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Abstract—Face detection and localization has been a major 

field of study in facial analysis and computer vision. Several 

convolutional neural network-based architectures have been 

proposed in the literature such as cascaded approach, single-

stage and two-stage architectures. Using image segmentation 

based technique for object/face detection and recognition have 

been an alternative approach recently being employed. In this 

paper, we propose detection of faces by using U-net segmentation 

architectures. Motivated from DenseNet, a variant of U-net, 

called Semi-Dense U-Net, is designed in order to improve the 

binary masks generated by the segmentation model and further 

post-processed to detect faces. The proposed U-Net model have 

been trained and tested on FDDB, Wider face and Open Image 

dataset and compared with state-of-the-art algorithms. We could 

successfully achieve dice coefficient of 95.68% and average 

precision of 91.60% on a set of test data from OpenImage 

dataset. 

Keywords—Semi-Dense U-Net; face detection; segmentation; 

U-Net 

I. INTRODUCTION 

Face detection deals with the localization of face in a given 
image. At the outset, detection process takes an input image 
containing one or more faces, applies a detection and 
localization model and produces a confidence score and a set 
of bounding-box parameters containing the coordinates of the 
face and its dimension. Face detection being the first phase in 
face analysis, the detected face is subjected to facial analysis 
process for machine learning and computer vision 
applications. Over decades, several algorithms have been 
proposed using a variety of approaches to detect faces in the 
image for diverse applications addressing uncontrolled 
illumination, scale variance, rotation in plane, occlusion, low 
quality image, large and tiny faces, masked faces, faces with 
makeup etc. These algorithms are designed to address a subset 
of these issues but no algorithm can address all the issues. 

A variety of face detection techniques for computer vision 
applications can be found in the literature. Several new 
techniques and approaches have been explored at a great 
extent in the literature, each approach trying at its maximum 

to address a selected subset of the issues in face detection 
using the available dataset. Over time, the complexity of the 
face dataset has widened considerably covering very high- and 
low-resolution images and with facial features that has laid 
challenges in achieving good detection rate and further 
promoting development of new algorithms to address the 
issues. Early work on face detection dates back to 1992 in [1], 
that used artificial neural networks. However due to the 
limited computational and storage resources, it did not gain 
considerable attention. In contrast to traditional algorithms, 
capability of convolutional neural networks (CNN) to learn 
features from its input has led to a number of recent 
advancements in the field of face detection using CNN. With 
improved computing power through GPU and now TPU’s, 
there is more scope for research promoting construction of 
complex models for AI based applications. CNN architectures 
have made it possible today to learn complex features from 
large and complex datasets. Several novel architectures such 
as AlexNet [2], VGGNet [3], GoogLeNet [4], ResNet [5], 
DenseNet [6], DarkNet [7] and its variants have been used as 
backbone network for feature extraction. This has improved 
the performance of face detection frameworks over time. 

Figure 1 shows a face detection process used in our work. 
The input color image of any scale is subjected to 
preprocessing, that scales down the input image to a standard 
size of 256×256 or 512×512. In our work, three U-Net 
architecture variants are used, each trained with three standard 
datasets. The outcome of feature extraction is a binary feature 
map/mask representing the segmented image, as shown in the 
figure. As the network output does not always produce a very 
fine and sharp segments, it is further refined to generate sharp 
rectangular regions suitable for detection of bounding box in 
the final step. 

The remainder of the paper is organized in the following 
manner. Section II presents some of the prominent face 
detection architectures, U-net segmentation architectures and 
its variants used for various applications, Section III presents 
the proposed architectures, Section IV highlights on 
implementation details with the experimental results and 
Section V summarizes with conclusion. 
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Fig. 1. General model of proposed face detection architecture. The first binary image (at bottom) is the model output and second is output of post-processing 

module. 

II. RELATED WORK 

CNN segmentation architectures are being used for several 
applications, such as, for medical images [8][9], object and 
instance segmentation such as Mask-RCNN [10], video object 
segmentation [11] to name a few. It however has been used to 
segment the entire region of the object and can be extended to 
recognition applications. U-Net [8] is one such neural network 
architecture designed for biomedical image segmentation. Its 
U-shaped network consists of an encoder CNN that gradually 
reduces the spatial size of the input image while increasing the 
number of feature maps to retains high-level contextual 
information and a decoder section that reconstruct the 
segmentation map by gradually increasing the spatial size of 
the features and concatenating them with the corresponding 
features from the encoder part using skip connections for 
precise localization information. The study [12] proposed a 
simplified UNet architecture for medical image segmentation. 
UNet++ [9] is a U-Net based architecture using nested and 
dense skip connections designed to improve the accuracy of 
medical image segmentation. It improved U-Net by adding 
skip pathways that connect the two sub-networks and uses 
deep supervision. The deep supervision module enables the 
model to operate in an accurate mode, where the outputs from 
all segmentation branches are averaged; and fast mode that 
selects the final segmentation map from the segmentation 
branches. This choice determines the extent of model pruning 
and speed gain. Motivated by DenseNet architecture [6], Li et 
al. [13] proposed H-denseunet segmentation architecture for 
liver and liver tumor segmentation. The study [10] is another 
such approach to detect faces using a segmentation 
architecture. Using improved Mask R-CNN, Lin et al. 
proposed G-Mask [14] for detection and segmentation of face 
that incorporates both into one framework. It used ResNet-101 
for feature extraction, RPN to generate RoIs, and fully 
convolutional network to generate binary mask. A most recent 
work on U-Net can be found in [15] that segments lungs in the 
chest radiography images. With several recent segmentation 
architectures and its improvements thereof, we find them 
being applied in a diverse domain meaningfully able to 
elaborate on the semantic aspects of the problem domain to 
the solution space. Each architecture has tried to extract and 
extend the prominent features of the base architecture and 
inherit prominent features of other architectures to address the 
drawbacks in the base architectures. In this paper, our 
proposed architecture inherits the features of U-Net, DenseNet 
and ResNet to build an improved segmentation architecture 
that produces more accurate segmentation output and 
successfully applied it on a face detection problem. The 

outputs observed are on par with some of the standard 
convolutional face detection architectures. 

III. PROPOSED ARCHITECTURES 

U-Net based segmentation architectures have been widely 
used on medical images for disease detection and localization. 
In this paper, U-Net architecture is used as a base to develop 
an improved U-Net architecture to improve the accuracy of 
the binary mask generated that will be postprocessed to detect 
faces. Here, we use three U-Net based architectures for face 
detection application. The details of the architectures used are 
as follows: 

A. Using U-net 

Our experiment uses U-Net architecture comprising of six 
blocks at encoder with two convolutional layers in each with 
the kernel size of 3, same padding, he_normal kernel 
initializer, relu activation, max pooling of size 2 and a dropout 
of 0.2. Input to the architecture is a single channel image of 
dimension 512, with the corresponding training output being 
its binary image with masks at the face regions. Size of the 
feature map converges at the encoder generating 512 feature 
maps of size 16 and decoder upsamples it to a single binary 
feature map image of size 512 generating a segmented binary 
image for the given input. The segmented regions represent 
the faces predicted. The prediction may not have always a 
clear and sharp edge. These variations are addressed by a post-
processing module that refines the prediction of segmented 
regions. Bounding box is then computed over the refined 
image. 

B. Using VGG16-Unet 

Transfer learning today speeds up the training time by 
using pre-trained weights of a backbone network. This is 
experimented by using a pre-trained VGG-16 backbone 
network at the encoder side of U-net, configured with 
ImageNet dataset weights. The weights at the encoder side 
were configured to be non-trainable and the decoder part to be 
trained with the input dataset. The network is expected to 
learn faster as the encoder is already in possession of valuable 
weights. The model takes a colored image of size 512 and 
produces a binary segmented image of same size. As 
mentioned in the above model, the output is further refining 
using a post-processing module to improve the segmented 
regions. Bounding box is then computed over the refined 
image. 
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C. Using Semi-Dense U-Net 

In a general CNN, each layer produces a set of features 
and is forwarded to the next layer for deep feature extraction. 
ResNets [5] introduced a concept of skip-connections where 
an output can bypass the normal flow of non-linear 
transformations with an identity function and get combined 
with a layer down the network. With transition function 𝐻𝑙  for 

the 𝑙𝑡ℎ layer, we can represent the result of skipped layer as: 

𝑥𝑙 =  𝐻𝑙(𝑥𝑙−1) + 𝑥𝑙−1                (1) 

U-Net uses this skip-connection to connect between 
encoder and decoder. The research [6] further improved it by 
adding a dense connectivity between layers where each layer 
will be learning features from its all-previous layers. Hence 
the transition function will have feature maps 𝑥0, … , 𝑥𝑙−1,, as 
input. This can be formulated as 

𝑥𝑙 =  𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1])  (2) 

This generates a strong feature map through which each 
layer will be encapsulating low- to high-level feature. This 
architecture is referred as DenseNets. Motivated from ResNets 
and DenseNets, a modified U-net architecture is proposed by 
adding skip-connections at the encoder side that connect to 
layers within the encoder and dense connections at the 
decoder side with links from various layers at the encoder side 
scaled down at respective levels at the decoder side, and we 
name it Semi-Dense U-Net. Our proposed architecture uses 
seven blocks at the encoder side and six blocks at the decoder, 

as shown in Fig. 2. Feature maps are increased progressively 
from 16 at the first block, B1, to 512 at the seventh block, B7. 

1) Layer structure: Each layer is built using two 

convolution layers with kernel size of three, same padding, 

he_normal kernel initializer with relu activation, batch 

normalization, max pooling of size two and a dropout of 0.2. 

At the encoder side, the normalized output at laver 𝑙  is 

concatenated with feature map from layer 𝑙 − 1 followed by 

max pooling. At the decoder side, output of the dense feature 

scale module is a 512×512 color image scaled down to 8x8 

with 256 channels followed by decoder network up-sampling 

the features back to single channel of size 512×512. In U-Net 

and VGG16-Unet model, dropout of layers B1, B2, B10, B11 

is 0.1, B3, B4, B8, B9 is 0.2 and B5, B6, B7 is 0.3. Semi-

Dense U-Net uses dropout of 0.1 at layers B1, B2, B12, B13 

and 0.2 at all others. 

2) Dense feature scaling module: Dense feature scaling 

module scales down feature maps of each upper layer to 16 

feature maps using max pooling. Hence, at layer 𝑙, we get (𝑙 −
1) × 16 feature vectors. This will be later concatenated with 

the feature maps generated at level 𝑙  along with the up-

sampled feature map from level 𝑙 + 1  at the decoder side. 

More semantic information are obtained from the feature maps 

at deeper layers [16]. Our feature map progressively 

encapsulates high to low range features as we go deeper. 

Hence, semantic information from the dense features is 

extracted by using a 1×1 convolution layer and is normalized. 

 

Fig. 2. Semi-Dense U-Net architecture. Each pink block represents multi-channel feature map and colored blocks at the decoder, the feature maps scaled down 

from upper layers using BXMY module. 
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3) Growth rate: At the encoder, if the function 𝐻𝑙  at layer 

𝑙  produces 𝑘  feature maps, it follows that layer 𝑙  has input 

feature-maps from layer (𝑙 − 1) and (𝑙 − 2), where 𝑙 ≥ 0 and  

𝑙 = −1 representing channels from the input vector. This can 

be visualized in Fig. 3. It can also be observed from the Fig. 2 

that block 4 and 5 carries forward a constant number of 128 

feature vectors. This effectively controls the expanding 

parameters of the network. At the decoder side, feature maps 

of encoder are scaled and squeezed to a fixed number of 16 

feature maps at each level, as discussed above. By limiting it 

to a constant value, the number of parameters of the network 

can be kept small. Hence, if a layer 𝑙 generates 𝑘 feature maps, 

the decoder concatenates 2𝑘 + 16(𝑙 − 1) feature maps at each 

layer. 

 

Fig. 3. Growth rate at the encoder side of the network. 

D. Post-processing Module 

Output of the network is an image that may contain traces 
of black within white predicted regions (Fig. 4 (a)). The 
network does not always generate a clear rectangular region. 
Further, there can be certain regions in the output with light 
traces of white pixels that are in fact false predictions. Hence 
the output image certainly should be subjected to post-
processing to refine the predictions and eliminate false 
predictions. This module uses image enhancement techniques 
to produce a clear and sharp image, as shown in Fig. 4 (b), 
suitable for computing the bounding box of the predicted 
regions. 

(a) (b) 

 

 

(c) 

Fig. 4. Post-processing result. a) Model output b) Post-processing output c) 

Haar-like edge features. 

Refinement has been experimented using two approaches: 
thresholding and grid-based region growing approach. With 
thresholding, image is first enhanced using Otsu threshold and 
further refined using opening morphological operation with 
kernel of 3×2px. Image is further contoured to extract 
boundaries of the segments. Overlapped segments are further 
processed to extract distinct rectangular regions out of the 
segmented regions and their bounding boxes. The post-
processed result is shown in Fig. 4(b). 

In the grid-based region growing approach, the image of 
512×512 is divided into grid of size 4×4. Intensity of the grid 

is evaluated using 𝐺𝑖,𝑗 =
1

16 𝐼𝑚𝑎𝑥
∑ 𝐼𝑝,𝑞  , where 𝐼𝑚𝑎𝑥  is the 

maximum intensity of the image, 𝐼𝑝,𝑞  is the 𝑝, 𝑞𝑡ℎ  pixel 

intensity of grid cell 𝐺𝑖,𝑗. Based on the value of 𝐺𝑖,𝑗, the cell is 

initially classified as, full-white (FW), full-black (FB) or fuzzy 
(FZ). Cells with 𝐺𝑖,𝑗 ≥ 70 are labeled as FW and 𝐺𝑖,𝑗 ≤ 30 are 

labelled as FB. Remaining are considered as fuzzy cells. FZ 
are further processed base on adjacency positions and haar-
like features [17]–[19] to relabel them as FB/FW. Haar-like 
edge features (Fig. 4 (c)) are analyzed in each cell. Based on 
the pixel intensity proportion in the adjacent bands and its 
adjacency to the FW/FB, cells are labelled as FW or FB. This 
is then followed by contouring, extraction of boundaries and 
bounding box, as discussed for thresholding approach. 

IV. EXPERIMENTS 

The model is trained using TensorFlow deep learning 
API’s on a Nvidia Tesla P100-PCIE (12 GB) GPU. For the U-
net architecture, the image is initially converted to grayscale 
before feeding into the network. Inputs to the other two 
networks are color images. Feature refinement module 
partially uses OpenCV library for image enhancement and 
morphological operations. Image is preprocessed by scaling 
down to 512×512. 

A. Training Datasets 

Each model is trained and tested on FDDB, Wider face 
and OpenImage dataset. FDDB dataset contains 5,171 faces in 
2,845 images. As FDDB dataset represents faces using 
ellipses, our models are trained to generate elliptical segments, 
as shown in Fig. 5. The post processing module extracts the 
elliptical regions coordinates, angle, major and minor axis. 
Model is tested using 10-fold cross validation and accuracies 
averaged. Wider face dataset contains faces with a high degree 
of variability in scale, pose and occlusion with images 
organized based on 61 event classes. Dataset randomly select 
40%/10%/50% data as training, validation and testing. It 
contains 3,93,703 annotated faces in 32,203 images. We have 
used 12,880 training images to train our model and 3,226 
validation images to test our model. Faces are classified as 
easy, medium and hard based on the face size of less than 
50px, 50px to 300px and above 300px respectively. 
OpenImage-v6 face dataset contains 3,44,043 annotated 
images with 10,60,312 faces. It is classified into 3,31,627 
training images (1,037,710 faces), 3,124 validation images 
(5,594 faces) and 9,292 test images (17,008 faces). Due to 
hardware resource limitations, we use 10,000 annotated 
training images as our dataset with 80%:20% for training and 
validation/testing. Model is trained to produce rectangular 
segments for the detected faces in OpenImage and Wider face 
datasets as provided in the dataset. 

All models have been trained for 150 epochs with early 
stopping where validation loss is monitored with the patience 
of 10. 

115 16 
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Fig. 5. Predicted binary mask image by the model and its corresponding image with face ellipses. Green ellipse represents ground truth and red represents 

prediction by the model for samples from FDDB dataset. 

B. Model Hyperparameters 

Model has been trained with adam optimizer with a 
constant learning rate of 0.001. Each layer is appended with 
batch normalization (BN) to optimize the segmentation 
accuracy. All the convolutional layers have been configured 
with relu activation function, he_normal kernel initializer and 
sigmoid function at the last layer. Models have been trained 
with binary cross-entropy loss function for 150 epochs and 
batch size of 16 for U-Net and 8 for VGG16-Unet and Semi-
Dense U-Net architectures. U-Net model used contains 7.7M 
parameters and VGG16-unet contains a total of 25.8M 
parameters with 11.3M trainable parameters. The proposed 
Semi-Dense U-Net, is optimized with only 5.8M parameters. 

C. Effect of Batch Normalization 

Models have been experimented with and without BN. Fig. 
6 shows the results on two sample images drawn from wider 
face dataset. Fig. 6 (a) and 6(d) are the model output without 
BN whereas 6(b) and 6(e) are with BN. With BN, we can 
observe a comparatively better and sharper approximation 
than without BN. Further we can observe certain cloudy 
region at the rightmost side of the image in 6(a) leading to 
false positives. With BN, such regions have been eliminated in 
6(b). In 6(d), it can be observed that leftmost two segments are 
not sufficiently predicted as a facial region, leading to false 

negative. With BN, we get a better approximation of the 
region that is suitable to come under true positive even with an 
iou of 80%. Hence, BN has normalized the covariate values of 
the dataset and has given a better prediction accuracy. Fig. 
6(c) and 6(f) show the original image with face bounding 
boxes obtained with BN. 

D. Evaluation on Datasets 

Table I tabulates the training and validation accuracy of 
the three models on FDDB, Wider face and OpenImage 
datasets. The accuracies observed are on par with the standard 
datasets. We can observe that Semi-Dense U-Net 
comparatively gives better accuracy than the other two. The 
accuracies mentioned in the table for FDDB dataset are the 
average accuracy over 10-fold cross validation. Fig. 7 to Fig. 9 
show training and validation accuracy curves of U-Net, 
VGG16-Unet and Semi-Dense U-Net model on all three 
datasets. Training accuracy curves on Wider face dataset are 
projected for easy, medium and hard samples. In wider face 
dataset, the performance is found to fluctuate frequently for 
hard faces. This can be possibly due to the tiny faces in the 
samples. Most of the time, tiny faces are part of crowd images. 
Wider face dataset contains several classes of images that has 
crowded people. Often such faces are blur in nature, making it 
hard to extract detailed features. 

 

Fig. 6. Sample images projecting effect of introducing batch normalization at the end of each layer. (a), (c) without BN; (b), (e) with BN; (c), (f) Original image 

with face bounding box using outcome with BN. 

TABLE I. TRAINING AND VALIDATION ACCURACIES OF FDDB, WIDER FACE AND OPENIMAGE DATASET 

 

FDDB Dataset 

(Accuracy in %) 

Wider Face Dataset 

(Accuracy in %) Open Image dataset 

(Accuracy in %) 
Easy Medium Hard 

Train Val Train Val Train Val Train Val Train Val 

U-net 98.22 96.83 99.68 99.35 99.44 98.88 99.00 96.75 98.52 96.72 

VGG16-Unet 98.37 96.92 99.58 99.28 98.97 98.71 99.78 96.36 99.64 96.74 

Semi-Dense U-Net 98.54 96.98 99.73 99.37 99.72 98.90 99.32 96.70 99.40 96.97 

Without BN With BN Image with bounding boxes Without BN With BN Image with 

bounding 
boxes (b) 

(e) 
(a) (c) (d) (f) 
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Fig. 7. Training and validation accuracy of U-Net Model on a) FDDB dataset b) OpenImage datasets c) Wider face dataset. 

 

Fig. 8. Training and validation accuracy of VGG16-UNet Model on a) FDDB dataset b) OpenImage datasets c) Wider face dataset. 

 

Fig. 9. Training and validation accuracy of Semi-Dense U-Net Model on a) FDDB dataset b) OpenImage datasets c) Wider face dataset. 

E. Results and Discussion 

The core architecture used in this paper is based on U-Net 
and as discussed earlier, it is a segmentation architecture that 
produces image segments for regions of interest with matched 
features. The image segments are first extracted in post-
processing module and then bounding boxes or elliptical 
parameters are formulated. Commonly used metrics for 
evaluating the performance of the segmented images are 
Jaccard coefficient to measures similarity between finite 

sample sets and is represented as 𝐽(𝐴, 𝐵) =  
|𝐴∩𝐵|

|𝐴∪𝐵|
 indicating 

the ratio of intersection over union, and dice coefficient 𝐷𝐶 =

 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
, a parameter to measure the test accuracy, were 

TP, FP and FN represents true positive, false positive and false 
negative respectively and is commonly called as 𝐹1  score. 
Metrics precision, recall and 𝐹1 scores are computed at IoU of 
0.4. Further we compare our performance with state-of-the-art 
face detection algorithms. Table II shows precision, recall and 
𝐹1 score of the various models on the three standard datasets. 

Table III tabulates the average precision of the models on 
FDDB and OpenImage dataset at iou’s 0.4, 0.6 and 0.8. The 
results tabulated for FDDB are average of 10-fold cross 
validation. It can be observed that, at AP@40 U-Net achieves 
86.5%, vgg16-unet achieves 52.8% and Semi-Dense U-Net 
achieves 98.97%. In contrast to the standard MTCNN that 
produced AP of 98.8%, Semi-Dense U-Net performed better 

a b c 

a b c 

a b c 
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than MTCNN for AP@40. At higher iou, the performance of 
Semi-Dense U-Net is comparatively less than MTCNN but is 
observed to be on par with MTCNN. Comparing the 
performance of Semi-Dense U-Net with U-Net and vgg16-
unet, U-Net and Semi-Dense U-Net performs much better than 
vgg16-unet. On the contrary, Semi-Dense U-Net performs 
much better due to better feature learning from skip and dense 
connections. A similar instance can be observed with 
OpenImage dataset where performance of Semi-Dense U-Net 
is on par with MTCNN and better than U-Net and VGG16-
Unet. Table IV shows the average precision of the models on 
Wider face dataset. Comparing the results of easy, medium 
and hard, the proposed model performs well for easy and 
medium datasets but observed to perform very poorly on hard 
dataset. It was observed from the predictions that the model 
under performs for accurate prediction of tiny faces but 
manages to predict faces greater than 50px. A similar result 
can be seen in U-Net and vgg16-unet. A deeper analysis of the 
prediction reveals that the output of the Semi-Dense U-Net 
model is able to accurately predict frontal face of medium and 
large size and lightly blur faces but accuracy of predicting 

heavily blur and occluded faces are not as expected. This has 
led to the degradation of the performance at various stages. 
Comparing the results of easy and medium, we observe model 
to perform better on medium than easy. The reason is due to 
the limited number of large faces (>300px) in the dataset 
compared to the medium size face samples. Hence, the model 
possibly had far a smaller number of images to extract diverse 
large size features to accurately tune the model parameters. 
The performance is expected to improve by training the model 
with a greater number of large sized face samples. Table V 
projects performance of state-of-the-art CNN algorithms for 
face detections on wider face dataset. Comparing the results of 
U-Net and Semi-Dense, we can infer from the results that the 
performance is close to each other but Semi-Dense U-Net 
performs better than U-Net. This is due to the better feature 
learning from the previous layers and better representation of 
the binary mask features at the model output. This enabled 
accurate detection of facial regions and its corresponding 
bounding box during post-processing at various scales making 
it an improvement of standard U-Net architecture. 

TABLE II. PRECISION, RECALL AND F1 SCORE OF THE THREE MODELS 

 FDDB dataset OpenImage dataset Wider face (Easy) Wider face (Medium) Wider face (Hard) 

 P % R % F1 P % R % F1 P % R % F1 P % R % F1 P % R % F1 

U-Net 84.13 78.25 81.09 94.24 89.22 91.66 60.40 83.56 70.12 90.47 72.93 80.76 70.64 27.24 39.31 

VGG-16 U-Net 48.67 63.88 55.25 78.78 83.08 80.88 46.60 84.38 60.04 83.86 70.30 76.48 47.91 28.65 35.86 

Semi-Dense U-

Net 
89.94 82.52 85.60 97.92 93.72 95.68 86.67 89.04 87.84 92.25 69.64 79.37 58.10 33.57 42.55 

TABLE III. TABULATION OF MODEL PERFORMANCE ON FDDB AND OPENIMAGE DATASET 

 FDDB OpenImage 

Model used iou@0.4 iou@0.6 iou@0.8 iou@0.4 iou@0.6 iou@0.8 

MTCNN 0.9884 0.9688 0.9077 0.9175 0.8845 0.8278 

U-Net 0.8653 0.7697 0.3504 0.8226 0.7270 0.3077 

VGG-16 U-Net 0.5285 0.3553 0.1058 0.6664 0.4932 0.1436 

Semi-Dense U-Net (proposed) 0.9897 0.9578 0.8846 0.9160 0.8633 0.7173 

TABLE IV. TABULATION OF MODEL PERFORMANCE ON WIDER FACE DATASET (EASY, MEDIUM AND HARD) 

 Easy Medium Hard 

Model used iou@0.4 iou@0.6 iou@0.8 iou@0.4 iou@0.6 iou@0.8 iou@0.4 iou@0.6 iou@0.8 

U-Net 0.4477 0.3666 0.2223 0.6667 0.5855 0.1679 0.1973 0.0952 0.0009 

Vgg-16 U-Net 0.3494 0.2854 0.1527 0.5802 0.4278 0.0522 0.1482 0.0639 0.0017 

Semi-Dense U-Net 

(proposed) 
0.8320 0.7920 0.5538 0.7963 0.7118 0.2972 0.2018 0.0838 0.0009 

TABLE V. PERFORMANCE OF STATE-OF-THE-ART FACE DETECTION METHODS ON WIDER FACE DATASET 

Method Easy Medium Hard 

Faceness [20] 0.713 0.664 0.424 

ScaleFace [21] 0.821 0.818 0.701 

MTCNN [22] 0.851 0.820 0.607 

G-Mask [14] 0.902 0.854 0.662 
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Table VI (a) and (b) shows the model output for all three 
models and (c), (d), its corresponding detected faces for two 
samples drawn from FDDB dataset. We use elliptical 
annotations as used by the dataset. It can be inferred from the 
“Predictor Output” column that segments generated by U-Net 
are blur in nature and fails to detect some faces accurately 
leading to false negatives. On the other hand, VGG16-unet 
generates a sharper representation but fails to predict a face in 
(b) of the predictor output. Further, the rightmost segment of 
(b) has incomplete face regions. In the “Detection Results” 
column, face circled green are ground truth annotations and 
the one in red are detection by the model for the respective 
images in Predictor Output column. Comparatively, Semi-
Dense U-Net is observed to have better accuracy in terms of 
prediction of face regions as well as sharpness of the 
segments. Several samples are observed to possess cloudy 
regions in the predicted image at several places in the U-Net 
and VGG16-Unet but are eliminated in the Semi-Dense U-net 
architecture. 

In Table VI (e) to (h) and Table VII we observe similar 
outcomes for samples from OpenImage and Wider face 
dataset respectively. Semi-Dense U-net produces better 
segmentation results compared to the other two. By producing 
better and sharper segmented results, we can reduce the time 
of post-processing as it will eliminate the need for image 
enhancement to predict the bounding boxes. It can easily be 
computed over the predicted image. This proportionately will 
increase the overall detection speed. The average prediction 
time is observed to be approximately 30ms per image and post 
processing time is approximately 15ms. At this performance, 
we will be able to process around 22.22 images per second. 
By improving the prediction accuracy, the need for complex 
post-processing can be eliminated, thereby improving the 
computation time per image. While the prediction time is 
independent of the number of faces, postprocessing time 
varies based on the number of faces detected in the binary 
mask image. 

TABLE VI. OUTPUT OF SAMPLE IMAGES FROM (A) TO (D) FDDB DATASET, (E) TO (H) OPENIMAGE DATASET. (A), (B), (E), (F) ARE MODEL OUTPUT. (C), (D), 
(G), (H) ARE ORIGINAL IMAGES WITH PREDICTIONS IN RED ELLIPSES/BOUNDING BOXES AND GROUND TRUTH IN GREEN ELLIPSES/BOUNDING BOXES 

Model Predictor Output Detection Results Predictor Output Detection Results 

Unet 

    

VGG16-
Unet 

    

Semi-
Dense U-

Net 

(proposed) 
    

 a                          b c                            d e                         f g                         h 

TABLE VII. OUTPUT OF SAMPLE IMAGES FROM WIDER FACE DATASET. (A), (B) ARE MODEL OUTPUT. (C), (D) ARE ORIGINAL IMAGES WITH PREDICTIONS IN 

RED ELLIPSES/BOUNDING BOXES AND GROUND TRUTH IN GREEN ELLIPSES/BOUNDING BOXES 

Model Predictor Output Detection Results 

Unet 

  

Vgg16-unet 

  

Semi-Dense unet 

(proposed) 

  

 a                         b c                                d 
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V. CONCLUSION 

Segmentation architectures are gradually increasing in 
numbers as does its applications. Performance of the 
architecture is still of concern even today. In this paper, we 
proposed to improve standard U-Net segmentation 
architecture commonly used in medical image segmentation 
and applied it to face segmentation and human faces detection. 
Our proposed architecture, Semi-Dense U-Net, produces 
improved results compared to standard U-Net architecture. 
Here, feature learning is improved by introducing skip 
connections and dense connections at various levels. While it 
produced considerably good prediction results for medium and 
large face, the model may not be suitable for application with 
tiny face detection requirements. In the future work, the 
architecture will be further improved to detect tiny faces and 
will be fine-tuned to predict occluded and heavily blur faces. 
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