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Abstract—Machine Learning (ML) algorithms are widely 

used in solving classification problems. The biggest challenge of 

classification lies in the robustness of the ML algorithm in 

various dataset characteristics. Quadratic Interpolation Flower 

Pollination Neural Network (QIFPNN) is categorised into ML 

algorithm. The new QIFPNN's extraordinary capabilities are 

measured on binary-type datasets. This research ensures that the 

remarkable ability of QIFPNN also applies to non-binary 

datasets with balanced and unbalanced data class characteristics. 

Flower Pollination Neural Network (FPNN), Particle Swarm 

Optimisation Neural Network (PSONN), and Bat Neural 

Network (BANN) were used as comparisons. The QIFPNN, 

FPNN, PSONN, and BANN were used to train Multi-Layer-

Perceptron (MLP). The test results on five datasets show that 

QIFPNN obtains an average classification accuracy higher than 

its comparison in three datasets with balanced and unbalanced 

data class characteristics. The three datasets are Iris, Wine, and 

Glass. The highest classification accuracy obtained by QIFPNN 

in the three datasets is 97.1462%, 98.6551%, and 73.1979%, 

respectively. Based on the F1-score test from QIFPNN, it is 

higher than all the comparisons in four datasets: Iris, Wine, 

Vertebral column, and Glass. Sequentially, 96.4599%, 98.7155%, 

90.7517%, and 60.2843%. It proves that QIFPNN can also 

classify datasets with non-binary data types with balanced and 

unbalanced data class characteristics because they are more 

consistently tested on various datasets and are not susceptible to 

the influence of variations in dataset characteristics so that they 

can be applied to various types of data or cases. 

Keywords—Quadratic interpolation; flower pollination 

algorithm; neural network; non-binary dataset; multi-layer-

perceptron 

I. INTRODUCTION 

The field of Machine Learning (ML) is a subsection of 
Artificial Intelligence (AI) [1] that allows computers to 
recognise patterns in data and make predictions based on that 
information [2,3]. Practical ML algorithms can provide precise 
results, even when dealing with datasets that present various 
real-world problems. The UCI Machine Learning Repository 
[4] is a database offering a range of datasets the AI community 
uses to evaluate ML algorithms. 

ML algorithms are classifiers, meaning they can predict an 
unknown sample's class based on previous training data. A 
challenge in classifying data is the variation in dataset 

characteristics, such as sample size, number of attributes, class 
count, sample distribution in each class, missing data, and data 
type. Traditional classification algorithms can sometimes be 
unreliable, mainly when dealing with datasets with an uneven 
distribution of class samples or an unbalanced class distribution 
[5]. 

Optimisation algorithms are frequently utilised to tackle 
optimisation problems and have had positive outcomes in 
optimising Machine Learning (ML) algorithms, such as Neural 
Networks (NN) [6]. The NN, also known as Multi-Layer 
Perceptron (MLP), is considered one of the most effective 
ways to solve classification problems in real-world scenarios 
[7,8]. The training process of NN involves feedforward and 
backward procedures. The backward procedure, in which 
weight adjustment occurs through the conventional gradient 
method, can be weak and often gets stuck at local optima 
[9,10]. The metaheuristic algorithm can take the place of this 
backward procedure. The success of these algorithms lies in 
their capability to explore the search space through both 
exploration and exploitation. Exploration involves finding 
various solutions in the search space, while exploitation 
involves finding the best solution to improve existing ones. A 
proper balance between exploration and exploitation can 
quickly lead to identifying the search space with the optimal 
solution [11], avoiding any wasted time in areas with 
insufficient solutions [12,13]. 

The Flower Pollination Algorithm (FPA) is a metaheuristic 
approach that balances exploration and exploitation by 
regulating global and local pollination in each iteration of the 
population. FPA has been extensively used in classification 
tasks using public datasets. For instance, in a study by 
Senthilnath et al. [14], FPA was used to adjust the class centre 
weights in Euclidean distance training and was compared to 
other algorithms such as Harmony Search, Bat Algorithm, 
Differential Evolution, Spider Monkey Optimization, Grey 
Wolf Optimization, Cuckoo Search, Particle Swarm 
Optimization, Genetic Algorithm, and K-means. The results 
showed that FPA performed better, with the lowest 
Classification Error Percentage, on all tested datasets. 
Additionally, FPA was applied to update the Probabilistic 
Neural Network (PNN) weights in classification problems and 
produced better results than PNN on all 11 datasets [7]. Yazid 
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et al. [15] used FPNN, which combines FPA and PNN, to 
classify heart diseases and found it to have higher accuracy 
than a standard backpropagation neural network based on 
results from four UCI datasets. 

In recent research, Polly et al. [16] looked into classifying 
real-world swine disease cases. The dataset comprised 158 
samples, 68 attributes, a binary data type, and an unbalanced 
data distribution in 11 classes. The Quadratic Interpolation 
Flower Pollination Neural Network (QIFPNN) increased 
accuracy by 22.40% and training speed by 7.61% compared to 
the Flower Pollination Neural Network (FPNN). QIFPNN is a 
modification of FPA where the Levy vector is replaced with a 
random vector based on the step length of quadratic 
interpolation (QI). The effectiveness of QIFPNN in increasing 
accuracy and speeding up training time on datasets with binary 
data types needs to be extended to datasets with non-binary 
data types. So it needs to be tested on various dataset 
characteristics with various data types, then compare the results 
with FPNN, PSONN, and BANN, which are other 
metaheuristic algorithms. The goal is to prove that QIFPNN 
can also classify datasets with non-binary data types. As a 
result, QIFPNN provides better classification accuracy and F1-
score on datasets with non-binary data types than its 
comparators. It proves that QIFPNN is not susceptible to 
variations in dataset characteristics so that it can be applied to 
various data types or cases. 

This research is structured as follows: in the theory section, 
we present the Quadratic Interpolation Flower Pollination 
Neural Network (QIFPNN). In the experimental setup section, 
we describe the dataset and parameter settings. In the results 
and discussion section, we present the accuracy measurement 
and F1-score of the QIFPNN and its comparators, followed by 
the conclusion section. 

II. THEORY 

A. Quadratic Interpolation Flower Pollination (QIFP) 

Polly et al. [16] introduced QIFP, an improvement from 
FPA [17]. The improvement lies in the step vector of global 
pollination and the search space technique. In the first 
improvement, the step vector    is replaced with a quadratic 
interpolation step vector  , so (1) can be written as (2). 
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where   
  represents the  -th pollen in iteration  ,  *  is the 

best pollen,   is the scaling factor, and   is the random step 
vector with Levy distribution. The pollen represents the 
solution vector. 

The derivative of the polynomial quadratic function is used 
to get    which gives the minimum or maximum fitness. The 
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Fig. 1. Illustration of a polynomial quadratic function. 

The second improvement, the FPA search space is directly 
carried out in the natural search space [      ,      ]. The 
QIFP search space starts from a small search space, which is 
then expanded gradually. Expansion is done by: 

1) Identify search space first: 

[  ,  ]   - ,  
 
 (4) 

2) Expanding the next search space: 

   ,   
 
 {

     ,     
 

           

   ,   
 

o        
 (5) 

3) Repeat step 2) until           and          . 
where the value of        and        has an integer type, and 
zero is the result of the sum of        and       . 

B. Quadratic Interpolation Flower Pollination Neural 

Network (QIFPNN) 

The evaluation of weights for classification problems in 
MLP is to minimise the mean square error (MSE) value. In 
QIFPNN, QIFP is used as a weight adjustment [16]. The 
flowchart of QIFPNN can be seen in Fig. 2, which represents 
the QIFPNN algorithm. The novelty can be seen in the two 
rectangles marked with bold lines. The first rectangle refers to 
(2), while the second rectangle refers to (4) and (5). 
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Yes

· Based on the fitness of training data in the initial population, Find the candidate best solution g*

· Calculate globalBestAccuracy using g* of validation data

If random number < p

· Using quadratic interpolation to draw a step vector (d-dimensional) Q 

· Using Equation (2) to perform global pollination 

Yes

· Using uniform distribution in [0,1] to draw ϵ
· Using xi

t+1=xi
t + ϵ (xj

t - xk
t) to perform local pollination

No

· Using new solution xi
t+1 to compute fitness based on training data

· If the fitness of xi
t+1 < fitness of xi

t
 then xi

t = xi
t+1

· If the fitness of xi
t+1 < fitness of g*

 then update g*

· Update current best solution bs = g* updated

· globalBestAccuracy = accuracyOfValData

· countIterOfConvAccuracy = 0

End

t = t + 1

Begin

As long as the termination criteria have not been met

No

For i = 1 : n 

Next i 

Compute classification accuracy of validation data (accuracyOfValData) using g*

If (accuracyOfValData ≥ 

globalBestAccuracy)

Yes No

· Manage lower and upper bound

· countIterOfConvAccuracy = countIterOfConvAccuracy + 1

Output the best solution bs found

Define control parameters of QIFPNN: [number of neurons in the hidden layer (hn), number of pollen 
gametes/flowers/population (n), lower and upper bounds [LbReal,UbReal], maximum iteration 

(maxIteration), target error (targetError), limit of iterations for convergence conditions for classification 

accuracy (iterThOfCA), switch probability (p)];

Initialization: t = 0; countIterOfConvAccuracy = 0

check if population regenerate needs to be done

 

Fig. 2. QIFPNN flowchart. 
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III. EXPERIMENTAL SETUP 

A. Dataset Description 

This section briefly overviews the five UCI datasets used in 

the study. The datasets were divided into three parts: training, 

validation, and testing, with 90% of the data used for training 

and validation (using 10-fold cross-validation) and 10% for 

testing 

The classification process took place in two stages: 

1) The training stage aimed to find the optimal weights 

and determine the length of the training process. This stage 

used both training and validation subsets to prevent 

overfitting. 

2) In the testing stage, the weights found in the training 

stage were applied to the test subsets to measure classification 

accuracy. 

Table I displays the sample size, number of input attributes 
and classes, missing sample size, and data type of each dataset. 
Table I can be categorised into datasets with balanced data 
classes (Iris) and unbalanced data classes (Wine, Lung cancer, 
Vertebral column, Glass). The Lung cancer dataset has many 
input attributes but a small sample size (known as a singularity 
problem) [18]. The Vertebral column dataset has two classes 
with approximately equal amounts of data in each class. The 
Glass dataset has six classes with varying amounts of data in 
each class. 

B. Parameter Settings 

The parameters used to configure each algorithm consist of 
four parts, namely: 

· Parameters that apply to all algorithms, including (1) 
the number of neurons in the hidden layer (hn), (2) the 
population (population), (3) the lower and upper 
bounds of the actual search space [LbReal,UbReal], (4) 
the maximum iteration (maxIteration), (5) the target 

error (targetError), (6) the limit of iterations for 
convergence conditions for classification accuracy 
(iterThOfCA);  

· Parameters specific to QIFPNN and FPNN, namely the 
switch probability (p);  

· Parameters specific to PSONN, namely the learning 
pa am      (α an  β);  

· Parameters were specific to BANN: the loudness 
(loudness) and the pulse rate (pulseRate). 

The QIFPNN, FPNN, PSONN, and BANN use MLP 
architecture with one hidden layer by determining the number 
of neurons in that layer according to (6) [16]. One hidden layer 
can approximate any function with arbitrary accuracy [19]. 

hn   √(    o)    (6) 

Where, respectively,   ,   , and   , are the number of 
neurons in the hidden, input, and output layers, while    is an 
integer set to be 1. The determination of      aims to simplify 
the size of the MLP architecture in order to expedite the 
learning process. 

It is essential to control parameters in each iteration of a 
metaheuristic algorithm to obtain an optimal solution. 
However, there is no known effective strategy to produce a 
variety of parameters [20]. All parameters are set based on 
Polly et al. [16], namely population      [16,21], 
[      ,      ] [   ,  ] , maximum iteration 
                 , target error                  , and limit 
of iterations for convergence conditions for classification 
accuracy               . Three variables control the 
stopping criteria:             ,            , and           . 
Another parameter set for QIFPNN and FPNN is switch 
probability       [16,17,22–24]. Specifically for PSONN, the 
learning parameters are α β  , while for BANN, the 
parameter               and the parameter               
[25]. 

TABLE I.  CHARACTERISTICS OF THE DATASETS 

Dataset 
Sample 

Size 

Number of Input 

Attributes 
Sample Size in Each Class 

Missing 

Sample Size 

Data 

Type 

Iris 150 4 

· Class 1 Iris Setosa = 50 data (33.3%) 

· Class 2 Iris Versicolour = 50 data (33.3%) 

· Class 3 Iris Virginica = 50 data (33.3%) 

- Real 

Wine 178 13 

· Class 1 = 59 data (33.2%) 

· Class 2 = 71data (39.9%) 

· Class 3 = 48 data (26.97%) 

- 
Integer, 

real 

Lung Cancer 27 56 

· Class 1 = 8 data (29.6%) 

· Class 2 = 10 data (37.04%) 

· Class 3 = 9 data (33.3%) 

5 Integer 

Vertebral Column 310 6 
· Class 1 Abnormal = 210 data (67.7%) 

· Class 2 Normal = 100 data (32.3%) 
- Real 

Glass 214 9 

· Class 1 Building windows float processed = 70 data (32.7%) 

· Class 2 Building windows non-float processed = 17 data (7.9%) 

· Class 3 Vehicle windows float processed = 76 data (35.5%) 

· Class 4 Vehicle Windows non-float processed = 0 data (0%) 

· Class 5 Containers = 13 data (6.1%) 

· Class 6 Tableware = 9 data (4.2%) 

· Class 7 Headlamps = 29 data (13.6%) 

- Real 
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This study set the population parameter to 30, referring to 
Chakraborty et al. [21], as the four datasets used in this 
research were also employed in their study. Furthermore, the 
findings of Polly et al. [16] provided additional support by 
utilising the same population size and yielding satisfactory 
solutions. The rationale for determining the parameter 
[LbReal,UbReal] = [-80, 80] was based on an intuitive 
approach to solution search techniques, starting from the 
smallest search space and gradually expanding it. The 
expansion of the search space was performed every 50 
iterations, and the most extensive range of the search space, 
[   ,  ], was determined by setting the maximum iteration to 
4000. The target error parameter was set to 0.001 to achieve 
high accuracy on the training data. 

The parameter iterThOfCA was set to 700 based on 
documented test results in Table II. The row labelled "Average 
Training and Validation Accuracy" shows that using the 
iterThOfCA=700 parameter yields slightly lower accuracy than 
the iterThOfCA=1000 and 1800 parameters. However, the 
difference with the highest accuracy is tiny, only 0.22. In the 
row labelled "Training Time," the iterThOfCA=700 parameter 
results in a shorter time than the iterThOfCA=1000 and 1800 
parameters. Therefore, the iterThOfCA=700 parameter is 
selected as the appropriate option. The switch probability 
parameter is set to 0.8 based on preliminary parametric studies 
indicating that a value of p=0.8 can provide better performance 
for most applications [17,23,24]. Expressly, for PSONN, the 
l a n n  pa am      ("α an  β") a        o  ,    l  fo  BANN, 
the normal values for the loudness parameter are 0.25, and the 
pulse rate parameter is set to 0.5, following standard practices 
in PSONN and BANN [25]. 

TABLE II.  THE DETERMINATION OF THE ITERTHOFCA PARAMETER WAS 

BASED ON THE AVERAGE TRAINING ACCURACY, VALIDATION ACCURACY, 
AND TRAINING TIME USING 10-FOLD CROSS-VALIDATION, CONDUCTED OVER 

5 REPETITIONS 

 
           Parameter 

700 1000 1800 

The average training and 

validation accuracies (%) 
87.9191 88.0872 88.1432 

The average training time 

(seconds) 
5934.45 7497.80 10555.65 

C. Testing 

The experiment measures the performance of four 
algorithms by evaluating their average classification accuracy 
and training time. The tests were repeated 20 times in each fold 
of the 10-fold cross-validation method, and the results were 
recorded as the average of these trials. Additionally, the F1-
score was also calculated as part of the testing procedure. 

IV. RESULT AND DISCUSSION 

The tests were conducted on five datasets, as outlined in 
Table I. The results of the tests, including the average of the 
classification accuracy and the average of the training time, are 
shown in Table III and Fig. 3 to 4. Table IV shows the results 
of the F1-score test. 

As seen in Table III, the QIFPNN algorithm produced a 
higher average classification accuracy in the training subset 

than the other algorithms for all five datasets. It includes the 
Iris, Wine, Lung cancer, Vertebral column, and Glass datasets 
with an accuracy of 98.9103%, 99.3056%, 90.7478%, 
87.6424%, and 73.855%, respectively. The QIFPNN model has 
the lowest mean square error and does not experience 
premature convergence across various datasets. The F1-score 
further supports this in the training subset, which was higher 
for all five datasets, including the Iris, Wine, Lung cancer, 
Vertebral column, and Glass datasets, with scores of 
97.7294%, 99.3488%, 90.0801%, 90.9789%, and 64.8062% 
respectively, as shown in Table IV. 

The average classification accuracy obtained from the 
training, validation, and test subsets from QIFPNN is higher 
than all the comparisons in the three datasets, namely the Iris, 
Wine, and Glass datasets. The average acquisition accuracy of 
the classification can be seen in Table III and Fig. 3, namely 
97.1462%, 98.6551%, and 73.1979%. FPNN is only higher in 
two datasets than all the comparisons in the Lung cancer and 
Vertebral column datasets, respectively 78.7861% and 
87.4692%. Still, QIFPNN ranks second highest after FPNN in 
both datasets, with gains of 76.5826% and 87.3895%. Based on 
the F1-score test from QIFPNN in Table IV, it is higher than 
all the comparisons in the four datasets: Iris, Wine, Vertebral 
column, and Glass. Sequentially, 96.4599%, 98.7155%, 
90.7517%, and 60.2843%. Meanwhile, FPNN is higher than all 
its comparisons only in the Lung cancer dataset, namely 
75.3369%, but QIFPNN ranks second highest with an 
acquisition of 73.1106%. It proves that the QIFPNN training 
model is the best among all comparisons because it is more 
consistently tested on various datasets and is not susceptible to 
the influence of variations in dataset characteristics so that it 
can be applied to multiple other data/cases. 

The average PSONN training time is faster than QIFPNN, 
FPNN, and BANN on three datasets, namely Iris, Vertebral 
column, and Glass, with values of 384.4917 seconds, 55.6039 
seconds, and 678.6673 seconds. QIFPNN is faster than FPNN, 
BANN, and PSONN on two datasets, namely Wine and Lung 
Cancer, with values of 179.7063 seconds and 135.8932 
seconds, which can be seen in Table III and Fig. 4. It proves 
that, in general, PSONN is faster than its comparators. 
However, QIFPNN has a speedy training time compared to the 
comparison specifically for datasets that experience singularity 
problems, such as the Lung cancer dataset. The training time is 
also quick for datasets like Wine, which have unbalanced data 
class characteristics. This fact shows that the quadratic 
interpolation concept accommodated by QIFPNN works very 
quickly in the training process for datasets with characteristics 
similar to those of the Lung cancer and Wine datasets. 

Based on the results of classification accuracy and F1-score 
measurements, it can be said that the QIFPNN is suitable for 
classifying non-binary datasets with balanced and unbalanced 
data class characteristic models. The slow training time of 
QIFPNN on the Iris, Vertebral column, and Glass datasets is 
due to the QIFPNN fitness evaluation being twice the fitness 
evaluation of FPNN, BANN, and PSONN in each individual 
(flower/pollen gamete) per iteration. 
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TABLE III.  RECAPITULATION OF TESTS ON THE IRIS, WINE, LUNG CANCER, VERTEBRAL COLUMN, AND GLASS DATASETS BASED ON THE AVERAGE FOR 

CLASSIFICATION ACCURACY AND TRAINING TIME OF 20 TRIALS ON ALL FOLDS 

Dataset Method 

The Average for Classification Accuracy of 10-fold on The Average for Classification 

Accuracy of The Training, 

Validation, and Test Subsets (%) 

The Average Training 

Time of 10 fold 

(seconds) Training subset 

(%) 
Validation subset 

(%) 

Test subset 

(%) 

Iris 

QIFPNN 98.9103 98.4615 94.0667 97.1462 534.3663 

FPNN 98.3390 98.6978 92.2000 96.4123 488.9779 

BANN 89.7546 89.1566 84.3000 87.7371 508.0139 

PSONN 82.0805 82.9890 78.8000 81.2898 384.4917 

Wine 

QIFPNN 99.3056 98.1875 98.4722 98.6551 179.7063 

FPNN 99.0104 99.0313 95.5278 97.8565 709.1112 

BANN 90.6319 89.5938 89.3333 89.8530 702.8217 

PSONN 85.1424 87.0000 83.6389 85.2604 943.0891 

Lung Cancer 

QIFPNN 90.7478 70.0000 69.0000 76.5826 135.8932 

FPNN 87.0249 88.5000 60.8333 78.7861 784.5162 

BANN 71.9989 65.4167 49.0000 62.1385 640.8733 

PSONN 63.6818 67.4167 47.6667 59.5884 826.6481 

Vertebral Column 

QIFPNN 87.6424 89.5099 85.0161 87.3895 727.1914 

FPNN 85.9383 90.3241 86.1452 87.4692 555.9895 

BANN 86.2841 88.0595 84.5000 86.2812 675.5812 

PSONN 76.2325 80.8082 77.2742 78.1050 553.6039 

Glass 

QIFPNN 73.8550 73.0395 72.6991 73.1979 1199.2273 

FPNN 64.3742 71.3566 65.6212 67.1173 856.9318 

BANN 60.5766 61.9513 59.0000 60.5093 806.5957 

PSONN 46.6498 51.8789 48.4524 48.9937 678.6673 

 

Fig. 3. The average for classification accuracy of the training, validation, 

and test subsets. 

 

Fig. 4. The average training time of 10 fold. 
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TABLE IV.  RECAPITULATION OF TESTS ON THE IRIS, WINE, LUNG CANCER, VERTEBRAL COLUMN, AND GLASS DATASETS BASED ON THE AVERAGE FOR F1-
SCORE OF 20 TRIALS ON ALL FOLDS 

Dataset Method 

The Average for F1-score of 10 Fold on The Average for F1-score of The 

Training, Validation, and Test Subsets 

(%) Training Subset (%) Validation Subset (%) Test Subset (%) 

Iris 

QIFPNN 97.7294 98.5092 93.1412 96.4599 

FPNN 96.7000 98.7036 90.7623 95.3886 

BANN 85.3531 85.9876 80.4231 83.9213 

PSONN 75.4134 77.5504 72.9403 75.3014 

Wine 

QIFPNN 99.3488 98.2541 98.5435 98.7155 

FPNN 99.0587 99.0560 95.6972 97.9373 

BANN 88.4922 87.3719 87.1803 87.6815 

PSONN 83.9748 85.7330 82.5509 84.0862 

Lung Cancer 

QIFPNN 90.0801 66.4461 62.8056 73.1106 

FPNN 86.6670 85.5936 53.7500 75.3369 

BANN 68.2836 62.7826 39.8333 56.9665 

PSONN 60.7273 64.1797 38.7500 54.5523 

Vertebral Column 

QIFPNN 90.9789 92.3511 88.9251 90.7517 

FPNN 89.7003 92.9143 89.5973 90.7373 

BANN 89.9682 91.2794 88.4099 89.8858 

PSONN 83.1972 86.5253 83.7587 84.4937 

Glass 

QIFPNN 64.8062 55.9833 60.0634 60.2843 

FPNN 45.7893 48.3887 44.9519 46.3766 

BANN 41.4919 38.9253 36.9897 39.1356 

PSONN 23.9903 27.5101 25.1203 25.5403 

However, QIFPNN is faster in obtaining solutions 
compared to FPNN, BANN, and PSONN on the Lung cancer 
and Wine dataset, so it can be explained that the quadratic 
interpolation concept on QIFPNN can increase the QIFPNN 
training speed than the levy distribution concept on FPNN, the 
idea of acoustic echolocation on BANN, and the concept of 
adjusting the trajectories of individual agents, called particles, 
as the piecewise paths formed by positional vectors in a quasi-
stochastic manner in PSONN in both datasets. 

V. CONCLUSION 

In previous research, the new algorithm QIFPNN was 
tested on real-world cases involving binary data types. 
Findings from that study indicated that QIFPNN significantly 
outperformed FPNN, PSONN, and BANN. In this study, 
QIFPNN was tested using five UCI datasets with variations in 
data characteristics, such as non-binary data types, balanced 
and imbalanced classes, and singularity issues. The main 
objective of this research was to investigate the reliability of 
QIFPNN in dealing with various characteristics present in 
these datasets. Reliability measurements used classification 
accuracy, F1-score, and training time as evaluation metrics. 
The classification accuracy measurements on the training 
subset consistently showed that QIFPNN outperformed all 
other models across all datasets, indicating that QIFPNN did 
not suffer from premature convergence. 

Moreover, the average classification accuracy on the 
training, validation, and test subsets demonstrated that 
QIFPNN performed superiorly on three datasets: Iris, Wine, 
and Glass. Although on the other two datasets, QIFPNN ranked 
second after FPNN; the difference was marginal. Furthermore, 
the F1-score test results revealed that QIFPNN significantly 
outperformed other models on four datasets, including Iris, 
Wine, Vertebral column, and Glass. However, on the Lung 
cancer dataset, QIFPNN ranked second after FPNN with a 
slight difference. These findings demonstrate that QIFPNN 
exhibits reliable performance in handling various dataset 
characteristics. Based on the measurements of classification 
accuracy and F1-score, it can be concluded that the QIFPNN 
training model is a reliable choice for various dataset 
characteristics in different cases. 

Additionally, the training time measurements indicated that 
PSONN was faster on three datasets, namely Iris, Vertebral 
column, and Glass, while QIFPNN was faster on two datasets. 
In the QIFPNN algorithm, the fitness evaluation is performed 
twice, resulting in excessive training time consumption. We 
recommend improving the Q step vector by introducing an 
additional parameter as a multiplier factor. The aim is to 
enhance the performance of QIFPNN. 
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