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Abstract—As autonomous driving technology continues to 

advance at a rapid pace, the demand for precise and dependable 

lane detection systems has become increasingly critical. However, 

traditional methods often struggle with complex urban scenarios, 

such as crowded environments, diverse lighting conditions, 

unmarked lanes, curved lanes, and night-time driving. This 

paper presents a novel approach to lane line segmentation in 

urban traffic scenes with a Deep Feature Fusion Network 

(DFFN). The DFFN leverages the strengths of deep learning for 

feature extraction and fusion, aiming to enhance the accuracy 

and reliability of lane detection under diverse real-world 

conditions. To integrate multi-layer features, the DFFN employs 

both spatial and channel attention mechanisms in an appropriate 

manner. This strategy facilitates learning and predicting the 

relevance of each input feature during the fusion process. In 

addition, deformable convolution is employed in all up-sampling 

operations, enabling dynamic adjustment of the receptive field 

according to object scales and poses. The performance of DFFN 

is rigorously evaluated and compared with existing models, 

namely SCNN, ENet, and ENet-SAD, across different scenarios 

in the CULane dataset. Experimental results demonstrate the 

superior performance of DFFN across all conditions, highlighting 

its potential applicability in advanced driver assistance systems 

and autonomous driving applications. 
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I. INTRODUCTION 

As urbanization accelerates and our reliance on 
transportation intensifies, the need for safer and more efficient 
urban traffic systems is more pressing than ever. Among the 
numerous challenges in developing intelligent transportation 
systems, accurate lane line segmentation is a vital task for the 
functionality of autonomous driving and advanced driver-
assistance systems (ADAS). By properly recognizing and 
predicting lane lines, these systems can better ensure the safety 
and efficiency of road traffic. Within the domain of computer 
vision and image processing, a plethora of methods have been 
proposed to address lane line segmentation. Traditional 
methods, like edge detection and Hough transform, provide 
some utility, but their performance can be significantly 
hindered under complex conditions such as variable lighting, 
weather, and diverse road markings. With the rise of deep 
learning, Convolutional Neural Networks (CNNs) have shown 
superior performance in various tasks including lane line 
segmentation [1], [2]. In recent years, a range of techniques for 
lane line segmentation employing Convolutional Neural 
Networks (CNNs) have been devised. Study [3] presents a 
robust method for lane detection in continuous driving 
scenarios, leveraging the power of deep neural networks. The 

authors introduced a novel two-stage framework that first 
generates lane line proposals using a pixel-wise prediction 
model, and then refines these proposals through a sequential 
prediction model, leveraging temporal information between 
frames. Their method demonstrated impressive robustness in 
handling various complex scenarios and achieved notable 
performance on multiple benchmark datasets. Philion [4] 
proposed a novel method to tackle the "long tail" problem in 
lane detection - the issue of detecting rare or unusual lane 
configurations. The approach uses a sequential prediction 
network that dynamically generates waypoints, thereby 
allowing it to adapt to a wide variety of lane shapes and 
configurations. In their study, Qin, Wang, and Li (2020) [5] 
introduced a structure-aware deep lane detection algorithm. 
The algorithm focuses on improving the speed and efficiency 
of lane detection by incorporating prior structural knowledge 
into a novel deep learning framework. Recently, Yoo et al. [6] 
proposed an end-to-end lane marker detection algorithm using 
a row-wise classification approach in their research. Their 
method transforms the challenging lane detection problem into 
a simpler row-wise classification task, improving both speed 
and accuracy of detection. Another approach [7] is to utilize a 
fully convolutional neural network with a novel instance 
segmentation head to simultaneously detect and separate 
different lane lines. In recent work, Abualsaud et al. [8] 
introduced LaneAF, a robust multi-lane detection method 
based on the concept of affinity fields. The proposed approach 
uses the affinity fields to encode relational information 
between different parts of the lane lines, enhancing the 
detection accuracy in challenging situations like close, parallel, 
and curvy lanes. Wang, Ren, and Qiu [9] introduced LaneNet, 
a real-time lane detection network designed for autonomous 
driving applications. LaneNet utilizes a two-branch neural 
network that simultaneously performs semantic segmentation 
for pixel-wise lane detection and instance segmentation for 
distinguishing between individual lane lines. In [10], Pan et al. 
introduced a novel concept of Spatial Convolutional Neural 
Networks (SCNN) that extends traditional CNNs by 
performing convolutions in the spatial domain. This novel 
SCNN framework, which treats spatial information as a type of 
deep information, was shown to be particularly effective in 
traffic scene understanding tasks, including lane line detection. 
Based on SCNN, Zheng et al. [11] proposed a Recurrent 
Feature-Shift Aggregator (ReSA) for lane detection tasks. The 
ReSA model uses a novel recurrent structure to shift and 
aggregate deep features, effectively capturing the spatial 
dependencies of lane pixels and thereby improving lane 
detection performance. Hou et al. [13] introduced a self-
attention distillation strategy for developing lightweight lane 
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detection CNNs. The method involves training a smaller 
student network to mimic the attention maps of a larger, pre-
trained teacher network, thereby improving the efficiency and 
performance of the student network. More recently, Vu et al. 
[14] proposed HybridNets, an end-to-end perception network 
for autonomous driving. HybridNets, combining multiple sub-
networks tailored to different perception tasks, provides a 
unified architecture that can simultaneously perform various 
tasks, including lane line detection, while sharing learned 
representations. In addition to structures specifically designed 
for the task of lane line segmentation, some proposed methods 
use popular networks for general semantic segmentation such 
as Fully Convolutional Networks (FCN) [14], U-Net [15], 
SegNet [16], DeepLab v3+ [17], for the task of lane line 
segmentation, which also yield promising results and achieve 
significant outcomes. 

Although the above methods show promise in lane line 
segmentation tasks, challenges remain due to the intricate 
nature of urban scenes that include varying lanes, unpredictable 
surrounding environments, and complicated traffic scenarios. 
To address these challenges, this paper presents a Deep Feature 
Fusion Network (DFFN) for lane line segmentation in urban 
traffic scenes. The core idea of the proposed method is to 
leverage the strength of deep learning and feature fusion to 
extract and combine multi-level and multi-scale features from 
the input images. This approach not only enhances the 
robustness of the network against complex conditions but also 
significantly improves the segmentation performance by 
effectively capturing both the local detailed information and 
the global contextual information of lane lines. The 
effectiveness of the proposed model has been verified through 
experiments on the CULane dataset. 

The rest of this paper is organized as follows: Section II 
presents the detailed methodology of the proposed model, 
including the architectural design, key components, and 
training procedure. Section III describes the CULane dataset 
and the experimental setup, followed by a comprehensive 
analysis of the experimental results. Section IV summarizes the 
key contributions and highlighting the significance of the 
proposed model in improving the functionality and safety of 
autonomous driving systems and advanced driver assistance 
systems. 

II. METHODOLOGY 

This section elaborates on the proposed DFFN structure 
designed for lane line segmentation in urban traffic scenes. 
DFFN is based on the DLA structure [18] used for the semantic 
segmentation task. Therefore, this section will first provide a 
summary of the DLA network structure, followed by a detailed 
explanation of the proposed modifications designed to enhance 
the DLA model specifically for the lane line segmentation 
problem. 

A. DLA Network for Semantic Segmentation 

Deep Layer Aggregation is a powerful structure that has 
seen successful applications across a variety of computer 
vision tasks, including semantic segmentation. The design of 
DLA is based on the observation that semantic segmentation 
requires not only high-level semantic information but also low-
level detailed information. The main aim of the DLA 
architecture is to effectively aggregate multi-scale and multi-
level features to generate rich and detailed feature maps that 
are beneficial for tasks like semantic segmentation. DLA 
consists of two major components: a hierarchy of basic blocks 
and an aggregation mechanism, as shown in Fig. 1(a). 

 
Fig. 1. The structure of original DLA (a) and the proposed DFFN (b). 
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1) Hierarchy of basic blocks: DLA adopts a hierarchical 

structure similar to typical convolutional networks such as 

ResNet [19] or ResNeXT [20], but with each level consisting 

of basic blocks, with each block being a small network of its 

own. Each basic block within the hierarchy operates at a 

different resolution, and the block output is a feature map of 

the corresponding resolution. Lower-level blocks capture fine-

grained features, while higher-level blocks capture coarser but 

more abstract features. 

2) Aggregation mechanism: The uniqueness of DLA lies 

in its aggregation mechanism. Traditional convolutional 

networks only use features from the highest level for 

prediction, which could result in a loss of detailed spatial 

information. DLA, however, introduces an aggregation 

mechanism that propagates the information from higher layers 

to lower layers, in a top-down manner. This aggregation allows 

high-level semantic features to be combined with low-level 

spatial features. The process begins with the highest level, 

where features are first processed by a 1×1 convolution to 

reduce the channel dimension. Then, these features are 

upsampled and summed with the corresponding lower-level 

features. The combined features are then processed by another 

1×1 convolution before being passed to the next lower level. 

The aggregation mechanism allows DLA to generate rich 

feature maps that contain both high-level semantic information 

and low-level detailed information. This feature is particularly 

beneficial for semantic segmentation, which requires a good 

understanding of both the object (high-level) and the exact 

boundary (low-level) of each semantic class. 

B. Deep Feature Fusion Network with Spatial and Channel 

Fusion 

Although DLA has achieved some success in semantic 
segmentation tasks, its performance in lane line segmentation 
in urban traffic scenes is greatly limited. There are several 
reasons to explain this. Firstly, the proportion of lane lines 
usually occupies a relatively small ratio in the image, and 
sometimes lane lines are not clearly visible. This severely 
restricts the accuracy of pixel-level segmentation of lane lines. 
Secondly, in complex environments where lane changes, 
changing lighting conditions, or irregular lane shapes 
frequently occur, the feature fusion scheme in DLA is easily 
affected by background noise. Inspired by attention mechanism 
[21], which employs channel and spatial self-attention for 
adaptive feature refinement to enhance the performance of 
convolutional networks in tasks like image classification, 
image captioning, and object detection, this paper designs the 
DFFN based on the DLA architecture for efficient lane line 
segmentation in urban traffic scenes. Fig. 1(b) illustrates the 
detailed structure of the proposed DFFN. It judiciously 
employs both spatial and channel attention mechanisms to 
learn and anticipate the significance of each input feature 
during the fusion process. Consequently, it amplifies lane line 
features from both spatial and channel dimensions, extracting 
effective lane line characteristics even in challenging 
environments. Specifically, DFFN utilizes ResNet-34 [19] as 
its backbone to create an optimal balance between precision 
and processing speed. It deviates from the traditional DLA by 

integrating more skip connections between low-level and high-
level features, resembling the operational structure of the 
Feature Pyramid Network [22]. Moreover, DFFN replaces the 
convolution layers in all up-sampling modules with deformable 
convolution, allowing for dynamic adjustments of the receptive 
field in accordance with object scales and orientations. This 
transformation not only offers flexibility but also helps mitigate 
alignment issues. In addition, each linear aggregation node in 
the original DLA structure is replaced by the spatial and 
channel fusion node (SCF), which is designed to compute 
spatial and channel attention based on the relation of the input 
feature maps. The next subsection will elaborate on the spatial 
and channel fusion design. 

1) Spatial and channel fusion: The spatial and channel 

fusion is applied on two different input feature maps,    and   , 

where    is the shallower, higher resolution feature map and    

is the deeper, lower resolution feature map, as shown in Fig. 2. 

Since    contains richer spatial information, this paper applies 

spatial attention operation on this feature map to enhance its 

spatial information. The spatial attention operation includes 

two 3×3 convolution layers followed by sigmoid activation. 

Suppose     
     , the output of the spatial attention 

operation   
  is calculated as follow: 

  
        ))   (1) 

where    )  is the convolution operation, and   is the 
sigmoid function. 

 
Fig. 2. Spatial and channel fusion. 

On the other hand, as    have richer semantic 
representations, this paper applies channel attention operation 
on this feature map to improve its channel features. The 
channel attention operation first applies average pooling and 
max pooling to generate intermediate feature maps. Then, two 
1×1 convolution layers are applied in parallel to further 
transform these intermediate feature maps. Finally, the sigmoid 
activation function is used after summing the intermediate 
maps to generate the rich channel semantic maps. Suppose 
    

     , then the output of the channel attention 
operation   

  is calculated as follow: 

  
     (      ))   (      ))) (2) 

After computing spatial and channel attention based on the 
relation of the input feature maps, this paper employs element-
wise multiplication and summation to generate final enhanced 
feature map as follow: 

     
          

   (3) 
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Since the spatial and channel fusion module employs 
simple non-linear operation, it introduces negligible 
computation overhead. 

III. RESULTS 

A. Dataset and Metrics 

This paper employs the CULane dataset [10] to evaluate 
the proposed model. The CULane dataset has been utilized in 
various studies related to autonomous driving and advanced 
driver assistance systems. It's especially popular for tasks such 
as lane detection, semantic segmentation, and traffic scene 
understanding. The CULane dataset is quite large, containing 
around 55,000 images, and covering various scenarios with 
different traffic, lighting, and weather conditions. It consists of 
images from urban streets, highways, and rural areas captured 
at different times of the day. It also includes challenging 
driving scenarios like night driving, shadows, dazzling, and 
rainy or foggy conditions, thus offering a comprehensive 
dataset for robust model training. Each image in the CULane 
dataset is carefully annotated with high-quality pixel-level 
annotations of lane lines, including markings for straight lanes, 
curved lanes, and parallel lanes. This detailed annotation serves 
as an excellent training ground for lane segmentation models. 
It is worth noting that each image also contains corresponding 
binary lane segmentation maps, which are quite useful for 
model training and evaluation. The dataset is split into distinct 
training and testing sets, providing a reliable platform for both 
the development and evaluation of models. The training set 
contains around 88,880 images, while the test set contains 
approximately 34,680 images, spread across 9 different 
categories representing a range of driving conditions, as shown 
in Table I and Fig. 3. This paper carefully screened 40,000 
annotated images containing lane lines in the dataset and used 
70% of the filtered dataset for training. As in [10], this paper 
uses 𝐹1-measure as metric for evaluating the proposed model. 

 

Fig. 3. Some examples for different scenarios. 

TABLE I. PROPORTION OF EACH CATEGORY IN THE CULANE DATASET 

Category Proportion (%) Resolution 

Normal 27.7 

590×1640 

Crowded 23.4 

Dazzle light 1.4 

Shadow 2.7 

No line 11.7 

Arrow 2.6 

Curve 1.2 

Night 20.3 

Crossroad 9.0 

B. Experimental Results 

This paper compared the performance of the proposed 
method against established models including SCNN [10], ENet 
[23], and ENet-SAD [12]. All experiments were conducted 
across eight distinct categories of the CULane testing set, 
evaluated based on F1-measure. The results are shown in Table 
II. In the Normal condition, DFFN demonstrated superior 
performance with an F1 score of 70.25%, compared to SCNN 
(60.12%), ENet (65.62%), and ENet-SAD (67.72%). Under 
Crowded circumstances, the robustness of the DFFN model 
was notable, achieving an F1 score of 58.71%, outperforming 
SCNN (45.38%), ENet (55.46), and ENet-SAD (55.81). In the 
Dazzle light and Shadow scenarios, DFFN continued to excel, 
achieving F1 scores of 53.54% and 55.62% respectively, 
surpassing the scores of SCNN, ENet, and ENet-SAD. For the 
No line and Arrow conditions, DFFN maintained high 
performance levels, demonstrating impressive lane recognition 
capability in comparison to other models, as evidenced by the 
F1 scores. In the Curve category, DFFN achieved an F1 score 
of 58.80%, demonstrating superior performance in identifying 
and tracking curved lanes. Lastly, in the Night condition, 
DFFN upheld its strong performance, with an F1 score of 
58.62%, outperforming the compared models in low-light 
conditions. These experimental results underscore the 
effectiveness and robustness of the proposed DFFN method 
across varied traffic scenarios and lighting conditions. The 
consistently high F1 scores, in comparison to other established 
models, suggest promising potential for DFFN in real-world 
applications, such as autonomous driving and advanced driver 
assistance systems. 

Fig. 4 provides a detailed visual comparison of the 
performance of the proposed DFFN, SCNN, and ENet on the 
CULane testing images. The first column displays the original 
image, providing the actual scene context from the CULane 
testing set. The second column shows the ground truth, 
representing the ideal output that the models should aim to 
replicate. These images provide a benchmark against which the 
model outputs are evaluated. The third column presents the 
results of the proposed DFFN model. An initial visual 
comparison between these outputs and the ground truth may 
suggest the effectiveness of the DFFN in accurately 
segmenting lane lines under different traffic scenarios. The 
fourth column illustrates the output from the SCNN model. By 
comparing these images with the ground truth and the DFFN 
outputs, we can assess the performance of the SCNN in 
relation to both the ideal output and the proposed model. The 
final column depicts the results from the ENet model. Again, a 
comparison between these images, the ground truth, and the 
other model outputs helps evaluate the performance of the 
ENet model in various traffic conditions. A detailed 
examination of Fig. 4 would provide insights into the areas 
where the proposed DFFN outperforms or underperforms 
compared to the SCNN and ENet models. For example, we 
might observe that the DFFN model performs particularly well 
in crowded scenarios or shadow conditions, offering more 
accurate and robust lane segmentation than the comparative 
models. However, the DFFN might be sensitive to noise and 
outliers in the input data. This could result in misclassification 
or incomplete segmentation of lane lines, affecting the overall 
accuracy and reliability of the model's outputs. Addressing the 
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sensitivity to noise and outliers is an important challenge in 
lane line segmentation with deep learning models like the 
DFFN. Techniques such as data augmentation, robust feature 

extraction, and outlier detection can be explored to improve the 
model's resilience to noisy input data and enhance its accuracy 
and reliability. 

 
Fig. 4. Visualization of experimental results in CULane dataset of the proposed model and SCNN, ENet. 

TABLE II. F1-MEASURE (%) OF DIFFERENT APPROACHES ON THE CULANE TESTING SET 

Method Category 

 Normal Crowded Dazzle light Shadow No line Arrow Curve Night 

SCNN [10] 60.12 45.38 37.52 41.44 36.34 45.31 44.44 41.20 

ENet [23] 65.62 55.46 50.21 54.49 35.82 58.11 56.43 49.39 

ENet-SAD [12] 67.72 55.81 52.91 54.51 39.06 56.94 57.91 54.12 

Proposed model 70.25 58.71 53.54 55.62 39.86 59.17 58.80 58.62 
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IV. CONCLUSION 

This paper introduces the Deep Feature Fusion Network 
(DFFN), a novel approach for lane line segmentation in 
complex urban traffic scenes. Based on the DLA structure, the 
DFFN integrates more skip connections between low-level and 
high-level features. In addition, each linear aggregation node in 
the original DLA structure is replaced by the spatial and 
channel fusion node to learn and predict the importance of each 
input feature during the fusing process. The DFFN has 
demonstrated its robustness in challenging scenarios, including 
crowded environments, varying lighting conditions, unmarked 
lanes, and curved paths, outperforming established models 
consistently. These results highlight the potential of the DFFN 
model in improving the functionality and safety of autonomous 
driving systems and advanced driver assistance systems. 
Despite its current performance, there is always room for 
improvement and optimization. Future work could focus on 
further enhancing the DFFN's ability to adapt to diverse 
environmental conditions and refining the model's capability to 
handle more complex and unusual lane line patterns, as well as 
addressing the sensitivity to noise and outliers. 
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