3 91.5 

B × √ 89.2 91.6 

C √ √ 90.2 92.5 

According to the test results of AvgPooling and 
MaxPooling in Table Ⅰ, the combined use of max pooling and 
average pooling improves classification accuracy compared to 
utilizing either pooling approach alone. The average 
classification accuracy of using method C is 0.09% and 0.1% 
higher than that of method A and method B, respectively. And 
the overall classification accuracy of method C is 0.1% and 
0.09% higher than that of method A and method B, 
respectively. This demonstrates that the information lost during 
the global feature selection process can be reduced by 
combining average pooling and max pooling. As a result, for 

feature extraction during the construction of GFANet, average 
pooling, and max pooling are combined. 

2) Analysis of network classification accuracy: To 

compare with the GFANet, many traditional point cloud 

classification networks are used. The ModelNet40 dataset is 

selected as the testing dataset. The classification accuracy of 

different networks on the ModelNet40 dataset is shown in Fig. 

10 and Fig. 11. 

 
Fig. 10. Average classification accuracy of different networks. 

 
Fig. 11. Overall classification accuracy of different networks. 

In contrast to traditional point cloud categorization 
networks, the GFANet has higher classification accuracy. 
Compared with PointNet, the GFANet has an overall 
classification accuracy improvement of 3.8% and an average 
improvement in classification accuracy of 4.4%. The reason is 
that GFANet concentrates on the point clouds local and global 
information characteristics. The GFANet exhibits an overall 
classification accuracy improvement of 2.0% when compared 
to PointNet++. The reason is that the connection between 
points is strengthened and the information feature between 
point pairs is focused in GFANet. While PointNet++ just 
processes points separately. Compared with DGCNN, the 
GFANet has an overall classification accuracy improvement of 
1.2% and an average improvement in classification accuracy of 
1.1%. The reason is that the information of point pairs is 
focused on GFANet. And a fusion attention mechanism is 
added in GFANet. In addition, the spatial and channel 
information properties of point clouds are extracted by 
GFANet. 

82.8

89.1

83.2

85.8

89.1

90.2

82

84

86

88

90

92

m
A

cc
(%

)

Method

 VoxNet

 MVCNN

 ECC

 PointNet

 DGCNN

 GFANet

85.7

87.4

88.7

90.5

91.3

92.5

85

86

87

88

89

90

91

92

93

O
A

(%
)

Method

 VoxNet

 ECC

 PointNet

 PointNet++

 DGCNN

 GFANet



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

227 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 12. Network classification accuracy. 

For the ModelNet40 dataset, the classification accuracy 
curve obtained through 250 iterations for PointNet, 
PointNet++, DGCNN, and GFANet is shown in Fig. 12. 

The GFANet has significantly better classification accuracy 
than the other three networks in most training cycles, especially 
in the middle and late stages of training. It has been 
demonstrated that GFANet can increase the classification 
accuracy of point clouds. 

3) Comparative experiments of different categories: Like 

the PointNet, the GFANet is a classification net that accepts 

data from point clouds directly. And the construction of the 

GFANet also refers to the PointNet. The comparison results of 

GFANet with PointNet and PointNet++ on ModelNet40 data 

set for individual classification of each category are shown in 

Table Ⅱ. 

Compared with PointNet and PointNet++, the GFANet has 
higher accuracy for most categories. For the categories with 
obvious features, such as the Bench, Guitar, and Lamp, the 
classification accuracy of GFANet is 5%, 2%, and 1.3% higher 
than that of PointNet, and is 3%, 0.5% and 0.7% higher than 
that of PointNet++. For the categories with no obvious 
features, such as the Bathtub, Door, and Wardrobe, the 
classification accuracy of GFANet is 5%, 1.2%, and 4% higher 
than that of PointNet, and is 3%, 1%, and 3% higher than that 
of PointNet++. 

The reason is that both the local information characteristics 
and the global information characteristics for data points are 
considered in GFANet. Additionally, GFANet takes into 
account the channel information features as well as the spatial 
information features for data points. 

TABLE II.  COMPARISON RESULTS FOR 40 CATEGORIES 

Category PointNet PointNet++ GFANet Category PointNet PointNet++ GFANet 

Airplane 
1.000 1.000 1.000 

Laptop 
1.000 1.000 1.000 

Bathtub 
0.870 0.890 0.920 

Mantel 
0.930 0.940 0.950 

Bed 
0.960 0.964 0.970 

Monitor 
0.950 0.960 0.980 

Bench 
0.700 0.720 0.750 

Night_stand 
0.742 0.753 0.776 

Bookshelf 
0.910 0.918 0.930 

Person 
0.920 0.930 0.950 

Bottle 
0.940 0.952 0.960 

Piano 
0.900 0.910 0.930 

Bowl 
0.900 0.920 0.940 

Range_hood 
0.920 0.930 0.952 

Car 
0.960 0.971 0.980 

Sink 
0.780 0.800 0.850 

Chair 
0.970 0.974 0.980 

Sofa 
0.960 0.963 0.970 

Cone 
0.950 0.960 1.000 

Stairs 
0.800 0.840 0.900 

Cup 
0.780 0.790 0.800 

Stool 
0.850 0.860 0.800 

Curtain 
0.900 0.910 0.920 

Table 
0.800 0.830 0.870 

Desk 
0.800 0.880 0.900 

Tent 
0.950 0.951 0.953 

Door 
0.800 0.860 0.920 

Toilet 
0.980 0.982 0.970 

Dresser 
0.696 0.700 0.726 

Tv_stand 
0.800 0.830 0.860 

Flower 
0.220 0.230 0.250 

Vase 
0.820 0.825 0.830 

Glass 
0.950 0.960 0.970 

Wardrobe 
0.750 0.760 0.790 

Guitar 
0.980 0.985 1.000 

Xbox 
0.650 0.680 0.750 

Keyboard 
1.000 1.000 1.000 

Plant 
0.760 0.770 0.780 

Lamp 
0.950 0.956 0.963 

Radio 
0.750 0.770 0.800 
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4) Analysis of adding 3D CLIP classification accuracy: 

The effectiveness of the 3D CLIP network is demonstrated by 

comparing the accuracy of point cloud classification with and 

without adding 3D CLIP in PointNet, PointNet++, DGCNN, 

and GFANet. The classification accuracy is shown in Table Ⅲ. 

TABLE III.  CLASSIFICATION ACCURACY OF DIFFERENT NETWORKS 

Method 3D CLIP mAcc/% OA/% 

PointNet [20] 
× 85.8 88.7 

√ 87.3 90.1 

PointNet++ [24] 
× — 90.5 

√ — 91.4 

DGCNN [26] 
× 89.1 91.3 

√ 90.4 92.7 

GFANet 
× 90.2 92.5 

√ 91.1 93.6 

The overall accuracy of classification of PointNet is 1.4% 
higher and the average accuracy of classification is 1.5% 
higher when the 3D CLIP is used. The overall accuracy of the 
classification of PointNet++ is 0.9% higher when the 3D CLIP 
is used. The overall accuracy of classification of DGCNN is 
1.4% higher and the average accuracy of classification is 1.3% 
higher when the 3D CLIP is used. The overall accuracy of 
classification of GFANet is 1.1% higher and the average 
accuracy of classification is 0.9% higher when the 3D CLIP is 
used. The experiment results indicate that point cloud 
classification networks with 3D CLIP have a certain 
improvement in classification accuracy compared to networks 
without 3D CLIP. The reason is that 3D CLIP can extract two-
dimensional feature information of point clouds. The GFANet 
with 3D CLIP has the highest classification accuracy compared 
to other networks with 3D CLIP. It proves the effectiveness of 
the GFANet and 3D CLIP. It also demonstrates the potential of 
3D CLIP to enhance the classification accuracy of point cloud 
categorization networks. 

5) Analysis of 40 categories classification results of 

GFANet adding 3D CLIP: According to Table Ⅱ, for the 

categories with similar characteristics in the ModelNet40 

dataset, such as cup and vase, flower_pot and plant, 

nightstand, and wardrobe. GFANet and the existing classical 

point cloud classification network cannot be well classified, 

and these categories are shown in Fig. 13. The primary cause 

is that the network only concentrates on the three-dimensional 

information feature information of the point cloud and does 

not extract the two-dimensional information feature of these 

categories, making it difficult for the network to distinguish 

and identify, and resulting in a relatively small improvement 

in the classification accuracy of these single categories. In this 

experiment, the 3D CLIP is added to the GFANet to prove that 

the 3D CLIP can help the GFANet to better distinguish 

different categories with similar features and improve the 

classification performance of the network. The findings of the 

experiment are displayed in Table IV. 

Table IV shows that in comparison to GFANet alone, the 
network comprising GFANet and 3D CLIP has somewhat 
increased the classification accuracy of the 40 categories of the 
ModelNet40 data set. For the cup and vase categories with 
similar features, the accuracy of classification is increased by 
2% and 1.8%, respectively. For the flower_pot and plant 
categories with similar features, the accuracy of classification 
is increased by 3% and 2%, respectively. For the nightstand 
and wardrobe categories with similar features, the accuracy of 
classification is increased by 3% and 2%, respectively. The 
classification accuracy of the network is improved by 2.6% and 
3%, respectively. This is so that the network can both extract 
the three-dimensional information features of the point cloud 
and learn the two-dimensional information representation of 
the point cloud. The 3D CLIP is an addition to the GFANet 
that can provide more two-dimensional information about the 
point cloud for the network. Thereby the network can better 
distinguish between different categories with similar features 
and raise the classification accuracy of various categories. 
Improve the classification accuracy of the network. 

 
Fig. 13. Different categories with similar features in the ModelNet40 dataset. 
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TABLE IV.  ANALYSIS OF 40 CATEGORY CLASSIFICATION RESULTS

Category GFANet GFANet+3D CLIP Category GFANet GFANet+3D CLIP 

Airplane 1.000 1.000 Laptop 1.000 1.000 

Bathtub 0.920 0.930 Mantel 0.950 0.960 

Bed 0.970 0.978 Monitor 0.980 0.983 

Bench 0.750 0.800 Night_stand 0.770 0.802 

Bookshelf 0.930 0.940 Person 0.950 0.960 

Bottle 0.960 0.970 Piano 0.930 0.940 

Bowl 0.940 0.950 Range_hood 0.952 0.962 

Car 0.980 0.987 Sink 0.850 0.860 

Chair 0.980 0.983 Sofa 0.970 0.980 

Cone 1.000 1.000 Stairs 0.900 0.920 

Cup 0.800 0.820 Stool 0.800 0.850 

Curtain 0.920 0.930 Table 0.870 0.900 

Desk 0.900 0.910 Tent 0.953 0.961 

Door 0.920 0.926 Toilet 0.970 0.980 

Dresser 0.726 0.862 Tv_stand 0.860 0.880 

Flower 0.250 0.280 Vase 0.830 0.848 

Glass 0.970 0.975 Wardrobe 0.790 0.820 

Guitar 1.000 1.000 Xbox 0.750 0.800 

Keyboard 1.000 1.000 Plant 0.780 0.800 

Lamp 0.963 0.986 Radio 0.800 0.880 

V. CONCLUSION 

Targeting the issues that the current point cloud 
classification methods disregard the point cloud's local feature 
extract, lack the connection between points and points, and do 
not extract the two-dimensional information features of the 
point cloud when obtaining the point cloud features. To obtain 
a more precise classification result, a point cloud categorization 
network using a multi-layer fusion of features and point cloud 
projection image was proposed. The network employs dynamic 
graph convolution to enhance the association between points 
by extracting local characteristics from the point cloud. The 
point cloud features were fused via multi-layer feature fusion, 
and the fusion attention method was devised to collect the 
useful characteristics of the point cloud while suppressing the 
useless features. Finally, a 3D point cloud network plug-in 
model based on a point cloud projection image, 3D CLIP, is 
used to make up for the lack of extracting two-dimensional 
information features of the point cloud, to increase the network 
accuracy at classifying objects. 
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