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Abstract—EEG is used to study the electrical changes in the 

brain and can derive a conclusion as epileptic or not, using an 

automated method for accurate detection of seizures. Deep 

learning, a technique ahead of machine learning tools, can self-

discover related data for the detection and classification of EEG 

analysis. Our work focuses on deep neural network architecture 

to visualize the temporal dependencies in EEG signals. 

Algorithms and models based on Deep Learning techniques like 

Conv1D, Conv1D + LSTM, and Conv1D + Bi-LSTM for binary 

and multiclass classification. Convolution Neural Networks can 

spontaneously extract and learn features independently in the 

multichannel time-series EEG signals. Long Short-Term 

Memory (LSTM) network, with its selective memory retaining 

capability, Fully Connected (FC) layer, and softmax activation, 

discover hidden sparse features from EEG signals and predicts 

labels as output. Two independent LSTM networks combine to 

form Bi-LSTM in opposite directions and appreciate added 

visibility to upcoming information to provide efficient work 

contrary to previous methods. Long-term EEG recordings on the 

Bonn EEG database, Hauz Khas epileptic database, and 

Epileptic EEG signals from Spandana Hospital, Bangalore, 

assess performance. Metrics like precision, recall, f1-score, and 

support exhibit an improvement over traditional ML algorithms 

evaluated in the literature. 

Keywords—1D CNN; bidirectional LSTM; dataset (DS); deep 

learning; electroencephalogram (EEG); LSTM 

I. INTRODUCTION 

Epilepsy is a neural sickness portrayed by a sudden attack 
called seizures due to strange initiation by the networks of 
neurons [1]. The abrupt behavior of electrical movement 
causing disorder inside mind is due to abnormalities, lack of 
oxygen during labor, and reduction in blood sugar. A seizure 
is a time of irregular excitation of neurons lasting from 
seconds to a minute [2] and upsets the body. These seizures 
are not quickly perceived, which is a significant issue. Now 
researchers are exploring and assessing seizures in the 
beginning phase utilizing Electroencephalogram (EEG). The 
strange enactment is the voltage alteration due to the flow of 
current by the ions in the neurons, demonstrating the 
cerebrum's bioelectric phenomena [3] converted to electrical 
action and looked through electroencephalography (EEG). 
The recording is done to gauge the voltage motions in brain 
and changed to time series data called signals, characterized 
by spikes, sharp waves, or a combination of both. EEG signals 
are preferred in the frequency domain since they are 
convenient and give clarity [4]. Diagnosing epilepsy with 
EEG signals is tedious and arduous, and human mistakes are a 

possibility, so that a machine-based determination would be 
better. 

Therefore data-preprocessing is done by normalizing the 
input variables. Features are extracted and selected from EEG 
signals in time, frequency, or in the time-frequency domain, 
like spectral, amplitude, entropy, wavelet, statistical, non-
linear features, etc., and passed to the classification process. 
Because EEG patterns are exceptionally unique and may be 
unsuccessful for slight differences, time-series information is 
considered for dynamic examination since methodologies 
based on domain features have impediments. 

Machine learning and deep learning strategies are 
predominant for learning, to prove the model with complex 
real-world information. We achieve crucial data collection by 
creating robust features [5], so the deep neural network can 
distinguish between seizure and non-seizure events. It 
concentrates on computational models and learns through non-
linear transformations like neural networks. Initially, neural 
networks required more calculation time. Subsequently, they 
didn't get consideration, yet presently, due to enormous 
datasets and complex Graphic Processing Units (GPUs), it has 
given scientists an economical and robust arrangement, 
permitting them to examine deep learning models. Without 
prior knowledge of the dataset, neural networks have 
improved their boundaries repeatedly. 

Work here demonstrates a one-dimensional Convolution 
Neural Network (1D-CNN) model to learn high-level 
representations from filtered EEG signal data for seizure 
detection and classification after reviewing the available 
research. However, increasing the convolutional layers can 
eventually obtain strong and conclusive features, with 
simplicity and efficiency being the most important advantages 
of this type of network. 1D-CNNs are naturally apt for 
handling biological signals like EEG for seizure detection [6] 
by using pooling and convolutional layers. In addition to that, 
signals are 1D in nature, and using preprocessing methods 
there is no information loss. 

Next, the one-dimensional Convolution Neural Network 
Long Short-Term Memory (1D CNN-LSTM) model is 
proposed, with preprocessing applied to the raw EEG signal 
and normalized features effectively extracted by 1D-CNN. 
The obtained characteristics handled by LSTM layers extract 
temporal features and passed to fully connected layers before 
conclusion as epileptic or not. Results obtained demonstrate 
the proposed model exhibits identification recognition 
correctness in classifying epileptic seizure recognition tasks as 
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binary and multiclass, respectively. The 1D CNN-LSTM 
model comprises one input layer, six convolutional layers, 
three pooling layers, two LSTM layers, one fully connected 
(FC) layer, and three dropout layers. 

The modified version of the Recurrent Neural Network 
(RNN) is LSTM, and it is tough to train standard RNNs 
because of vanishing and exploding gradient problems [7]. 
The identity function of derivative 1 happens as the activation 
function, thus preventing the gradient from vanishing or 
exploding. The Bi-LSTM architecture selected consists of 64 
forward and 64 backward LSTM cells per layer. Bidirectional 
long short-term memory (Bi-LSTM) network explores seizure 
detection and classification in this research. Bi-LSTM evolved 
considering the merits of LSTM and Bi-RNN [8]. Processing 
happens in two opposite directions, thereby improving 
performance. When compared with CNN models and Bi- 
LSTM models on time series data, the time dependencies of 
the signal are described poorly in CNN models but well in Bi- 
LSTM models. 

II. LITERATURE SURVEY 

Numerous procedures are employed to obtain EEG signal 
features for seizure detection. In [9], integrating with extreme 
learning machine (ELM), features like approximate entropy 
and sample entropy are employed. In [10], non-subsampled 
wavelet–Fourier features are incorporated for seizure 
detection, with a considerable quantity of continuous EEG 
recordings being the limitation. Combining wavelet 
decomposition with directed transfer function (DTF) for 
feature extraction is used in [11]. Still, the limit here is the 
existence of muscle artefacts in scalp EEG recordings. 
However, better results can be expected if an intracranial 
electrocorticogram (ECoG) uses subdural grid electrode 
implementation. In [12] authors suggested a unique feature as 
a matrix determinant for EEG analysis. For noise removal, 
researchers proposed a Bandpass filter to enhance SNR in 
intracranial EEG signals to obtain a sensitivity more 
significant than 80% and specificity ranging between 75% and 
88%. Correspondingly, sensitivity, specificity, and accuracy of 
77.10%, 71.63%, and 75.07% are obtained [13], 
demonstrating weak execution. Linear Discriminant Analysis 
(LDA) [14] and Bayesian classifier [15] comprise the machine 
learning classifiers and Convolutional Neural Networks 
(CNN) [16] as deep learning classifiers with no perfect 
prediction available. Positive results are obtained using Long 
Short-Time Memory Units (LSTMs) [17]. However, the 
investigation by collecting additional experimental data and 
fusing it to develop new AI algorithms improves upon existing 
applications. 

Robust features [18] with single-channel epileptic EEG 
signals automatically learn using machine learning and deep 
learning techniques. Research should focus on algorithms 
capable of handling complex multichannel epileptic EEG 
signals. Using discrete wavelet transform (DWT) and K-
means with multilayer perceptron (MLP) for classification in 
[19] is implemented. Though deep CNN-based architecture 
obtains prominent features from raw EEG data to detect 
seizures, overlapping among seizure and non-seizure events 
happens. It becomes tedious to construct a generic technique 

to obtain high sensitivity [20]. In [21] a hybrid ensemble 
learning framework that systematically combines pre-
processing methods with ensemble machine learning 
algorithms specifically, principal component analysis (PCA) 
and t-distributed stochastic neighbor embedding (t-SNE) 
combined along k-means clustering followed by ensemble 
learning such as extreme gradient boosting algorithms 
(XGBoost) and random forest is considered. However, in [22], 
using 13 layers, deep CNN architecture is considered. 

Nevertheless, the drawback is the lack of a vast EEG 
database. Researchers demonstrated the deep belief nets 
(DBN) mechanism for modelling EEG data [23]. The training 
time using K Nearest Neighbor (KNN) and Support Vector 
Machine (SVM) took a few hours to a few days, but with 
DBNs, it took a few days to more than a week. 

Using two parallel 1D-CNN blocks, a stacked 1D-CNN 
model is implemented with a random selection and data 
augmentation (RS-DA) strategy to overcome sample 
imbalance in [24] but with Two-Dimensional Convolution 
Neural Network (2D-CNN) and LSTM, collectively with RS-
DA, thorough assessments with statistical, entropies, 
frequency, or time-frequency domain features, etc., can be 
derived and combined to 1D-CNN model as input. A generic 
auto-detection method, robust to noise, is used in [25]. Inputs 
are the digital version of the EEG recordings to the model, 
which aids the neurologists in detection. The limitation is the 
SNR value decreases the classification accuracy. A key reason 
for using Bi-directional LSTM in [26] is they look after the 
time dependencies both in a forward and backward direction. 
The authors in [27] use spectral feature-based two-layer long 
short-term memory (LSTM) model. The segments considered 
are in the frequency domain. In [28], an automated epilepsy 
detection system implementing wavelet decomposition and a 
1D- CNN, along with Bi-LSTM, is incorporated. But the 
limitation is its inability to detect the occurrence of seizure at 
512 Hz as the sample rate. However, the decimation of 
samples can enable the model at 256 or 512 Hz sampling rate 
to identify epileptic seizures. 

III. DATASETS 

Before we begin the experiment with the results and 
analysis, discussion on the various datasets being used in the 
work is being dealt with. 

A. Bonn EEG – UCI Machine Learning Repository: Epileptic 

Seizure Recognition Dataset 

We expect to characterize the different classes of the Bonn 
EEG dataset into five categories named class1, class2, class3, 
class4 and class5, each having 100-single channel sections of 
EEG. Every single channel is 23.6s recording at a sampling 
frequency of 173.61 Hz. The comparing time series inspects 
4097 data focused on separating and rearranging into 23 
pieces, each containing 178 data of interest every second. The 
data of interest is the EEG recording at the alternate moment. 
The recording is of both healthy and epileptic patients. Class 1 
contains EEG signals from epileptic seizure sections, and EEG 
signals originating from the tumor zone belong to Class 2. 
Class 3 has signals from the healthy brain area of the tumor 
found in the brain. Class 4 contains EEG information on 
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healthy volunteers with closed eyes. EEG data of subjects with 
open eyes belong to Class 5 (Fig. 1). 

The 178 information are X1, X2, X3… .X177, X178 the 
logical factors with various classes labeled y (Fig. 2). For 500 
patients, we get 11500 columns (23X500= 11500). Each of the 
178 pieces of information is put in sections as columns and 
11500 examples as lines or rows and named the information 
from [1-5] as the last segment (segment y). People other than 
one category, i.e., 2,3,4,5, classes are non-epileptic. 

 
Fig. 1. Plot of each class. 

 
Fig. 2. Datapoints with label. 

B. Neurology and Sleep Centre, Hauz Khas, New Delhi 

The EEG recording uses the Comet AS40 EEG machine 
and 200 Hz as the sampling rate. Signals ranging between 0.5 
to 70 Hz undergo filtering and are divided into pre-ictal, 
interictal and ictal stages. The duration of the EEG portion in 
this archive is 5.12s with 1024 examples. 

There are three folders that are named according to the 
epileptic seizure stages and each folder contains fifty files of 
EEG time series. Each segment is considered as an instance. 
In total, 150 instances are considered belonging to each 
intended class. 

C. Spandana Nursing Home Dataset, Bangalore 

An ongoing EEG Data is being utilized for the location of 
epilepsy. Twenty EEG accounts of epileptic patients with 10 
EEG signals during seizures and 10 EEG data from a sound 
volunteer with open eyes are considered. The sampling rate is 
175 Hz. Filtering for signals ranging between 0.5 to 60 Hz is 
done. The universally perceived technique to portray areas of 
various electrodes on the scalp is utilized, which depends on 

the connection between the primary regions of the cerebral 
cortex. The number '10' - '20' suggests the distance between 
every terminal from each other is 10% or 20% of the absolute 
right-left or front-back space of the skull. A letter has been 
assigned to each site for lobe recognition, and a number is 
assigned to distinguish the cerebral hemisphere area. Even 
numbers 2, 4, 6, and 8 indicate the right of the brain for the 
electrode position of the brain, and odd numbers 1, 3, 5, and 7 
mean terminals on the left part. The crude signals acquired are 
switched over entirely to ASCII design. EDF (European Data 
Format) Browser programming is utilized, an open source, 
universal viewer, multiplatform, and tool kit for conversion. 
The classifier tool is in such a way if the output is '0', it is 
epileptic or abnormal EEG, and '1' indicates normal EEG or 
non-epileptic EEG. 

IV. PROPOSED METHODOLOGY: DEEP LEARNING 

ALGORITHMS AND MODELS 

The proposed technique introduces three different 
methodologies for adequate recognition and classification of 
an epileptic seizure. EEG as input is a Comma Separated 
Values (CSV) document. When the input document is perused 
and switched over entirely to a python data frame, the 
information is standardized, split for training, validation, and 
testing in the proportion of 6:2:2 and labels are changed over 
into One Hot Encoded design. The architecture's performance 
is analyzed for Multiclass (1,2,3,4,5) and Binary Classification 
(1/0). All the presented models are examined by training for 
up to 40 epochs using Categorical Cross Entropy as a loss 
function. 

A. Method-1: Based on Conv1D 

In the proposed method 1, the EEG information is 
examined by applying Convolution, and a deep learning 
method is prominently used to analyze time series data. Direct 
and quicker design models are presented because the 
boundaries are low. Pooling and convolutional layers with 
bigger size are utilized in 1D models and, when applied, 
produces a kernel of determined size(m) which is convolved 
with the input(x) to create the filtered output(y) whose 
dimensionality will be equivalent to the number of kernels(n). 
Conv1D is fit for learning features (w) concealed in the series 
of time sequence data. 

    ∑       
 
     (1) 

In the output expressed as the above equation, k is the 
counter value ranging from -m to +m, covering the length of 
the kernel. Initially, considering 1D data of the EEG signal 
with the feature vector, it is convolved along with the filter to 
acquire a feature map. 1D data is ordered along a single line 
data organized by time and fits on a 1D line. Convolution 
takes a kernel (internal weights) of a filter and a sliding dot 
product with the signal. The process of multiplying each 
aligned pair of points and adding all products is called the dot 
product. 

Since we are sliding, the data gets overlapped, and the 
representation is as below. 

                      (2) 
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w=                   (3) 

                               (4) 

Losses are overcome by backpropagation, and the above 
equations are explicitly differentiated concerning gradients 
through layers. The partial derivative of loss for y is 
propagated back to calculate the partial derivative of loss for x 
through every network using the chain rule and the loss to 
each input given by. 

  

   
  ∑

  

   
 
   

   

   
      (5) 

Therefore, input gradient = output gradient (W), where 

W=
   

   
 should be known and so the layer is differentiable. The 

architecture consists of a series of Conv1D layers followed by 
MaxPool layer. It reduces spatial size, number of parameters 
and computation while aggregating the dominant features, 
thereby reducing the dimensionality. The most well-known 
pooling strategy is max pooling. Max pooling alludes to 
getting maximum value after each pooling activity and the 
data is flattened. Flatten concatenates the results from the 
convolution layers to frame a flat structure taken as input to 
dense layer. A fully connected layer or Dense network helps 
to classify based on features. It is a dense network of neurons, 
and every neuron is connected to the previous and subsequent 
layers. If there are multiple dense layers, then the last layer 
has output as the same number of the classes or categories. 
The linearity principle is used in Dense Layer, where the 
outcome depends on every input. The activation function 
utilized is the SoftMax activation which adds learning 
capacity to neural networks by learning complex patterns and 
multiplying weights with the input features and concluding 
regarding firing. Activation functions make the network non-
linear, else it becomes linear. For example, output relies 

linearly upon the input features. SoftMax activation is the 
most ordinarily busy work as final layer in neural network for 
multiclass classification, being a blend of different sigmoid 
which works out the general probabilities and standardizes 
neural network results to fit between 0 and 1. The SoftMax 
probabilities will constantly aggregate to 1. The architecture 
of the proposed Method-1 can be seen in Fig. 3. The results 
obtained using Method-1 to determine the metrics like 
Accuracy, Precision, Recall, F1- Score and Support with DS1, 
DS2 and DS3 for multiclass and binary classification are 
shown in Table I (A) and Table II (B) respectively. 

      
   

∑  
   

   

   (6) 

B. Method-2: Based on Conv1D+LSTM 

The architecture with a mix of Convolution (Conv1D) and 
Long Short-Term Memory (LSTM) is proposed as method 2. 
Input is passed to Convolution, MaxPool, and dropout layer 
before executing with the next layer, where it invalidates a 
portion of the neurons towards the following layer by 
randomly setting the input units to 0, thus forestalling 
overfitting and consequently evades the network from 
depending on a single neuron. Typically, dropouts are put on 
fully connected layers. Dropout might be carried out on any 
hidden layer or input layer in the network, yet not utilized on 
the output layer. 

 

Fig. 3. Architecture of the proposed method-1. 

TABLE I.  (A) PROPOSED METHOD1 WITH METRICS FOR MULTICLASS CLASSIFICATION OF DATASET1 AND DATASET2 

 
Conv1D  

Multiclass Classification Precision Recall F1-score Support Accuracy 

DS-1 

Bonn EEG 

Class1 (Epileptic) 0.98 0.97 0.97 457 

74.61 

Class 2 0.65 0.66 0.66 477 

Class 3 0.66 0.61 0.63 472 

Class 4 0.72 0.79 0.76 422 

Class 5 0.74 0.71 0.72 475 

DS -2 

HauzKhas 

0 (Ictal) 1.00 1.00 1.00 10 

64.52 1(Inter ictal) 0.80 0.29 0.42 14 

2(preictal) 0.38 0.86 0.52 7 

TABLE II.  (B) PROPOSED METHOD1 WITH METRICS FOR BINARY CLASSIFICATION OF DATASET1, DATASET2 AND DATASET3 

 
Conv1D  

Binary Classification Precision Recall F1-score Support Accuracy 

DS-1 

Bonn EEG 

0(Nonepileptic) 0.99 0.99 0.99 1846 
98.83 

1 (Epileptic) 0.98 0.96 0.97 454 

DS -2 

Hauz Khas 

0(Nonepileptic) 0.86 0.71 0.77 17 
77.42 

1 (Epileptic) 0.71 0.86 0.77 14 

DS -3 

Spandana 

0(Nonepileptic) 1.00 0.67 0.80 3 
75.00 

1 (Epileptic) 0.50 1.00 0.67 1 
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Fig. 4. Cell of LSTM. 

 

Fig. 5. Architecture of the proposed method-2. 

LSTM is based on recurrent neural networks capable of 
learning, remembering, and processing information from a 
series of data distributed over time and, accordingly, is slow. 
LSTMs, with their specially designed gates, process the data 
linearly while deciding against retaining the learnt feature is 
good or forgetting it and moving forward. The LSTM gates 
use sigmoid activation (σ) as shown in Fig. 4. The architecture 
of the proposed method 2 is seen in Fig. 5. It has been 
observed in the conducted research that using many filters 
results in hindering the model from learning. Long Short-
Term Memory (LSTM) networks are fit for learning to rely on 
the sequence and handle the disappearing gradient issue. 

Sigmoid and tanh functions are two normalizing 
conditions utilized in LSTM. The sigmoid function implies a 
mechanism attempting to compute a bunch of scalars in the 
range of 0 and 1. The tanh function tells a system trying to 
change the information into a standardized data encoding 
between - 1 and 1. Inputs are multiplied by different 
frameworks of weights and added together. Feature extraction 
is done when the sigmoid function crushes the outcome 
between 0 and 1 when added with bias and applied. Though 
training is lengthy, it glances at the long sequence of inputs 
without expanding the network size. An LSTM network 
empowers to include sequence information in the network and 
makes forecasts relying on individual time stamps. 

The LSTM cell is shown in Fig. 4. To replace memory, the 
Input gate finds the value. The second sigmoid function 
accepts current state    and previously hidden state      and 
concludes values to let through as 0 (critical) or 1(not critical). 

Furthermore, the tanh function gives weightage to the qualities 

which are passed to create a vector  ̃  concluding their degree 
of significance from - 1 to 1. 

        [       ]         (7) 

 ̃          [       ]       (8) 

where t = timestamp,     = input gate at t,    = Weight 
matrix of sigmoid operator between input gate and output 

gate,    = bias vector,  ̃  = value generated by tanh,     = 
weight matrix of tanh operator between cell state information 
and network output,    = bias vector concerning   . 

Based on the block’s input and memory, the output gate 
result is chosen, and current and previous hidden state values 
are passed to the third sigmoid. The function tanh accepts new 
cell state generated, and outputs are multiplied point-by-point. 
The final value decides the hidden state to carry the 
information. Therefore, a new cell state and a new hidden state 
are passed to the next timestamp. 

  =  (    [       ]     )  (9) 

                  (10) 

where t = timestamp,    = output gate at t,    = Weight 
matrix of output gate,   = bias vector with respect to    ,   = 
LSTM output. 

Related data from the earlier process is found by forget 
gate. The sigmoid function is passed with the current input    

and hidden state       and value derived is implemented for 

point-by-point multiplication. 

  =  (    [       ]     )  (11) 

where t = timestamp,    = forget gate at t, xt = input, 
                               = weight matrix between 

forget gate and output gate,   = bias at t. 

The data needs to be stored from the new state in the cell 
to obtain the end output. The product of previous cell state 
     and forget vector      if found to be 0, then values are 
eliminated, and point-by-point addition is performed to get a 
new cell state Ct. 

  =                ̃   (12) 

where t =timestamp,    is cell state information,   is forget 

gate at t,        is previous time stamp,    is the input gate,  ̃  is 
a value generated by tanh. 

The boundaries in LSTMs are learning rates, information, 
and result predispositions. In forget gate, a duplicate of the 
time-stamp information is separated, and in input gate a copy 
is passed. Using the above method, various metrics like 
Accuracy, Precision, Recall, F1- Score and Support for 
various datasets DS1, DS2 and DS3 are calculated and 
demonstrated in Table III (A) and Table IV (B) for multiclass 
and binary classification. 

 METHOD-2 
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TABLE III.  (A) PROPOSED METHOD 2 WITH METRICS FOR MULTICLASS CLASSIFICATION OF DATASET1 AND DATASET2 

 
Conv1D+LSTM  

Multiclass Classification Precision Recall F1-score Support Accuracy 

DS-1 

Bonn EEG 

Class1 (Epileptic) 0.97 0.98 0.97 454 

77.52 

Class 2 0.72 0.59 0.65 477 

Class 3 0.66 0.71 0.68 472 

Class 4 0.82 0.76 0.79 422 

Class 5 0.76 0.78 0.77 475 

DS -2 

Hauz 

Khas 

0 (Ictal) 1.00 1.00 1.00 10 

74.19 1(Inter ictal) 0.67 0.57 0.62 14 

2(preictal) 0.33 0.29 0.31 7 

TABLE IV.  (B) PROPOSED METHOD 2 WITH METRICS FOR BINARY CLASSIFICATION OF DATASET1, DATASET2 AND DATASET3 

 
Conv1D+LSTM  

Binary Classification Precision Recall F1-score Support Accuracy 

DS-1 

Bonn EEG 

0(Nonepileptic) 0.99 1.00 0.99 1846 
99.40 

1 (Epileptic) 0.98 0.97 0.97 454 

DS -2 

Hauz Khas 

0(Nonepileptic) 0.82 0.82 0.82 17 
80.65 

1 (Epileptic) 0.79 0.79 0.79 14 

DS -3 

Spandana 

0(Nonepileptic) 1.00 1.00 1.00 3 
1.00 

1 (Epileptic) 1.00 1.00 1.00 1 

TABLE V.  (A) PROPOSED METHOD 3 WITH METRICS FOR MULTICLASS CLASSIFICATION OF DATASET1 AND DATASET2 

 
Conv1D+Bi-LSTM  

Multiclass Classification Precision Recall F1-score Support Accuracy 

DS-1 

 

Bonn 

 

EEG 

Class1 (Epileptic) 0.97 0.98 0.97 454 

80.43 

Class 2 0.70 0.72 0.71 477 

Class 3 0.72 0.62 0.67 472 

Class 4 0.74 0.83 0.78 422 

Class 5 0.78 0.72 0.75 475 

DS -2 

Hauz 

Khas 

0 (Ictal) 1.00 1.00 1.00 10 

77.42 1(Inter ictal) 0.73 0.79 0.76 14 

2(preictal) 0.50 0.43 0.46 7 

TABLE VI.  (B) PROPOSED METHOD 3 WITH METRICS FOR BINARY CLASSIFICATION OF DATASET1, DATASET2 AND DATASET3 

 
Conv1D+Bi-LSTM  

Binary Classification Precision Recall F1-score Support Accuracy 

DS-1 

Bonn EEG 

0(Nonepileptic) 0.99 0.99 0.99 1846 
99.40 

1 (Epileptic) 0.98 0.96 0.97 454 

DS -2 

Hauz Khas 

0(Nonepileptic) 0.92 0.71 0.80 17 
80.65 

1 (Epileptic) 0.72 0.93 0.81 14 

DS -3 

Spandana 

0(Nonepileptic) 1.00 1.00 1.00 3 
1.00 

1 (Epileptic) 1.00 1.00 1.00 1 

C. Method-3: Based on Conv1D+BiLSTM 

In the proposed method 3, a more meaningful output is 
produced by using a powerful tool for modeling the sequential 
dependencies in both directions. The architecture is planned 
with a blend of Convolution and Bidirectional Long Short-
Term Memory (Bi-LSTM). It offers preferable expectations 
by two LSTMs. Every component of an input sequence 
computes the input arrangement from the reverse path to a 
hidden forward sequence and a backward hidden sequence. 
Concatenation of the final forward and backward outputs leads 
to an encoded vector. Thirty-two units of LSTM of 0.2 

dropouts, are utilized in a bidirectional manner as depicted in 
Fig. 6. At every timestamp, each hidden layer yield is created 
alongside the memory cell state and passed to a 1D 
convolutional layer of 64 filters of kernel size four as shown 
in Fig. 7. The past LSTM network trails the remainder of the 
network. The results show that Bi-LSTM based modeling 
offers better predictions than regular LSTM based models. 
Accuracy, Precision, Recall, F1 Score and Support for datasets 
DS1, DS2 and DS3 for both multiclass and binary 
classification using Conv1D+ Bi LSTM are referred in Table 
V (A) and Table VI (B) accordingly. 
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Fig. 6. Bidirectional LSTM. 

 
Fig. 7. Architecture of the proposed method-3. 

V. RESULT AND DISCUSSION 

Precision is defined as the quality of a correct prediction 
given by the model and is the number of true positives divided 

by the total positive predictions. Precision is how good the 
model is at predicting a specific category. It does not predict 
negative class, called false negatives [30-32]. 

Precision = TP / (TP + FP) 

Recall is a measure computing the number of correct 
predictions from all positive predictions possible. In binary 
class, recall is computed as the number of true positives 
divided by the sum of true positives and false negatives. 

Recall = TP / (TP + FN) 

The F1 score or F-measure gives the harmonic average of 
precision and recall together to measure the efficiency of two 
classifiers. 

F-Measure = (2 * Precision * Recall) / (Precision + Recall) 

Support: The support is several actual occurrences of the 
class in the specified dataset and got by summing the rows of 
the confusion matrix. 

However, comparing three models with Bonn EEG 
Dataset, displayed in Table VII illustrates the proposed Deep 
learning methods with added layers have a higher score than 
simple CNN approaches, suggesting high classification 
accuracy. 

TABLE VII.  COMPARISON OF ACCURACY WITH EXISTING AND PROPOSED METHODS OF DATASET1(BONN), DATASET2(HAUZ KHAS) AND 

DATASET3(SPANDANA) WITH BINARY CLASSIFICATION 

Dataset1(Bonn) 

DL Algorithm and 

Models 
Accuracy (%) Proposed Sensitivity Proposed Precision Proposed F1- Score Proposed 

Conv1D [29] 88.70 98.83 95.00 98 90.00 96 -- 97 

Conv1D+ 

LSTM 
--- 99.04 --- 97 --- 98 -- 97 

Conv1D+ 

BiLSTM 
--- 99.40 --- 96.5 --- 98 --- 97 

Dataset2 (Hauz Khas) 

Conv1D [29] --- 77.42 --- 86 --- 86 -- 77 

Conv1D+ 

LSTM 
--- 80.65 --- 82 --- 82 -- 83 

Conv1D+ 

BiLSTM 
--- 80.65 --- 93 --- 92 --- 80 

Dataset3 (Spandana) 

Conv1D [29] --- 75.00 --- 100 --- 100 -- 80 

Conv1D+ 

LSTM 
--- 100.00 --- 100 --- 100 -- 100 

Conv1D+ 

BiLSTM 
--- 100.00 --- 100 --- 100 --- 100 

VI. CONCLUSION AND FUTURE WORK 

In Proposed Method 1 (Conv 1D), a CNN model is built 
on a 1D time series, and architecture consists of a series of 
Conv1D layers followed by MaxPool. Flatten forms a flat 
structure which acts as input to dense layer with SoftMax 
activation adding learning capacity to neural networks for 
classification. A fully connected layer or Dense network helps 
to classify based on features. The metrics are improved 
compared to ML algorithms. A dense or Fully Connected 
layer is used as a classifier based on extracted features. 
Generally, the performance of the CNN classifier can be 
improved by the right choice of parameters like pooling size, 
learning rate, activation function and optimizer.  Our approach 

uses CNN to detect epileptic seizures and has improved the 
classification accuracy along with the generalization ability of 
the classifier. The tabulated results from Table I (A) and Table 
II (B) significantly shows the improvement compared to 
Machine Learning based algorithms. 

In Proposed Method 2 (Conv1D + LSTM), the LSTM is 
based on recurrent neural networks capable of learning, 
remembering, and processing information from a time series 
data. LSTMs have gates that process the data and decide on 
retaining the known feature if it is sound, forgetting if 
imperfect, and moving ahead. Gates use sigmoid activation (σ) 
and are fit for learning order. Though the training time is 
lengthy, LSTM glances at a long sequence of inputs without 
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expanding the network size. An LSTM network empowers to 
include sequence information in succession. It is evident from 
the measured metrics shown in Table III (A) and Table IV (B) 
that LSTM, with its selective memory, can successfully 
empower the network with the retained essential features. This 
model can also be implemented on different domain signals 
like frequency and time- frequency domain signals and can 
compare the performance accuracy. Furthermore, LSTM 
layers can implement the data in classifying with multiclass 
exclusively on the Bonn EEG epileptic dataset deeply and 
classifying better seizure states. 

In Proposed Method 3 (Conv1D + Bi LSTM), the Bi-
LSTM based model is much better than usual LSTM based 
models as per the results obtained. Bi- LSTM takes a step 
further ahead from LSTMs with its capability to view and 
understand the data in both directions. In contrast, they are 
utilizing the knowledge of the past and future data present in 
the time series. Bi-LSTMs can extract the best describing 
feature vectors from the data. While the proposed methods 
prove their ability with the Bonn and Hauz Khas dataset, it 
leads to overfitting with Spandana dataset due to its smaller 
size. As part of further work, improvement is made by 
enhancing the dataset from medical agencies, building deeper 
models, regularization with Batch normalization, 
augmentation techniques, and reinforcement-based learning 
remains unexplored.  Moreover, when operated to multi-class 
classification, the present approach does not have a good 
recognition accuracy that is principally exceptional. Results 
prove that Bi-LSTMs are an ideal choice for time sequence 
data as demonstrated in Table V (A) and Table VI (B) 
correspondingly. 
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