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Abstract—The low-voltage metering box is a critical piece of 

equipment in the power supply system. The automated inspection 

of metering boxes is important in their production, 

transportation, installation, operation and maintenance. In this 

work, an automated type identification and size measurement 

method for low-voltage metering boxes based on RGB-D images 

is proposed. The critical components, including the door shell 

and window, connection terminal block, and metering 

compartment in the cabinet, are segmented first using the 

Mask-RCNN network. Then the proposed Sub-Region 

Closer-Neighbor algorithm is used to estimate the number of 

connection terminal blocks. Combined with the number of 

metering compartments, the type of metering box is classified. To 

refine the borders of the metering box components, an edge 

correction algorithm based on the Depth Difference (Dep-D) 

Constraint is presented. Finally, the automated size measurement 

is implemented based on the proposed Equal-Region Averaging 

algorithm. The experimental results show that the accuracies of 

the automated type identification and size measurement of the 

low-voltage metering box reach more than 92%. 

Keywords—Low-voltage metering box; RGB-D image 

processing; automated size detection; automated type detection; 

inspection automation 

I. INTRODUCTION 

The low-voltage metering box is an important piece of 
electrical equipment in power systems. It is responsible for 
measuring and monitoring the electrical energy consumption of 
end-users, which are ordinary residents, factories or enterprises 
[1-2]. It plays a pivotal role in ensuring that the power supply 
in a building is well regulated and efficiently distributed. 

The automated inspection of low-voltage metering boxes is 
important in their production, transportation, installation, 
operation and maintenance [3-4]. The type identification and 
structural size inspection are of significance for the safety and 
the long-term use of the low-voltage metering boxes [5-6]. The 
type and size inspection refers to the process of examining the 
structure, physical shape and size of critical components in a 
metering box [7-8]. The structure and size of these components 
should be consistent with the relevant standards and 
regulations to ensure the proper functioning of the metering 
boxes. The conforming structure and size are prerequisites for a 
reasonable, safe and reliable layout of components of the 
metering boxes. The inappropriate type and size may lead to 

equipment damage or electrocution accidents, which can 
reduce the service life of the metering boxes. The type and 
structural size inspection is essential to ensure the safe and 
accurate operation of the low-voltage metering boxes and 
improve the reliability of electrical systems. 

The inspection is typically carried out by a qualified 
technician in accordance with established procedures and 
guidelines. The technician should check the exterior and 
interior of the low-voltage metering box, including the 
appearance, key components, markings, and size measurement, 
which is labor-intensive and time-consuming. The automated 
inspection is urgent for a low-voltage metering box [9-12]. To 
a certain extent, it can improve the management efficiency and 
extend its service life. 

Machine vision and other computer technologies make the 
automation inspection of metering boxes possible. Wang et al. 
[13] designed an intelligent detection management system for 
the low-voltage metering cabinets to optimize the inspection 
process and im-prove the detection efficiency. Shen et al. [14] 
analyzed the failure mechanism of the metering boxes to 
further improve their production process. Xu et al. [15] and 
Weng et al. [16] introduced image-based intelligent monitoring 
for the low-voltage metering cabinets to guard against theft and 
facility damage. However, there has been little research about 
the automatic type identification and size measurement of the 
low-voltage metering boxes. 

To improve the efficiency of industrial production, there 
have been some studies on the size measurement of workpieces 
based on image processing and recognition technology. Three 
common approaches for size measurement are the monocular 
vision method, the binocular vision method and the structured 
light method, which are described as follows. (1) The 
monocular vision method is a commonly used method that uses 
a single camera to capture a workpiece image and combined 
with prior knowledge to compute the actual size of the 
workpiece [17]. Li et al. [18] proposed an axial dimension 
detection method for a corrugated compensator based on the 
image recognition. Chen et al. [19] introduced the Canny edge 
detection and contour feature extraction algorithm to identify 
the outer diameter and wall thickness of pipes. Cheng et al. [20] 
applied the camera calibration to measure the key size of 
injection-modeled products. Yu et al. [21] took the actual 
height as a reference to calculate the sizes of key parts of the 
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human body. (2) The binocular vision method uses two images 
which are acquired from different angles, and the 
three-dimensional spatial location information of the object can 
be obtained based on the parallax principle. Xue et al. [22] 
used the Kinect sensors to identify the size and orientation of 
square box objects, which can be used in mobile robots 
handling. Liu et al. [23] achieved an on-site size measurement 
of large forgings based on binocular stereo-vision and forging 
scene geometry constraints. (3) The principle of the structured 
light method for size measurement is optical triangulation [24]. 
The surface of the object modulates the structured light, and 
the modulated light is captured by a charge-coupled device 
(CCD), which forms a two-dimensional distorted image [24]. 
The 3D coordinates and contour in-formation of the designated 
point could be obtained based on the distorted image and the 
location of the modulated light bars. 

The automated measurement of the workpiece size based 
on machine vision generally consists of two steps. The first 
step is to extract an edge or edge feature points of the 
workpiece via image processing. Then the two-dimensional 
coordinates are mapped into 3D space by modeling or 
calculation to obtain the actual size of the workpiece. Different 
workpieces have different shapes and physical characteristics. 
Thus, the size measurement method should be designed based 
on the characteristics of the captured images. The workpiece 
size measurement approaches mentioned above almost all 
focused on the measurement of a single small part. It is not 
applicable for the external and internal size measurement of the 
low-voltage metering box. 

The low-voltage metering boxes with direct connections are 
classified into four types: single-phase single-meter metering 
boxes, single-phase multi-meter metering boxes, three-phase 
single-meter metering boxes, and three-phase multi-meter 
metering boxes [25]. The phase of a metering box is 
determined by the number of connection terminal blocks. For a 
single-phase metering box, the number of connection terminal 
blocks is four while it is eight for a three-phase metering box. 
The meter of a metering box is determined by the number of 
the metering compartments. The accurate automated type 
identification of the metering boxes remains a difficult problem, 
due to the illumination, occlusion, and other problems. In 
particular, the baffle plate in front of the connection terminal 
blocks significantly affected the detection accuracy. 

In this work, an automated type identification and size 
measurement method for low-voltage metering boxes based on 
RGB-D (red, green, blue, and depth) images is pro-posed. The 
critical components, including the door shell and window, 
metering compartment, and connection terminal block in the 
cabinet, are segmented first using the Mask-RCNN network. 
Then the proposed Sub-Region Closer-Neighbor algorithm is 
used to estimate the number of connection terminal blocks. 
Combined with the number of metering compartments, the 
type of the metering box is classified. To refine the border of 
the metering box components, the edge correction algorithm 
based on the Depth Difference (Dep-D) Constraint is presented. 
Finally, the automated size measurement is implemented based 
on the proposed Equal-Region Averaging algorithm. 

The main contributions of this work are summarized as 
follows: 

 The automated type identification and size 
measurement method for the low-voltage metering 
boxes is proposed, based on RGB-D image processing 
techniques. 

 The Sub-Region Closer-Neighbour algorithm for the 
number estimation of connection terminal blocks is 
proposed. Based on the calculated number of 
connection terminal blocks and metering compartment, 
the type of a metering box is identified. 

 For the automatically segmented contour of critical 
components, the edge correction algorithm is proposed 
based on the proposed Depth Difference (Dep-D) 
Constraint in the depth channel. Then, the automated 
size measurement is implemented based on the 
proposed Equal-Region Averaging algorithm. 

The rest of this paper is organized as follows. Section II 
introduces the proposed automated type identification and size 
measurement algorithm for low-voltage metering boxes. 
Section III describes the dataset and the experimental results. 
Finally, the conclusions are presented in Section IV. 

II. PROPOSED AUTOMATED TYPE IDENTIFICATION AND 

SIZE MEASUREMENT ALGORITHM FOR LOW-VOLTAGE 

METERING BOXES 

The low-voltage metering box is a critical component of 
numerous electrical systems, functioning to guarantee the 
secure and effective distribution of electrical power [26]. 
Specifically, this device is utilized to measure and monitor 
electrical energy consumption within residential, commercial, 
or industrial settings. 

A low-voltage metering box includes two parts: the door 
shell and the metering cabinet. In the door shell, there are door 
windows. In the metering cabinet, there are incoming 
compartment, metering compartment, outgoing compartment, 
mounting plate, watt-hour meter plug, plug interference fit, 
plug clearance fit, connection terminal block, and wire. 
Specially, the sizes of three critical components are essential in 
the inspection of the low-voltage metering box, which are door 
shell, door window and metering compartment. The structure 
of a low-voltage metering box is illustrated in Fig. 1. 
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Fig. 1. Structure of a low-voltage metering box. 
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Fig. 2. Flow chart of automated type identification and size measurement for low-voltage metering boxes based on RGB-D images. 

The appearance and structure inspection are important in 
the production, transportation, installation, operation and 
maintenance of low-voltage metering boxes. The automated 
inspection could enhance the efficiency of industries, and save 
labor forces. 

In this work, a system for the automated type identification 
and size measurement of the low-voltage metering boxes is 
proposed. The overall process flowchart of the system 
algorithm is shown in Fig. 2. 

The critical components of low-voltage metering boxes are 
detected and segmented by using Mask-RCNN network [27]. 
The numbers of metering compartments and connection 
terminal blocks are detected automatically based on the 
proposed methods. Then according to the phase and number of 
meters, the type of low-voltage metering boxes is identified. 
For the segmented contour of the door shell, door window, and 
metering compartment, the edge correction algorithm is 
presented to refine the border of the components in the depth 
images. The Equal-Region Averaging algorithm is proposed to 
measure the size of these components in the metering boxes. 

A. Detection and Image Segmentation of the Critical 

Components 

The automated detection and segmentation of the critical 
components of the metering boxes in the RGB images is the 
foundation for the automated type identification and size 

measurement. By combining the detection results and 
segmented masks, the numbers of metering compartments and 
connection terminal blocks in the cabinet can be calculated, 
which are key for the classification of various types of 
low-voltage metering boxes. 

The size inspection of the critical components is the basis 
for the production, transportation, installation, and maintenance 
of the metering boxes. All the parts must comply with the 
requirements in the design drawings and the relative 
specifications and standards. By combining the detection and 
segmentation results with the depth information, the sizes of 
the critical components can be calculated. 

Mask-RCNN is a powerful object detection and instance 
segmentation network. It extends the multi-task network 
structure based on Faster R-CNN, which, in addition to 
learning bounding boxes and class labels in a multi-task 
fashion, adds a third branch for predicting object masks. This 
method combines the advantages of both object detection and 
semantic segmentation, achieving accurate and detailed object 
location and precise segmentation in complex scenes. The 
Mask-RCNN architecture consists of a backbone convolutional 
neural network, a region proposal network used to generate 
object region proposals, and a network branch for predicting 
object masks. The architecture of the Mask-RCNN network is 
illustrated in Fig. 3. 
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Fig. 3. The architecture of the Mask-RCNN network.

The backbone network is utilized for hierarchical feature 
extraction from images, while the region proposal network is 
employed for object detection and generation of candidate 
regions. The extraction of candidate regions is essentially 
bounding box regression. For an external bounding box G of 
the target, its four vertex coordinates are denoted by

( , , , )x y w hG G G G . For the proposed initial rectangular region P, its 

four vertices are represented by 
y( , , , )x w hP P P P .P Obtaining the 

target bounding box means finding a mapping f based on the 

given 
y( , , , )x w hP P P P . Given a set of parameters W learned 

through a network for the given input feature vector X, it can 
be mapped to the target feature vector Y, i.e., Y WX , that is: 

 y y
ˆ ˆ ˆ ˆ( , , , ) ( , , , )x w h x w hf P P P P G G G G

 
(1) 

 y
ˆ ˆ ˆ ˆ( , , , ) ( , , , )x w h x y w hG G G G G G G G

 
  (2) 

where the 
y

ˆ ˆ ˆ ˆ( , , , )x w hG G G G  is derived by the translations 

and scale transformations depicted in (5) and (6). 

The goal of bounding box regression learning is to solve 

the four transformations
y( , , , )x w ht t t t t , where 

y( , )xt t  

represents the translation transformation and ( , )w ht t  represents 

the scale scaling. The formulas are shown in (3) and (4). 

 ( ),  ( )x w x y h yt P d P t P d P 
 

  (3) 

 exp ( ),  exp ( )w w h ht d P t d P 
 

(4) 

 
x
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ˆ

x x

x y

G t P

G t P
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   (5) 

 
ˆ

ˆ

w w w

h h h

G P t
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
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Based on the above formulas, it can be concluded that the 
objective function for bounding box regression is: 

 * *( ) ( )Td P w P
 

(7) 

where * ( , , , )x y w h  and ( )P  is the input target 

parameter, 
*w  is the parameter to be determined, and 

* ( )d P  is 

the predicted value. By introducing the loss function 

 
2

* *

1

( ( ))
N

i T i

i

loss t w P


 
 

(8) 

the optimization objective of the function is: 

 
*

22

* * * *arg min( ( ))i T i

w
w t w P w   

 
(9) 

By following the aforementioned bounding box regression 
process, the desired target bounding boxes are obtained. 
Mask-RCNN has high detection and segmentation accuracies 
and generalization abilities, making it suitable for object 
detection and instance segmentation tasks in complex scenes. 

B. Automated Type Identification Algorithm for the 

Low-voltage Metering Boxes 

The type of low-voltage metering boxes can be determined 
by the number of connection terminal blocks and metering 
compartments. In this section, the number of connection 
terminal blocks is estimated by using the proposed Sub-Region 
Closer-Neighbor algorithm. Then, the number of metering 
compartments is added, and the type of a metering box can be 
determined. 

1) Proposed Sub-Region Closer-Neighbor algorithm for 

the number estimation of connection terminal blocks: The 

single-phase metering box is typically connected to a live line 

and a neutral line in order to measure the amount of electricity 

flowing into a building or property. For each meter in the 

metering cabinet, there are two connection terminal blocks for 

the incoming and outgoing of live lines, and another two 

connection terminal blocks for the incoming and outgoing of 

neutral lines. Therefore, there are four connection terminal 

blocks in a single-phase low-voltage metering box. 

Three-phase meter boxes are connected by two live wires 
and one neutral wire [28]. Inside a three-phase metering box, a 
single electric meter requires six terminal connection blocks for 
the live wires to enter and exit and two terminal connection 
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blocks for the neutral wire to enter and exit, so the number of 
terminal connection blocks for a single electric meter inside a 
three-phase metering box is eight. 

Due to the complex structure of the metering boxes, as well 
as the influence of lighting and shooting angle, there are 
differences in brightness and shading of the connection 
terminal blocks on the image. This leads to errors in the 
automated segmentation algorithm. Moreover, the occlusion of 
wire or baffle plate in front of the connection terminal blocks 
will results in incomplete or miss segmentation. 

In this paper, a quantity estimation algorithm for 
connection terminal blocks is proposed, to determine whether 
the metering box is single-phase or three-phase. The 
connection terminal blocks are located below the metering 
compartment, as shown in Fig. 4. Fig. 4 shows the inner 
surface of a low-voltage measuring box, the red dashed box 
shows the metering compartment region segmented based on 
the Mask-RCNN network. The four corners of each metering 
compartment are labeled as A, B, C and D. The connection 
terminal block region is defined as a quadrilateral I, with a 

length of              and a width of    
 

 
    

 

 
   

 , 

which is symmetric with respect to the corner C and corner D 
connection line. 

In the defined detection region, if there are connection 
terminal blocks inside, the number of connected domains is 
calculated, and set to N. 

With the number of phase of a low-voltage measuring box 
denoted as X, the phase discrimination of the low-voltage 
metering box is shown as follows: 

   {
       
       

 (10) 

When the average number of connection terminal blocks in 
a metering box is close to four, this low-voltage metering box 
is a single-phase metering box; when the average number of 
low-voltage metering box is close to eight, the low-voltage 
measuring box is a three-phase metering box. 

metering cabinet

detection area of 
connection terminal block

metering 
compartment

A B

CD

 

Fig. 4. Schematic diagram of connection terminal block detection region. 

Under an occlusive situation, the connection terminal 
blocks might be incompletely segmented. However, the 
proposed number estimation algorithm could still detect the 

number of the connection terminal blocks, and determine the 
phase of the metering box. 

2) Number estimation of metering compartment: Based on 

the segmented results of the metering compartments, the 

number of metering compartments is estimated by counting 

the number of metering compartment regions. The metering 

compartment might be incompletely segmented. Under this 

situation, the count in the region is still taken. The number of 

metering compartments is set as M, M=1,2,…,k. 

C. Edge Correction Algorithm Based on the Depth Difference 

(Dep-D) Constraint 

Due to the influences of factors such as the shooting angle, 
illumination and shooting time of the depth camera, there may 
be errors in the edge of R0. To correct the edge of R0 and 
reduce the impact on the accuracy of subsequent size 
measurement, an edge correction algorithm based on the depth 
difference constraint is proposed. The algorithm pseudocode is 
as follows: 

Algorithm 1 Edge correction algorithm based on the Dep-D 
Constraint 
Input:  
1. I(x, y): The depth image RDP. 
2. E0(x, y): The edge of R0. 
Output:  
3. Eout(x, y): The corrected edge of R0. 
4. Ci(x, y) ← E0(x, y)    // The initial contour 
5. repeat 
6. Ci.normal ← normalize(Ci(x, y))  

// The direction of contour movement 
7.         + ∇|Gσ ∗ I|        

// The speed of contour movement 
8. Ci(x, y)   movement(Ci, Ci.normal,  )    

// Move the contour in the specified direction and speed 
9. maskout, maskin, numout, numin← template(Ci)  

// Establish templates based on     the shape and size of Ci 
10.   diffi  |I ∙ maskout numout − I ∙ maskin numin|  

// The constraint condition 
11.   diff. append diffi    

// Store the results of each loop into an array 

12. until diffi = max  diff  

1) Steps of the proposed edge correction algorithm: The 

steps of the proposed edge correction algorithm are as follows: 

Step 1: Set the edge of R0 (E0) as the initial contour. 

Step 2: Move each point on the contour to make it closer to 
the true edge. To improve the correction speed, the direction of 
contour movement is the normal direction of the contour curve 
where the contour is located. The speed of contour movement 
is controlled by the depth gradient corresponding to the point, 
which is calculated as follows: 

  
 

 + ∇|  ∗  | 
 (11) 

where v is the calculated speed of contour movement, Gσ 
represents the Gaussian kernel, which smooths the image, and I 
denotes the depth image RDP. If the gradient is small, it 
indicates that the point is far from the real edge, and the motion 
speed is increased; otherwise, the motion speed is decreased. 
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Step 3: After all points in the contour are changed, the 
constraint condition for the contour is calculated. Steps 2 and 
step 3 are repeated until the constraint conditions are met. 

2) Constraint condition based on the proposed outer and 

inner templates: In this work, two structure templates are 

proposed to build the constraint condition. The two structure 

templates are illustrated in Fig. 5. 

Because of the hollow region in the middle of the metering 
compartment where the electricity meter is located, there is a 
significant depth difference inside and outside the edge of the 
metering compartment. As shown in Fig. 5, an outer template 
maskout and an inner template maskin are introduced to 
determine whether the current contour is the edge of the 
measuring box. The size and the shape of maskout and maskin 
are consistent with the current contour. As shown in Fig. 5, in 
the maskout, the outermost two layers of the outer template are 
all assigned the valued of 1, and the values of the remaining 
layers are all set to 0. In the maskin, the outermost two layers of 
the outer template are all assigned values of 0, and the values 
of the remaining layers are all set to 1. The two structure 
templates with the metering compartments in depth image RDP 
are combined, and the distance difference between the edge 
and the interior of the bounding box in the depth camera can be 
calculated. The distance difference can be expressed as 
follows: 

      | ∙
       

      

−  ∙
      

     

| (12) 

where numout and numin represent the number of elements 
with values of 1 in the maskout and maskin, respectively. 

When the contour moves to the true edge, due to the 
difference in the depth values between the inner and outer 
edges, the diff value will reach its maximum value (the red 
point in Fig. 6). In this work, when the diff starts to decrease, it 
is considered to meet the constraint condition and the iterations 
stop. The contour obtained in this iteration is the corrected 
edge.  

 

Fig. 5. The proposed structure templates: (a) outer template and (b) inner 

template 

D. Automated Size Measurement based on the Proposed 

Equal-Region Averaging Algorithm 

Due to the errors caused by the infrared pattern projected 
by the depth camera during the imaging process, as well as the 

errors caused by the stereo matching algorithm, some pixels' 
depth information is missing or deviating in the depth image 
[29]. To obtain more accurate depth-channel information and 
realize automated size measurement, the Equal-Region 
Averaging algorithm is proposed in this work. The steps are as 
follows: 

Step 1: Calculate the bounding box of the segmented 
region. The segmented components are the door shell, window 
and metering compartment. 

Step 2: Obtain the four corners of the bounding box. Set ai 
(i=1,2,3,4) as the distance parameters between each corner and 
all the points on the segmented region. 

Step 3: Define four pseudo-corners as the points on the 
segmented contour, which have the minimal distances to their 
corresponding corners. The pseudo-corners cut the contour into 
four segments. 

Step 4: For each segment, find the midpoint of each 
segment, and take the midpoint as the center to obtain a 
detection area with a length of one-quarter of the side length. In 
Fig. 7, the red box line represents the length detection range of 
the door shell, window or metering compartment. And the 
green box line represents the width detection range of the 
component. 

In the defined detection region, the corresponding pixel 
points on the opposite sides are connected. The length of each 
line can be calculated as: 

 ' 2 ' 2 ' 2( ) (y ) ( )i i i i i i ih x x y z z     
 

(13) 

where the 3D coordinate values of the corresponding pixel 

pair are   and . 

The vector of the heights is: 

                 . . . . .     (14) 

and the vector of widths is: 

                . . . . .     (15) 

The mode of these two vectors is calculated, and the values 
hm and wm are the height and weight of the component. 

 hm=mode(height), wm=mode(weight) (16) 

 

Fig. 6. The proposed edge correction algorithm based on the Depth 

Difference (Dep-D) Constraint 
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Fig. 7. Schematic diagram of size measurement region of door shell, window and metering compartment. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

In this work, an automated type identification and size 
measurement method is proposed for the low-voltage metering 
boxes, which are among the most critical pieces of equipment 
in a power system. 

A. RGB-D Image Data of Low-voltage Metering Boxes 

Six types of low-voltage metering boxes are collected in 
this work, namely single-phase single-meter, single-phase 
four-meter, single-phase six-meter, single-phase nine-meter, 
three-phase single-meter, and three-phase two-meter 
low-voltage metering boxes. Table I shows the diagrams of the 
outer shell and the inner surfaces of these six types of 
low-voltage metering boxes. 

The RGB-D images are captured using the Intel RealSense 
D415 depth cameras developed by Intel Corporation. The 
image resolution is 1280*720. A total of 732 images are 
collected as experimental data. 

B. Experimental Results of Type Identification for 

Low-voltage Metering Box 

In the RGB channel, the metering compartment and 
connection terminal block are segmented by using the 
Mask-RCNN network first. Then, the number of connection 
terminal blocks is estimated by using the proposed Sub-Region 
Closer-Neighbor algorithm. Combined with the depth 
information, the contours of the metering compartments are 
re-fined. The number of metering compartments is estimated, 
by counting the connected do-main of metering compartment 
regions. Finally, the type of low-voltage metering box is 
identified by using the number of metering compartments and 
connection terminal blocks. 

1) Experimental results of type identification for 

low-voltage metering box: In this work, six types of 

low-voltage metering boxes are classified. Table II shows the 

detection accuracies for these six types of low-voltage 

metering boxes. 

From Table II, it can be seen that average detection 
accuracies of the proposed type identification method for the 
low-voltage metering boxes reach up to 94.8%. The detection 
accuracies for six types of low-voltage metering box range 
from 92.3% to 96.8%. 

TABLE I.  SIX TYPES OF LOW-VOLTAGE METERING BOXES 

Single-phase single-meter Single-phase four-meter 

Outer shell Cabinet Outer shell Cabinet 

    
Single-phase six-meter Single-phase nine-meter 

Outer shell Cabinet Outer shell Cabinet 

    

Three-phase single-meter Three-phase two-meter 

Outer shell Cabinet Outer shell Cabinet 
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TABLE II.  DETECTION ACCURACIES OF DIFFERENT TYPES OF 

LOW-VOLTAGE METERING BOXES 

Type Detection accuracy Average accuracy 

Single-phase single-meter 92.3% 

94.8% 

Single-phase four-meter 96.8% 

Single-phase six-meter 93.6% 

Single-phase nine-meter 95.7% 

Three-phase single-meter 92.5% 

Three-phase two-meter 93.1% 

The recognition accuracies of single-phase single-meter 
and single-phase nine-meter metering boxes are lower than 
those of the other types, mainly due to the misdetection of the 
number of connection terminal blocks. The counting accuracy 
of the connection terminal blocks is reduced due to 
illumination, occlusion, and other problems. In particular, the 
baffle plate in front of the connection terminal blocks 
significantly affects the segmentation accuracy. In this work, 
the Sub-Region Closer-Neighbor algorithm is proposed to 
reduce the influence of occlusion. The proposed method could 
increase the recognition accuracy even if the connection 
terminal blocks are incompletely segmented. Moreover, even if 
part of the connection terminal block is misdetected, the 
proposed method could still reduce the detection error, by 
inducing the (8). The distance between the detected number 
and the standard number (4 or 8) is calculated. The final 
number of connection terminal blocks is the number with the 
smallest distance from the standard number. If the connection 
terminal blocks are fully occluded, misjudgment of the phase 
could occur. 

2) Experimental results of critical components 

segmentation and number detection method: To identify the 

types of low-voltage metering boxes, the critical components 

in the metering box are segmented first. Then, the Sub-Region 

Closer-Neighbor algorithm is proposed to estimate the number 

of terminal blocks. The defined Depth Difference (Dep-D) 

Constraint is used in the edge correction algorithm, to refine 

the contour of the metering compartments. The number of 

metering compartments is estimated based on the 

segmentation results. Table III lists the results of the 

automated segmentation and counting methods for metering 

compartments and connection terminal blocks. 

As shown in Table III, the Intersection over Union (IoU) 
values for the segmentation of the connection terminal block, 
rang from 75.5% to 89.6%. 

The precision of segmentation for the connection terminal 
blocks is affected by many factors. The color of the connection 
terminal block is gray, which is close to color of the metering 
cabinet panel. The location of connection terminal block is 
below the metering compartment. Most of the time, there is a 
baffle plate set in front of the connection terminal block, in 
order to protect the wires. The connection terminal block could 
only be seen in the gap of plate stripes. Sometimes, the wires 
can occlude the connection terminal block as well. Fig. 8 
illustrates the situations which affect the detection accuracy of 
connection terminal blocks. 

TABLE III.  RESULTS OF AUTOMATED SEGMENTATION AND COUNTING 

METHODS FOR CONNECTION TERMINAL BLOCK AND METERING 

COMPARTMENT 

Type of 

metering box 
Component IoU 

Number 

counting 

Type 

identification 

Single-phase 
single-meter 

CTB 78.6% 94.7% 
92.3% 

MC 93.3% 100% 

Single-phase 
four-meter 

CTB 75.5% 88.9% 
96.8% 

MC 90.2% 99.5% 

Single-phase 
six-meter 

CTB 80.5% 90.5% 
93.6% 

MC 94.5% 99.7% 

Single-phase 
nine-meter 

CTB 83.6% 90.0% 
95.7% 

MC 90.6% 98.7% 

Three-phase 
single-meter 

CTB 86.4% 93.8% 
92.5% 

MC 90.6% 98.6% 

Three-phase 
two-meter 

CTB 89.6% 90.6% 
93.1% 

MC 94.9% 97.5% 

Component CTB: Connection Terminal Block, Component MC: Metering Compartment 

Due to the occlusion, illumination, and shooting angle, the 
connection terminal blocks could be mis-segmented, or 
incompletely segmented. Although the IoU of the segmentation 
of the connection terminal block is lower than 89.6%, the 
accuracy of the number counting ranges from 88.9% to 94.7%, 
for the proposed Sub-Region Closer-Neighbor algorithm. 

The segmentation of the metering compartments is 
implemented by Mask-RCNN network in the RGB images. 
The shape and structure features of the metering compartment 
are identical in the metering cabinet. Sometimes, occlusion or 
incomplete image acquisition occur due to the different 
shooting angles. These will influence the segmentation 
accuracy. In spite of these influences, the number counting 
accuracy of the metering compartment is still above 97.5%. In 
the number counting algorithm, as long as the object is 
classified as the metering compartment, the number of 
metering compartments is counted. This will reduce the 
influence of occlusion. Based on the critical component 
segmentation and number counting, the type of metering box is 
identified. The detection accuracy is above 92.3%. 

C. Experimental Results of Automated Size Measurement for 

Low-voltage Metering Box 

The size and structural design of the low-voltage metering 
boxes should fully con-sider the layout of the components and 
the functional requirements of the appearance. 

According to Enterprise Standard Q/GDW 11008-2013 
"Technical Specification for Low-Voltage Metering Box" [23], 
released by the State Grid Electric Power Co., Ltd., the 
component sizes of the low-voltage metering boxes should 
meet the enterprise standard, and the size errors should be 
within a certain range. Size inspection is required over the 
whole life of the metering box, including the manufacture, 
transportation, on-site installation, and daily usage. 

1) Quantitative metrics for size measurement: In this 

work, an automated size measurement method is presented, to 

automatically detect the size of the door shell, door window, 

and metering compartment in the cabinet. 
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(a) Partially occlusion by wire 

   
(b) Differences in 

brightness and 
shading 

(c) Partial occlusion 

by baffle plate 

(d) Complete 

occlusion by baffle 
palate 

Fig. 8. The situations which affect the detection accuracy of connection 

terminal blocks. 

The critical components are segmented by using the 
Mask-RCNN network in the RBG images. The edge correction 
algorithm based on the Depth Difference (Dep-D) Constraint is 
proposed in this work. The refinement algorithm uses the 
information in the depth-channel. Based on the refined 
contours of the components, the size is measured based on the 
proposed Equal-Region Averaging algorithm. 

The precision of the proposed size measurement algorithm 
is indicated by the following metric: 

   {
            
              (17) 

If the average calculation error is within α, then this 
measurement result is correct. 

2) Experimental results for size measurement: In the 

Enterprise Standard Q/GDW 11008-2013 "Technical 

Specification for Low-Voltage Metering Box", it is stipulated 

that the size error of the metering box shell should not exceed 

5mm. This work set the α as 5mm, 4mm, 3mm, and 2mm. The 

experimental results are shown in Table IV. 

As shown in Table IV, the accuracy of the size 
measurement is 92.6%, when α is set to 5mm. When the α is 
set to 2mm, the detection accuracy is still above 85%. 

In this work, three critical components need to be 
measured, which are the door shell, door window, and the 
metering compartment in the cabinet. The regions of these 
components are segmented in the RGB images using the 
Mask-RCNN network. 

For the Intel Real Sense depth camera, the RGB image is 
aligned with that in the depth image. The spatial location 
information of the object is acquired in the depth channel. The 
Intel RealSense D415 camera is used to capture depth data by 
projecting an infrared laser pattern onto the scene, and 
measuring how it is reflected back to the camera's sensors. 

TABLE IV.  RESULTS OF AUTOMATED SIZE MEASUREMENT FOR THE 

CRITICAL COMPONENTS OF LOW-VOLTAGE METERING BOX (%) 

Type of 

metering box 
Component 

Measuring Accuracy 

            

Single-phase 
single-meter 

DS 94.3 93.5 90.6 90.3 

DW 90.1 88.4 86.4 85.1 

MC 94.3 91.5 89.6 87.3 

Single-phase 

four-meter 

DS 93.2 92.7 91.2 90.9 

DW 93.7 92.3 91.9 91.2 

MC 91.4 91.5 90.3 89.4 

Single-phase 

six-meter 

DS 95.2 92.5 90.6 89.5 

DW 94.2 92.7 91.3 89.4 

MC 90.5 89.3 88.5 87.5 

Single-phase 

nine-meter 

DS 94.3 92.5 91.6 90.1 

DW 92.2 91.8 89.3 87.6 

MC 95.3 92.3 90.5 88.1 

Three-phase 
single-meter 

DS 93.3 91.5 89.6 88.3 

DW 93.4 91.5 89.3 85.6 

MC 94.8 92.5 92.5 86.7 

Three-phase 

two-meter 

DS 93.6 92.5 91.8 89.9 

DW 91.5 90.3 89.1 88.3 

MC 93.1 92.5 90.2 89.5 

Average measuring accuracy: 92.6%（  =5mm）, 91.8%（  =4mm）, 90.4%

（  =3mm）, 87.5%（  =2mm） 

Component DS: Door Shell, Component DW: Door Window, 

Component MC: Metering Compartment 

The segmented contours in the RGB images are used as the 
initial borders in the depth images. Then, the proposed edge 
correction algorithm based on the Depth Difference (Dep-D) 
Constraint is applied. This border refinement algorithm 
considers the depth difference between the outside and inside 
of the border. The actual contour is estimated after iteration, by 
balancing the gradient on the border. 

D. Comparison with State-of-the-art Methods 

In this work, a method is proposed to classify six types of 
low-voltage metering boxes. In this section, the proposed 
method is compared with state-of-the-art methods: the VGG 
[30], YOLO [31-32], EfficientDet [33], and ResNet [34-35] 
networks. 

The VGG network comprises of different variants of 
convolutional neural networks, stacking multiple convolutional 
layers with small-sized convolution filters along with 
max-pooling layers [30]. The YOLO network uses a single 
convolutional neural network to predict both object class 
probabilities and bounding boxes directly from full images in 
one go [32]. The EfficientDet network applies a compound 
scaling approach to optimize both model architecture and input 
resolution [33]. The ResNet network solves the problem of 
vanishing gradients in the deep neural networks by using 
residual connections that allow the network to pass information 
directly from the input to the output [34]. All of these above 
networks have been widely used on various image 
classification tasks. Table V shows the comparison results. 
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TABLE V.  RESULTS OF AUTOMATED IDENTIFICATION OF SIX TYPES OF 

LOW-VOLTAGE METERING BOXES (%) 

Type of 

metering box 

VGG 

[30] 

YOLO 

[31-32] 

EfficientDet 

[33] 

ResNet 

[34-35] 
Ours 

Single-phase 

single-meter 
73.4 69.3 75.2 80.4% 92.3 

Single-phase 

four-meter 
81.4 89.2 83.2 90.2% 96.8 

Single-phase 

six-meter 
80.5 85.2 79.3 82.9% 93.6 

Single-phase 

nine-meter 
85.7 90.1 89.2 91.4% 95.7 

Three-phase 

single-meter 
71.5 73.5 78.9 75.2% 92.5 

Three-phase 
two-meter 

87.4 86.4 92.5 84.5 93.1 

As shown in Table V, our proposed type identification 
method achieves the highest classification accuracy. The 
classification accuracies for six types of low-voltage metering 
box are above 92.3%. 

The state-of-the-art networks achieve the classification 
accuracies ranging from 69.3% to 92.5%. For these networks, 
the metering box images with labels are input to the net-works, 
to implement a six-type multi-class classification task. The 
dataset tested in this work includes a total of 732 images, 
which could lead to overfitting, where the model becomes too 
specialized to the training data. 

Although the metering compartments are notable features 
in the images, the type of the metering boxes need to be 
decided by the number of metering compartments and 
connection terminal blocks at the same time. The detection of 
connection terminal blocks is more difficult, due to their 
shapes, sizes, colors and locations. The misdetection of 
connection terminal blocks could lead to the wrong 
classification of metering box types. 

Our proposed method considers many factors in the type 
identification task. The proposed Sub-Region Closer-Neighbor 
algorithm could count the number of connection terminal 
blocks in scenarios with complex illumination and occlusion. 

IV. CONCLUSIONS 

The low-voltage metering box is one of the most crucial 
pieces of equipment in a power system network. In this work, a 
metering box identification system based on the computer 
vision techniques is studied to realize automated detection of 
the appearances and structures of metering boxes. An 
automated type identification and size measurement method for 
the low-voltage metering box is proposed. 

The following are the main steps of this proposed method. 
The critical components, including the door shell and window, 
connection terminal block, and metering compartment in the 
cabinet, are segmented first using the Mask-RCNN network. 
Then the proposed Sub-Region Closer-Neighbor algorithm is 
used to estimate the number of connection terminal blocks. 
Combined with the number of metering compartments, the 
type of metering box is classified. To refine the borders of the 
metering box components, an edge correction algorithm based 
on the Depth Difference (Dep-D) Constraint is presented. 

Finally, the automated size measurement is implemented based 
on the proposed Equal-Region Averaging algorithm. 

The primary contributions of this study are as follows. 
Firstly, the proposed Sub-Region Closer-Neighbour algorithm 
enables a more precise estimation of the number of connection 
terminal blocks, which is an essential parameter for the type 
identification of a metering box. This results in higher 
classification accuracies when compared to existing deep 
learning methods [30-35]. Secondly, to obtain more accurate 
size measurements, an edge correction algorithm is proposed. 
Then the automated size measurement is implemented based 
on the proposed Equal-Region Averaging algorithm. 

There are two primary challenges in this study. The first is 
the occlusion of the connection terminal block, which leads to 
incorrect classification of the metering box type. The second 
challenge is the limitations of the depth camera, which 
introduces errors in size measurement. While this study 
proposes solutions to overcome these challenges, there is a 
need for further work to enhance detection and measurement 
accuracy. 

One drawback of this article is that it involves numerous 
calculation steps, making the calculations complicated. 
Furthermore, in order to capture both segmentation and depth 
information, the system requires the processing of both RGB 
and depth images. In future research, it may be worthwhile to 
explore algorithms that can accomplish automated inspection 
using depth-images exclusively. 

In the future, the improvement of automation level is a 
development trend in the power system industry. Compared 
with manual inspection, which can be time-consuming and 
labor-intensive, the integration of artificial intelligence 
technology in this field can significantly reduce costs, enhance 
overall efficiency and optimize resource utilization. 

REFERENCES 

[1] Wei, J.K.; Yuan, J.F.; Wang, P.; Hong, X.T.; Luo, F. The “Five 
preventions” Improvement of the Outdoor Low-voltage Metering 
Box[J]. Mechanical and Electrical Information, 2018(03): 68-69. DOI: 
10.19514/j.cnki.cn32-1628/tm.2018.03.037. 

[2] Huang, F.; Shen, H.; Zhen, H.H.; Yu, L.; Zhang, J.H.; Han, D.J. 
Condition Assessment of Low Voltage Metering Box Based on 
AHP-gray Fixed Weight Clustering[J]. Electrical Measurement & 
Instrumentation, 2019,56(03): 64-69. DOI: 
10.19753/j.issn1001-1390.2019.03.011. 

[3] Artale, G.; Cataliotti, A.; Cosentino, V.; Di Cara, D.; Fiorelli, R.; 
Guaiana, S.; Panzavecchia, N.; Tinè, G. A new PLC-based smart 
metering architecture for medium/low voltage grids: Feasibility and 
experimental characterization. Measurement 2018, 129, 479-488, doi: 
10.1016/j.measurement.2018.07.070. 

[4] Li, H.; Liang, W.; Liang, Y.; Li, Z.; Wang, G. Topology identification 
method for residential areas in low-voltage distribution networks based 
on unsupervised learning and graph theory. Electr. Pow. Syst. Res. 2023, 
215, 108969, doi: 10.1016/j.epsr.2022.108969. 

[5] Su, C.; Lee, W.; Wen, C. Electricity theft detection in low voltage 
networks with smart meters using state estimation. In 2016 IEEE 
International Conference on Industrial Technology (ICIT), 2016-01-01 
2016; pp. 493-498. 

[6] Lukman, F.S.; Dharmawan, H.E.S.; Ramadhani, K. Portable Smart 
Energy Meter for Low Voltage Customer of Power 53 -197 KVA. In 
2022 International Conference on Technology and Policy in Energy and 
Electric Power (ICT-PEP), 2022, pp. 60-64. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

396 | P a g e  

www.ijacsa.thesai.org 

[7] Zhu, Y.; Chen, L.; Fu, Y.; Zhang, H.; Zhao, G. Design and Engineering 
Application of Low Voltage Power Grid. In 2022 5th International 
Conference on Power and Energy Applications (ICPEA), 2022, pp. 
410-413. 

[8] Zheng, A.; Yuan, X.; Shang, H.; Xiong, S.; Cheng, D. Evaluation of 
Aging Properties of Nonmetal Low Voltage Metering Box Shells under 
Typical Environment. In 2020 International Conference on Artificial 
Intelligence and Electromechanical Automation (AIEA), 2020, pp. 
827-831. 

[9] Jiang, Y.; Song, X.; Lin, H.; Zhao, Y.; Qiu, K.; Yang, C.; Dong, S. 
Topology Automatic Identification Method for Low-Voltage Stations 
Based on Line Impedance Analysis. IOP Conference Series: Earth and 
Environmental Science 2021, 687, 12116, doi: 
10.1088/1755-1315/687/1/012116. 

[10] Xu, C.; Lei, Y.; Zou, Y. A Method of Low Voltage Topology 
Identification. In 2020 IEEE Conference on Telecommunications, Optics 
and Computer Science (TOCS), 2020, pp. 318-323. 

[11] Nainar, K.; Iov, F. Smart Meter Measurement-Based State Estimation 
for Monitoring of Low-Voltage Distribution Grids. Energies 2020, 13, 
5367, doi: 10.3390/en13205367. 

[12] Shuai, G.; Qiong, S.W.; Ji, L.; Wen, B.Z.; Rui, L.; Qiang, W.; Fei, M.H. 
Design of Intelligent Low Voltage Station System Based on Edge 
Calculation. Journal of Physics: Conference Series 2021, 1972, 12050, 
doi: 10.1088/1742-6596/1972/1/012050. 

[13] Wang, Y.; Hou, H.J.; Hua, J.; Li, Y.H.; Tu,Z.W. Design and Application 
of Intelligent Detection Management System for Low-voltage Metering 
Box[J]. Electrical Measurement & Instrumentation, 2020,57(08): 
147-152. DOI: 10.19753/j.issn1001-1390.2020.08.023. 

[14] Shen, H.; Cao, Y.; Lei, Y.; Zhen, H.; Zhang, J.; Han, D. Main Fault 
Types and Classification Methods of Metering Box[C]//IOP Conference 
Series: Materials Science and Engineering. IOP Publishing, 2018, 
394(4): 42096-42097. 

[15] Xu, J.Y. Design of Monitor Terminal for Image Data in Electric Power 
Metering Device[J]. Information Technology, 2014(06): 184-186. DOI: 
10.13274/j.cnki.hdzj.2014.06.014. 

[16] Weng, D.B.; Chen, R.B.; Dou, X.W. Design of Electric Meter 
Measuring-box Based on Wireless Image Transmission[J]. 
Instrumentation Technology, 2012(10): 51-53. DOI: 
10.19432/j.cnki.issn1006-2394.2012.10.015. 

[17] Wu, X. Measurement of Sizes of Non-contact Screws Based on Visual 
Recognition Technology[J]. Metrology & Measurement Technique, 
2019,46(08): 40-42. DOI: 10.15988/j.cnki.1004-6941.2019.8.011. 

[18] Li, B.Z.; Ni, H.Q.; Lin, S.Y.; Meng, X.C. Axial Dimension Detection 
Method of Corrugated Compensator Based on Image Recognition[J]. 
Chinese Journal of Engineering Design, 2022,29(01): 10-19. DOI: 
10.3785/j.issn.1006-754X.2022.00.012. 

[19] Chen, Y.; Bian,G.H.; Yang, P.; Yu, L.P.; Wang, C.Y. Pipe Size 
Characteristic Parameter Collection and Detection System Based on 
Image Recognition[J]. Nondestructive Testing, 2022,44(09): 22-27. 
DOI: 10．11973 /wsjc202209005. 

[20] Chen, W.B. The Dimensional Inspection and Surface Defect 
Recognition of Injection Molded Products Based on Machine Vision[D]. 
Master, Huazhong University of Science and Technology, 2015. 

[21] Yu, J.J. Human Dimension Recognition System Based on Machine 
Vision[J]. Light Industry Machinery, 2014,32(03): 60-62. DOI: 
10.3969/j.issn.1005-2895.2014.03.015. 

[22] Xue, L.J.; Qi, C.K.; Zhang, B.; Zhang, X.Y.; Wu, C.Z. Object Size and 
Orientation Recognition Based on 3D Point Cloud Euclideam Clustering 
and RANSAC Boundary Fitting[J]. Machine Design and Research, 
2018,34(05): 44-48. DOI: 10.13952/j.cnki.jofmdr.2018.0187. 

[23] Liu, B. Research on the Key Technologies for On-site Dimension 
Measuring of Large Forging Based on Binocular Stereo Vision[D]. 
Doctor, Yanshan University, 2010. 

[24] Luo, C. Research on the size Measurement System for Hot Forging 
Based on the Image Edge Recognition[D]. Master, Yanshan University, 
2017. 

[25] Falcone, G. Multiphase Flow Metering Principles. 2009, 54, 33-45, doi: 
10.1016/S0376-7361(09)05403-X. 

[26] Zhichun, Y.; Yu, S.; Fan, Y.; Yang, L.; Lei, S.; Fangbin, Y. Topology 
identification method of low voltage distribution network based on data 
association analysis. In 2020 5th Asia Conference on Power and 
Electrical Engineering (ACPEE), 2020-01-01 2020; pp. 2226-2230. 

[27] He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask r-cnn. In 
Proceedings of the IEEE international conference on computer vision, 
2017, pp. 2961-2969. 

[28] Lai, J.; Shen, J.; Zhang, Y.; Zhong, Z.; Liu, G. A Novel Adjustment 
Strategy for Reducing Three-Phase Unbalance in Low-Voltage 
Distribution Area. In 2022 12th International Conference on Power and 
Energy Systems (ICPES), 2022, pp. 89-93. 

[29] Tam, A.Y.; So, B.P.; Chan, T.T.; Cheung, A.K.; Wong, D.W.; Cheung, 
J.C. A Blanket Accommodative Sleep Posture Classification System 
Using an Infrared Depth Camera: A Deep Learning Approach with 
Synthetic Augmentation of Blanket Conditions. Sensors-Basel 2021, 21, 
5553, doi: 10.3390/s21165553. 

[30] Wang, S.; Khan, M.A.; Zhang, Y. VISPNN: VGG-inspired Stochastic 
Pooling Neural Network[J]. Computers, Materials & Con-tinua, 2022, 
70, 3081. DOI: 10.32604/cmc.2022.019447. 

[31] Du, J. Understanding of Object Detection Based on CNN Family and 
YOLO[J]. IOP Publishing, 2018, p.12029. DOI: 
10.1088/1742-6596/1004/1/012029. 

[32] Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object Detection Using 
YOLO: Challenges, Architectural Successors, Datasets and 
Applications[J]. Multimedia Tools and Applications. 2023, 82, 
9243-9275. DOI: 10.1007/s11042-022-13644-y. 

[33] Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and Efficient Object 
Detection[C]//Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition. 2020, pp. 10781-10790. 

[34] Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or Deeper: Revisiting the 
Resnet Model for Visual Recognition. Pattern Recognition, 2019, 90: 
119-133. DOI: 10.1016/j.patcog.2019.01.006. 

[35] Shafiq, M.; Gu, Z. Deep Residual Learning for Image Recognition: A 
Survey. Applied Sciences, 2022, 12(18): 8972. DOI: 
10.3390/app12188972. 

 


