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Abstract—In the field of vehicle path planning, traditional 

intelligent optimization algorithms have the disadvantages of 

slow convergence, poor stability and a tendency to fall into local 

extremes. Therefore, a gradient statistical mutation quantum 

genetic algorithm (GSM-QGA) is proposed. Based on the 

dynamic rotation angle adjustment by the chromosome fitness 

value, the quantum rotation gate adjustment strategy is 

improved by introducing the idea of gradient descent. According 

to the statistical properties of chromosomal change trends, the 

gradient-based mutation operator is designed to realize the 

mutation operation. The shortest path is used as the metric to 

build the vehicle path planning model, and the effectiveness of 

the modified algorithm in vehicle path planning is demonstrated 

by simulation experiments. Compared with other optimization 

algorithms, the path length planned by the improved algorithm is 

shorter and the search stability is better. The algorithm can be 

effectively controlled to fall into local optimums. 

Keywords—Quantum genetic algorithm; path planning; 

gradient descent; adaptive mutation operator; quantum rotation 

gate 

I. INTRODUCTION 

With the continuous development of artificial intelligence, 
automation technology [1] has shown strong applicability. 
Autonomous vehicles have become the future direction of the 
vehicular sector. Its core is autonomous driving technology. 
Autonomous driving technologies mainly include environment 
sensing, path planning, behavioral decision-making, and 
tracking control. Path planning [2] [3], as one of the key 
aspects of autonomous driving technology, has become a hot 
research topic in the field of autonomous driving. It has 
important value in engineering applications [4]. Path planning 
is mainly to plan a drivable path avoiding obstacles from the 
starting point to the target one based on the road environment 
[5]. Planning the shortest path is an NP-hard problem [6]. Thus, 
the path planning problem has high computational complexity. 
From the development of path planning algorithms, there are 
traditional algorithms represented by Dijkstra's algorithm [7], 
A* algorithm [8], artificial potential field (APF) method [9], 
and dynamic window algorithm (DWA) [10]. As well as 
genetic algorithm (GA) [11], ant colony optimization (ACO) 
[12], and particle swarm optimization (PSO) [13] are as the 
representative of intelligent optimization algorithms. The high 
computational cost of traditional algorithms makes it difficult 
to further improve the efficiency of path search, leading to a 
gradual decline in utilization [14]. 

ZHU [7] studied the path planning problem considering 
intersection properties and proposed a reverse labeling Dijkstra 

algorithm (RLDA) with minimizing travel time from the origin 
to the terminus as the optimization objective. The RLDA 
algorithm has low polynomial time complexity. The 
convergence efficiency and computational speed of the 
proposed algorithm are improved. LI [8] introduced a 
bidirectional alternating search strategy in the A* algorithm 
and weighted the heuristic function with an exponential decay 
to improve the search efficiency of the algorithm. In addition, a 
path node filtering function was introduced to effectively 
reduce the turning angle. LI [15] proposed a path planning 
method combining an APF and a dynamic enhanced fireworks 
algorithm for autonomous vehicles. This real-time path 
planning method effectively improved smoothness and safety 
of paths. Hou [16] proposed an enhanced ant colony algorithm 
with a communication mechanism for path planning. which 
accelerates the integration of historical paths through direct 
communication between individuals, and improved the path 
selection rules and heuristic functions to increase the 
convergence speed and search efficiency. LIU [17] proposed a 
path planning method based on the improved gray wolf 
algorithm, introducing interference factors and dynamic 
weights based on the lion optimization algorithm to avoid the 
loss of diversity. However, the ability to jump out of the local 
optimum needs to be enhanced. Kumar [18] proposed a path 
planning method combining artificial bee colony and 
evolutionary planning algorithms, using an artificial bee colony 
algorithm to perform an initial search based on an improved 
strategy, followed by an evolutionary algorithm to refine the 
obtained feasible paths and reduce the search cost. Martinez 
[19] proposed the integration an autonomous motion planning 
strategy for a differential robot. It combined the PSO with a 
Proportional-Integral-Derivative controller to ensure the 
stability of a differential robot path planning in complex 
environments. 

Intelligent optimization algorithms have become one of the 
mainstream methods for solving path planning problems due to 
their better search capabilities and higher computational 
efficiency compared to traditional path planning algorithms. 
The GA has stronger global search capabilities than other 
intelligent optimization algorithms, as well as the ability to 
easily extend other algorithms. Although genetic algorithms 
have the above characteristics, there is a problem with early 
convergence [20] [21] due to high chromosome similarity in 
the later stages. In response to the GA problem, many 
researchers have proposed different modified algorithms. HE 
[22] proposed a GA to improve the fitness function. It added 
the knowledge in the problem domain as guiding information 
to the search process of the algorithm and took full advantage 
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of the trend of the function to improve the convergence rate of 
the algorithm. XU [11] introduced a disaster strategy and a 
dynamic mutation operator embedded in the A* algorithm into 
the GA to reduce prematureness and improve the local search 
ability of the algorithm at later stages. The fitness function with 
multiple constraints enhanced the smoothness of the planned 
path. However, the initialization of the population with each 
catastrophe reduces the computational efficiency. ZHANG [23] 
proposed a hybrid initialized genetic algorithm, where a 
portion of individuals use a greedy algorithm to acquire paths, 
introducing deletion operations and reversal operations to 
prevent the algorithm from falling into local optimums. 

The quantum genetic algorithm [24] (QGA) is an emerging 
intelligent optimization algorithm arising from the GA 
combined with the quantum computing. Depending on the 
superposition and entanglement of quantum states, quantum 
coding and quantum rotation gate update operations are 
introduced to enable better population diversity and 
convergence speed of the QGA compared to the GA. However, 
the QGA mainly relies on the quantum rotation gate for 
population updating. When solving combinatorial optimization 
problems [25] [26], it has problems such as low stability, poor 
convergence, and difficulty in jumping out of local optimums. 
In recent years, researchers have proposed many improvement 
strategies. WANG [27] introduced the quantum NOT gate 
mutation and quantum catastrophe operation and proposed an 
adaptive rotation angle strategy based on genetic algebra. 
However, the quantum NOT gate mutation operation is prone 
to population turbulence, and the randomness of the quantum 
catastrophe operation may cause the algorithm to fail to 
converge. XIAO [28] introduced the grouping optimization 
strategy of hybrid frog-jumping algorithm to divide the 
population and given the acceptance probability of feasible 
solutions using simulated annealing reception criterion. The 
search probability is somewhat improved. ZHANG [29] 
proposed an adaptive rotation angle strategy based on fitness-
based values, and also introduced a quantum NOT gate 
mutation operation. CHENG [30] proposed an improved 
double-linked quantum genetic algorithm that uses an inverse 
sine function to construct the corner step function. The search 
accuracy of the algorithm is improved. 

In this paper, we propose a vehicle path planning method 
based on a gradient statistical mutation quantum genetic 
algorithm. A dynamically adjusted quantum rotation gate 
strategy is used to improve the convergence of the algorithm 
and the stability of the global search by introducing the idea of 
gradient descent based on dynamically adjusting the rotation 
angle according to the fitness value of the chromosomes. Based 
on the statistical properties of the trend of chromosome change, 
the mutation operator is designed to implement the mutation 
operation instead of the quantum NOT gate. An adaptive 
mutation strategy based on the quantum bit probability density 
is proposed to improve the ability of the algorithm to jump out 
of the local optimum. The effectiveness of the proposed 
algorithm is demonstrated through experimental analysis of 
path planning simulations. 

The rest of the paper is structured as follows: In Section II, 
the vehicle path planning problem is formulated and the cost 
function for path planning is described. In Section III, the main 

steps of QGA are introduced and the principles of chromosome 
update and mutation operations in the GSM-QGA are 
presented. The GSM-QGA is applied to path planning. 
Section IV presents the simulation of global path planning for 
vehicles using the GSM-QGA. 

II. PROBLEM STATEMENT 

For the vehicle path planning problem, the main objective 
in this paper is to obtain a feasible path with the shortest 
distance based on avoiding static obstacles. 

A. Assumptions 

The following assumptions are made： 

 The vehicle moves from the starting point to the target 
one in a finite plane space at a uniform speed. 

 The shape and size of obstacles and their geographic 
locations never vary during vehicle movement. 

 The vehicle can be considered a mass point concerning 
static obstacles in the environment map [31]. 

B. Cost Function of Path Planning 

The path planning mainly considers safety and path cost. In 
this work, the shortest path is used as the path cost in vehicle 
path planning. To facilitate the computation of path planning, a 
sequence of spatial location points is often used to represent the 
travel path of a vehicle, and this representation needs to only 
take into account the feasibility of each spatial location point. 
Therefore, two cost functions are constructed: The path point 
cost function (point_fit) and the path cost function (way_fit). 
The path point quantum state updating is determined with 
point_fit, and the path selection is determined based on way_fit. 
The Euclidean distance is used to construct point_fit [32]. The 
cost of a path can be estimated by calculating the sum of 
distances from its points to both the original position and the 
goal one. Notably, the smaller such the distance is, the lower 
the overall cost will be.  


       

2 22 2
min _ ir s ir s ir g ir gpoint fit x x y y x x y y       



Where ( , )ir irx y  denotes the coordinates of the rth path 

point in the ith drivable path. ( , )s sx y indicates the coordinates 

of the starting point. ( , )g gx y  indicates the coordinates of the 

target one. 

To calculate the total path length of all path points 
connected in sequence, way_fit is defined as follows. 

    
1

2 2

1 1

1

min _
M

ir ir r ir

r

way fit x x y y


 



     

Where M is the number of all path points in a feasible path. 

III. OPTIMIZATION ALGORITHM 

In path planning problems, an improved algorithm is 
needed for problems where the QGA is not sufficiently stable 
and tends to fall into a local minima or maxima. In this section, 
the GSM-QGA for vehicle path planning will be introduced. 
The key process of the QGA will be described.  Principles of 
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chromosome updating and mutation operations in the GSM-
QGA are presented along with the vehicle path planning 
process. 

A. Quantum Genetic Algorithm 

A quantum bit (qubit) is the smallest information unit of a 
quantum computer. In a two-state quantum system, the state of 
a qubit can be described as [33]. 


0 1   

 

Where the state of a qubit   is the superposition of 

uncertainty between the state of qubit 0  and qubit 1  .  and

 are the probability amplitudes. They satisfy the 

normalization conditions as follows [33]. 



2 2
1  

 

The use of qubit coding for population initialization enables 
the inclusion of complex population information at a small 
population size. An initialized quantum population is 
represented as follows. 


 (0) (0) ,  ( 1,2, , )iQ q i m 

 

Where m is the population size. An individual is defined by 

one chromosome, denoted as (0)iq . In addition, (0)iq  is 

represented as a feasible solution too. Its coded form is 
expressed as follows. 



1 2 1 2

1 1 1

1 2 1 2

1 1 1

(0) (0) (0) (0) (0) (0)
(0)

(0) (0) (0) (0) (0) (0)

k k

i i i in in in

i k k

i i i in in in

q
     

     

       


        
 

Where (0)iq  denotes the ith individual in the initialized 

population. n is the number of gene points contained in a 
feasible solution, and k is the number of qubits contained in 
gene coding. When the population is initialized, in order to 
ensure the equilibrium of the population distribution, the 
probability magnitude of each qubit in an individual is 
expressed as (7). 



1
(0) (0)

2

j j

ir ir  

 

Where 1,2,i m ; 1,2,r n ; 1,2, ,j k . 

QGA uses a quantum rotation gate to update the probability 
amplitude of the qubit in order to search for the optimal 
solution of the problem. The quantum rotation gate is 
commonly adapted as follows [34]. 



 
cos sin

sin cos
U

 


 

 
  
   

Where is the rotation angle, obtained by looking up the 

table. 

The updated state 
'  is denoted as 



 
'

'

'

cos sin

sin cos
U

   
  

  

     
        
        

Where ' and
' denote the probability magnitudes after 

updating of states 0 and 1 . 

 

Fig. 1. The Update Of  Qubits Probability Amplitudes. 

In the two-state quantum system, the update of qubits 
probability amplitudes is shown in Fig. 1. The probability 
amplitudes of qubits are taken with continuity. In this way, the 
QGA has continuous spatial search capability. 

B. Gradient Statistical Mutation Quantum Genetic Algorithm 

1) Adaptive quantum rotation gate: The rotation angle of 

the quantum rotation gate plays a key role in chromosome 

renewal. The size and direction of   determine the speed and 

direction of individual evolution. In the QGA,   is obtained 

by looking up the table. This approach does not give a basis 

for the choice of rotation angle depending on the specific 

problem to be solved. Moreover,   obtained in this way fails 

to consider not only the differences between chromosomes in 

the population, but also the trends in the search points. In the 

GSM-QGA, differences between different chromosomes in a 

population of the same generation are taken into account, and 

trends in chromosomal gene points between populations of 

different generations are considered to influence population 

evolution. In this paper, we relate the magnitude of the 

rotation angle to the chromosome fitness value. At the same 

time, the idea of gradient descent was introduced to study the 

trend of chromosomal gene points. Thus, a strategy for 

adaptive adjustment of the rotation angle is proposed as 

follows. 

min

0

max min

( )
sgn( ) exp( ( 1) )

best i ir rj

ir

best r r

fit fit f X f
A a a

fit f f
 

  
   

 
 



 
max max ( 1,2, , )

i

r

ir

f X
f   i m

X

  
   

  
L

 



 
min min ( 1,2, , )

i

r

ir

f X
f   i m

X

  
   

  
L

 

Where 
j

ir  denotes the rotation angle of the jth qubit in the 

rth gene point of the ith chromosome. sgn( )A  indicates the 
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direction of rotation angle. 0  denotes the initial rotation angle 

step. The weight (0,1)a  is used to reflect the effect of fitness 

function values and gene point gradients on the degree of 

chromosome evolution. ifit is the fitness value of the ith 

chromosome in the current generation. ( )irf X is the gradient 

at the rth gene point of the ith chromosome. minrf and maxrf  

are the minimum and maximum values of the gradient at the 
rth gene point in the current population. A is 



0 1

0 1

A
 

 


 

Where 
T

0 0( , )   is the probability amplitude of the 

corresponding qubit in the current optimal chromosome and 
T

1 1( , )   is the probability amplitude of the corresponding 

qubit in the current chromosome. 

The direction of the rotation angle is chosen as follows: 

When 0A  , the direction of the rotation angle is sgn( )A ; 

when 0A  , the direction is chosen randomly [35]. 

The dynamic adjustment strategy of a quantum rotation 
gate considers both the fitness values of chromosomes and the 
trends of chromosome loci. When the chromosome fitness 
value is far from the optimal chromosome and the quantum 
position gradient changes weekly, the rotation angle is 
increased to expedite convergence. Conversely, in order to 
prevent missing the optimal chromosome, the rotation angle 
must be diminished, thereby enhancing both the speed of 
convergence in the algorithm and the stability of the global 
search. 

2) Quantum mutation: Despite the strong global search 

capability of the QGA, it is easy to get trapped in local optima 

by updating the population only through a single quantum 

rotation gate. Therefore, a certain perturbation operation is 

needed to reduce the occurrence of "premature" population. 

Improved QGA [36] usually uses the quantum NOT gate to 

perform variation on the probability magnitudes of individual 

qubits in the population, which can avoid the local optimum to 

a certain extent. When a chromosome performing the mutation 

is very close to the optimal chromosome, the quantum NOT 

gate mutation will cause the reversal of the direction of qubit 

update, which may cause the population turbulence and the 

loss of excellent chromosome information. In addition, this 

operator fails to consider the effect of chromosomal 

information contained in the population and perturbative 

factors such as external environment on chromosomal gene 

mutations, resulting in a lack of population perception. 

Therefore, in this paper, we propose a mutation operator 
that includes the past information of individuals in the 
population. It enables the quantum mutation operation to 
impose reasonable perturbations during population evolution to 
avoid premature convergence of the population. Genetic 
information decreases with increasing number of generations, 

and current chromosomal gene points are most affected by 
paternal chromosomes. As a result, we only consider the effect 
of paternal chromosomes on the current chromosomal gene 

point. The gradient ( irZ ) of statistical past chromosomal 

gene point fitness values is expressed as (14). 


( ) ( ( ))ir ir irZ f X o f X   

 

Where ( ( ))iro f X  is the higher order infinitesimal of the 

gradient of the offspring and parent. 

The probability density function is designed according to 
the trend of chromosomal gene points as follows. 


 

5
2

1 2 3( ) exp (( ) / )ir l ir l l

l

f Z b Z b b    
 

Where 1lb , 2lb and 3lb are Gaussian mixture distribution 

parameters, respectively. 

Transforming (15) into a probability distribution function 
as follows. 


 

5
2

1 2 3( ) exp (( ) / )
irZ

ir l ir l l

l

F Z b Z b b


     g
 

The mutation operation is performed on the qubit 
probability amplitude, and the probability distribution of the 
qubit gradient is used as the mutation operator. 



2

( ) 1 ( )

( ) 1 ( )

j

ir ir

j j

ir ir

t F Z

t t



 

   


   

Where ( )j

ir t and ( )j

ir t denote the probability amplitude of 

the state 0 and 1  at the jth gene point of the rth 

chromosome in the tth generation, separately. 

In addition, a reasonable mutation probability is beneficial 
for improving diversity and stability of population evolution. 
Thus, according to the evolutionary trend of chromosomes in 
the population, an adaptive mutation mechanism based on the 
qubit probability density is proposed as follows: The mutation 
probability of the current qubit is determined based on the 
gradient of gene points. When chromosome evolution is 
relatively "flat", a large perturbation probability is given to 
make chromosomes jump out of the local optimum and 
increase population diversity. On the contrary, a small 
perturbation probability is given to avoid destroying 
individuals with good genes and to improve the stability of the 
population. Random selection of qubits in an individual based 
on adaptive mutation probability is used to apply mutation 

operations. The adaptive mutation probability ( mp ) is 

expressed as: 



5
2

1 2 3

( )

1 ( )

1 exp( (( ) / ) )
ir

m ir

ir

Z

l lr l l

l

p P Z Z

F Z

b Z b b


   

  

     g
 
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The flowchart of the GSM-QGA is shown in Fig. 2. 

 
Fig. 2. The flowchart of the GSM-QGA 

C. Vehicle Path Planning Based on Gradient Statistical 

Mutation Quantum Genetic Algorithm 

To plan a vehicle path based on the GSM-QGA, the path is 
first encoded, where path points on the same parallel line are 
encoded with qubits in a grid map. Then, the quantum encoded 
path points are arranged to form a feasible path, which 
constitutes a chromosome. The encoding form of the 
chromosome is shown in Fig. 3. 

 
Fig. 3. Chromosome coding 

Fitness values at the path points are discretize. Thus, the 
gradient of path points in the chromosome is represented using 
the first-order difference between two adjacent generations as 
follows. 


    max max ( 1) ( )r ir irf f X t f X t   

 


    min min ( 1) ( )r ir irf f X t f X t   

 

Where 1,2, ,i m L . 

By statistically analyzing the gradient information of path 
points in past chromosomes, we obtain parameter values of 
formula (15). 

 T

1 2 3

0.7521 0.1421 0.1519 0.6852 0.04352

( ) 0.5204 2.072 0.1908 0.4204 5.743

0.9951 2.126 0.6099 1.01 2.565

 
 


 
  

b b b  

Here are the steps of vehicle path planning based on the 
GSM-QGA. 

Step 1: The environmental map construction. Building a 
grid map based on a known planning space. 

Step 2: Initial parameters configuration and the population 
initialization. The population size (popsize) is m. The number 
of genetic generations is t and the initial value of the rotation 
angle is 

0 . The starting point and ending one must be defined 

prior to initialization. After quantum encoding of path points, 

the initialized population ( (0)Q ) is generated. All probability 

amplitudes of path point qubits in the primitive chromosome 

are represented by (0) (0) 1 2j j

ir ir   . 

Step 3: Initial qubits collapse. All (0)Q  undergo 

measurement, causing their respective qubits to collapse into a 

predetermined state ( (0)p ). The resulting (0)p  set of collapsed 

qubits represents the desired path points for the vehicle. 

Step 4: Initial path adaptation evaluation. _ (0)rpoint fit

and _ (0)iway fit  are computed. _ (0)iway fit  in the 

population are compared, and the chromosome indicating the 

current shortest path ( bestq ) and its corresponding fitness value 

( _ bestway fit ) are recorded. 

Step 5: Qubits collapse. All ( )Q t  undergo measurement, 

causing their respective qubits to collapse into a predetermined 

state ( ( )p t ). 

Step 6: Path adaptation evaluation. _ ( )rpoint fit t  and 

_ ( )iway fit t  are calculated, as well as ( )irf X  . 

_ ( )iway fit t  in the population are compared, and the 

chromosome that represents the current bestq  and its 

corresponding _ bestway fit  are recorded. 

Step 7: The quantum rotation gate adaptive updating. 
j

ir  is 

obtained by (10) to (13), and the chromosome is updated 
adaptively using a quantum rotation gate. 

Step 8: Quantum mutation operation. mp  is determined by 

an adaptive mutation mechanism. Qubits in a chromosome are 

chosen randomly by mp , and an adaptive mutation operator is 

used to apply mutation operations to these qubits. 

Step 9: Determine if the maximum number of iterations or 
convergence condition is satisfied. If it is satisfied, the 
algorithm ends and the shortest path is output. Otherwise, the 
number of iterations t = t + 1, and return to step 4. 
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IV. RESULTS AND DISCUSSION 

This section presents a vehicle path planning simulation 
based on the GSM-QGA aimed at demonstrating its 
effectiveness in this field. In this paper, we explore vehicle 
path planning within an industrial park, which is set against an 

area of 61 10 m2. The environment map was generated by 

adopting the grid approach consisting of splitting the industrial 
park into grids that measure 0.05 km in length, forming a total 
of 20 20  grids. White grids represent traversable areas for 

vehicles, whereas black grids indicate obstructions. The 
starting point of the vehicle is situated at the coordinate (1, 1) 
and denoted with a pentagram, whereas the destination is 
marked using a similar symbol at coordinate (20, 20). Finally, 
initialization parameters were established. The maximum 
number of genetic generations is 50t  .The population sizes 

of the GA are 20popsize  and 100popsize  .The crossover 

probability and mutation probability of the GA are 0.8cp   

and 0.1mp  . The population size of the QGA is 20popsize 

. The population size for the Quantum Genetic Algorithm of 
quantum NOT gate mutation (N-QGA) is 20popsize  . The 

mutation probability of the N-QGA is 0.1mp  . The 

population size of the GSM-QGA proposed in this paper is 

20popsize  .The initial rotation angle of the GSM-QGA is 

0 0.1  . The solution accuracy and convergence speed of 

these four algorithms are compared to verify the performance 
of our algorithm in path planning. 

 
Fig. 4. The path planning simulation results of the GA with popsize=20 run 5 

times. 

 
Fig. 5. The path planning simulation results of the GA with popsize=100 run 

5 times. 

Fig. 4 to 8 show the path planning simulation results of the 
four algorithms run 5 times in a 20 20  grid map. Fig. 9 to 13 

show the path iteration convergence curves for the four 
algorithms run 5 times. 

 
Fig. 6. The path planning simulation results of the QGA run 5 times. 

 
Fig. 7. The path planning simulation results of the N-QGA run 5 times. 

 
Fig. 8. The path planning simulation results of the GSM-QGA run 5 times 

 
Fig. 9. The path iteration convergence curves for the GA with popsize=20 

run 5 times. 
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Fig. 10. The path iteration convergence curves for the GA with popsize=100 

run 5 times. 

 
Fig. 11. The path iteration convergence curves for the QGA run 5 times. 

Since these algorithms have a certain degree of search 
randomness, we count the results gathered from five runs of 
each algorithm, as displayed in Table I. “Length of path” in the 
Table I indicates the path distance from the start point to the 
target one. “Number of iterations” in Table I expresses the 
number of generations for population update when converging 
to the optimal solution. “Optimum path length”, “Worst path 
length”, and “Average path length” in Table I represent the 
minimum, maximum, and average values of the path distance 
among the five runs of the algorithm, respectively. With the 
condition of keeping population sizes and iteration times 
constant, as can be seen visually in Fig. 4 and Fig. 9, When the 
population size is small, the paths planned by the GA are too 
long and the optimal paths obtained differ significantly each 
time. The difference between the optimal path and the worst 
path is 0.3415 km. The GA converges slowly, with an average 
number of 32 iterations, and is easily trapped in a local 
optimum. By increasing the population size to 100, the GA 
method yields improved path length and convergence speed. 
The optimal path length is 1.5899 km. However, it is clear 
from Fig. 5 that there is still significant redundancy in the path 
distance. While both the QGA and the N-QGA are capable of 
further optimizing the path distance, it can be shown from 
Fig. 6 and Fig. 7 that the searched paths still vary considerably 
and the stability of the algorithm is not good. The difference 
between the optimal path and the worst path is 0.1475 km and 
0.1293 km, respectively. As shown in Fig. 11 and Fig. 12, the 
overall convergence speed still requires further enhancement. 
As illustrated in Fig. 8 and Fig. 13, the GMS-QGA proposed in 

this paper can break away from local optimization. The 
obtained optimal path is 1.5485 km and an average number of 
iterations is 15.8. Meanwhile, the results obtained from 5 runs 
confirm the good stability of the algorithm. The difference 
between the optimal path and the worst path is only 0.0586 km. 

Fig. 14 and Fig. 15 provide a more intuitive comparison of 
the four path planning algorithms in terms of solution accuracy 
and convergence speed. Evidently, the GA exhibits slow 
convergence and susceptibility to premature optimization. Its 
planned paths exhibit a higher degree of redundancy. The QGA 
converges in the 18th iteration with an optimal path of 1.5889 
km. While it converges quickly, it struggles to break away 
from local optima. By leveraging mutation operators based on 
the quantum NOT gate's local perturbation, the N-QGA 
effectively escapes local optima. It obtains an optimal path of 
1.5485 km. However, the magnitude of its mutations is large, 
which can easily lead to population turbulence. The N-QGA 
has slow convergence and poor algorithmic stability. In 
contrast, the GSM-QGA updates quantum coding path points 
using adaptive quantum rotation gate, exhibiting faster path 
convergence. The optimal path of 1.5485 km is obtained by the 
16th iteration. Furthermore, through a mutation operator and 
variation strategy designed based on past path data, this 
algorithm can better perturb the path planning process while 
mitigating premature optimization, thereby achieving shorter 
planned path distances. The average path obtained by GSM-
QGA is 1.56608 km. From the calculation of the data in Table 
I, compared to the other three algorithms, the GSM-QGA 
averages 10.26%, 7.06%, 5.52%, and 2.99% reduction in 
length while increasing the average speed of convergence by 
50.63%, 46.98%, 32.48%, and 26.85%, all while maintaining 
superior algorithm stability. 

 
Fig. 12. The path iteration convergence curves for the N-QGA run 5 times. 

 
Fig. 13. The path iteration convergence curves for the GSM-QGA run 5 times. 
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TABLE I.  STATISTICAL TABLE OF THE RESULTS FOR THE FOUR ALGORITHMS RUN 5 TIMES 

Algorithm 
Result statistics of different algorithms 

Running of ith 

time 

Length of 

path(km) 

Number of 

iterations 

Optimum path 

length(km) 

Worst path 

length(km) 

Average path 

length(km) 

GA 

(popsize=20) 

1 1.6899 26 

1.6192 1.9607 1.7451 

2 1.8243 44 

3 1.6314 19 

4 1.6192 37 

5 1.9607 34 

GA 

(popsize=100) 

1 1.7899 31 

1.5899 1.7899 1.68506 

2 1.7485 21 

3 1.5899 38 

4 1.6899 29 

5 1.6071 30 

QGA 

1 1.5889 18 

1.5889 1.7364 1.6576 

2 1.6485 11 

3 1.6192 38 

4 1.695 40 

5 1.7364 10 

N-QGA 

1 1.6071 14 

1.5485 1.6778 1.61436 

2 1.6485 25 

3 1.5899 15 

4 1.6778 19 

5 1.5485 35 

GSM-QGA 

1 1.5778 8 

1.5485 1.6071 1.56608 

2 1.5485 31 

3 1.5485 16 

4 1.5485 21 

5 1.6071 3 

 
Fig. 14. The path planning simulation results of the four algorithms. 

 
Fig. 15. The optimal path iteration convergence curves for the four 

algorithms. 

V. CONCLUSION 

In the vehicle path planning problem, the path planning 
method based on a gradient statistical mutation quantum 
genetic algorithm was proposed for the problems that GA is 
prone to early maturation and slow convergence. 

In this paper, we proposed a dynamic adjustment strategy 
for a quantum rotation gate that considered both the 
chromosome fitness values and the trend of gene point changes. 
The convergence speed of the algorithm and the stability of the 
search for superiority are improved. Moreover, based on the 
statistical properties of the trend of chromosome change, a 
mutation operator was designed, and an adaptive mutation 
strategy based on the qubit probability density was proposed to 
effectively control the algorithm into a local optimum. 
Simulation results reveal the superiority of our GSM-QGA 
over GA, QGA and N-QGA: the average path length is 
reduced by 10.26%, 7.06%, 5.52%, and 2.99%; the average 
convergence speed increases by 50.63%, 46.98%, 32.48%, and 
26.85%, respectively. The GSM-QGA has advantages over GA, 
QGA and N-QGA in terms of path length, convergence speed 
and algorithm stability. The effectiveness of the GSM-QGA in 
path planning is demonstrated. 

Future work includes further extension of the algorithm in 
combination with other algorithms for application to more 
complex traffic environments. On the other hand, an attempt is 
made to design a new quantum gate as a transition matrix for 
population updating to address the problem that the quantum 
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rotation gate has a finite range of rotation angles in the high-
dimensional space. 

ACKNOWLEDGMENT 

This work is supported by the University Nursing Program 
for Young Scholars with Creative Talents in Heilongjiang 
Province (No. UNPYSCT-2020212), Natural Science 
Foundation of Heilongjiang Province of China (No. 
YQ2020G002). 

REFERENCES 

[1] S. Roy and Z. Zhang, “Route planning for automatic indoor driving of 
smart cars,” IEEE, doi: 10.1109/ICIEA49774.2020.9102061, pp. 743–
750, April 2020, [2020 IEEE 7th International Conference on Industrial 
Engineering and Applications (ICIEA). Bangkok  Thailand, 2020]. 

[2] R. Chen, J. Hu, and W. Xu, “An RRT-Dijkstra-Based path planning 
strategy for autonomous vehicles,” Applied Sciences. Basel, vol. 12, no. 
23, pp. 11982, November 2022, doi: 10.3390/app122311982. 

[3] P. G. Luan and N. T. Thinh, “Hybrid genetic algorithm based smooth 
global-path planning for a mobile robot,” Mechanics Based Design of 
Structures and Machines, vol. 51, no. 3, pp. 1758–1774, March 2023, 
doi: 10.1080/15397734.2021.1876569. 

[4] F. Gul, I. Mir, L. Abualigah, P. Sumari, and A. Forestiero, “A 
consolidated review of path planning and optimization techniques: 
technical perspectives and future directions,” Electronics, vol. 10, no. 
18, p. 2250, September 2021, doi: 10.3390/electronics10182250. 

[5] G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou, “Geometric A-
Star algorithm: An improved A-Star algorithm for AGV path planning in 
a port environment,” IEEE Access, vol. 9, pp. 59196–59210, April 2021, 
doi: 10.1109/ACCESS.2021.3070054. 

[6] A. Zou, L. Wang, W. Li, J. Cai, H. Wang, and T. Tan, “Mobile robot 
path planning using improved mayfly optimization algorithm and 
dynamic window approach,” J Supercomput, vol. 79, no. 8, pp. 8340–
8367, May 2023, doi: 10.1007/s11227-022-04998-z. 

[7] D. D. Zhu and J. Q. Sun, “A new algorithm based on Dijkstra for vehicle 
path planning considering intersection attribute,” IEEE Access, vol. 9, 
pp. 19761–19775, February 2021, doi: 10.1109/ACCESS.2021. 
3053169. 

[8] C. Li, X. Huang, J. Ding, K. Song, and S. Lu, “Global path planning 
based on a bidirectional alternating search A* algorithm for mobile 
robots,” Computers & Industrial Engineering, vol. 168, pp. 108123, June 
2022, doi: 10.1016/j.cie.2022.108123. 

[9] M. Zha, Z. Wang, J. Feng, and X. Cao, “Unmanned vehicle route 
planning based on improved artificial potential field method,” J. Phys.: 
Conf. Ser., vol. 1453, no. 1, pp. 012059, January 2020, doi: 10.1088/ 
1742-6596/1453/1/012059. 

[10] S. Han, L. Wang, Y. Wang, and H. He, “A dynamically hybrid path 
planning for unmanned surface vehicles based on non-uniform Theta* 
and improved dynamic windows approach,” Ocean Engineering, vol. 
257, pp. 111655, August 2022, doi: 10.1016/j.oceaneng.2022.111655. 

[11] X. Xu, X. Y. Yu, Y. Zhao, C.X. Liu and X. Wu, “Global path planning 
of mobile robot based on improved genetic algorithm,” Computer 
Integrated Manufacturing Systems, vol. 28, pp. 1659-1672, June 2022. 

[12] Q. Luo, H. Wang, Y. Zheng, and J. He, “Research on path planning of 
mobile robot based on improved ant colony algorithm,” Neural Comput 
& Applic, vol. 32, no. 6, pp. 1555–1566, March 2020, doi: 10.1007 
/s00521-019-04172-2. 

[13] Q. Y. Tao, H. Y. Sang, H. W. Guo, and P. Wang, “Improved particle 
swarm optimization algorithm for AGV path planning,” IEEE Access, 
vol. 9, pp. 33522–33531, March 2021, doi: 10.1109/ACCESS.2021. 
3061288. 

[14] F. Gul, I. Mir, D. Alarabiat, H. M. Alabool, L. Abualigah, and S. Mir, 
“Implementation of bio-inspired hybrid algorithm with mutation 
operator for robotic path planning,” Journal of Parallel and Distributed 
Computing, vol. 169, pp. 171–184, November 2022, doi: 10.1016/j.jpdc. 
2022.06.014. 

[15] H. Li, et al., “An optimization-based path planning approach for 
autonomous vehicles using the DynEFWA-artificial potential field,” 
IEEE Transactions on Intelligent Vehicles, vol. 7, no. 2, pp. 263–272, 
June. 2022, doi: 10.1109/TIV.2021.3123341. 

[16] W. Hou, Z. Xiong, C. Wang, and H. Chen, “Enhanced ant colony 
algorithm with communication mechanism for mobile robot path 
planning,” Robotics and Autonomous Systems, vol. 148, pp. 103949, 
February 2022, doi: 10.1016/j.robot.2021.103949. 

[17] J. Liu, X. Wei, and H. Huang, “An improved grey wolf optimization 
algorithm and its application in path planning,” IEEE Access, vol. 9, pp. 
121944–121956, September 2021, doi: 10.1109/ACCESS.2021. 
3108973. 

[18] S. Kumar and A. Sikander, “Optimum mobile robot path planning using 
improved artificial bee colony algorithm and evolutionary 
programming,” Arab J Sci Eng, vol. 47, no. 3, pp. 3519–3539, March 
2022, doi: 10.1007/s13369-021-06326-8.2 

[19] F. Martinez and A. Rendon, “Autonomous motion planning for a 
differential robot using particle swarm optimization,” IJACSA, vol. 14, 
no. 4, pp. 815-821 April 2023, doi: 10.14569/IJACSA.2023.0140490. 

[20] K. Hao, J. Zhao, K. Yu, C. Li, and C. Wang, “Path planning of mobile 
robots based on a multi-population migration genetic algorithm,” 
Sensors, vol. 20, no. 20, pp. 5873, October 2020, doi:10.3390/s2020 
5873. 

[21] J. Shao, “Robot path planning method based on genetic algorithm,” J. 
Phys.: Conf. Ser., vol. 1881, no. 2, pp. 022046, April 2021, doi: 
10.1088/1742-6596/1881/2/022046. 

[22] X. G. He, and J. Z. Liang, "Genetic algorithms using gradients of object 
functions." Journal of Software, vol. 12, no. 7, pp.981-986, July 2001. 

[23] Z. Zhang, R. Lu, M. Zhao, S. Luan, and M. Bu, “Robot path planning 
based on genetic algorithm with hybrid initialization method,” IFS, vol. 
42, no. 3, pp. 2041–2056, February. 2022, doi: 10.3233/JIFS-211423. 

[24] A. Narayanan and M. Moore, “Quantum-inspired genetic algorithms,” 
IEEE, doi: 10.1109/ICEC.1996.542334, pp. 61–66, 1996, [Proceedings 
of IEEE International Conference on Evolutionary Computation. 
Nagoya Japan, 1996]. 

[25] Y. Nie and X. Yu, “Optimization of deterministic pilot pattern 
placement based on quantum genetic algorithm for sparse channel 
estimation in OFDM systems,” IEICE Trans. Commun., vol. E103.B, 
no. 10, pp. 1164–1171, October 2020, doi: 10.1587/transcom.2019EBP 
3200. 

[26] Z. Chen and W. Zhou, “Path planning for a space-based manipulator 
system based on quantum genetic algorithm,” Journal of Robotics, vol. 
2017, pp. 1–10, March 2017, doi: 10.1155/2017/3207950. 

[27] H. Wang, J. Liu, J. Zhi, and C. Fu, “The improvement of quantum 
genetic algorithm and its application on function optimization,” 
Mathematical Problems in Engineering, vol. 2013, pp. 1–10, March 
2013, doi: 10.1155/2013/730749. 

[28] N. Xiao, L. Zhao, X. Cai, and Y. Dong, “An improved quantum genetic 
algorithm for grouping strategy,” IEEE, doi: 10.1109/NANO.2017. 
8117334. pp. 657–662. July 2017, [2017 IEEE 17th International 
Conference on Nanotechnology (IEEE-NANO)] 

[29] S. Zhang, H. Du, S. Borucki, S. Jin, T. Hou, and Z. Li, “Dual resource 
constrained flexible job shop scheduling based on improved quantum 
genetic algorithm,” Machines, vol. 9, no. 6, pp. 108, May 2021, doi: 10. 
3390/machines9060108. 

[30] Z. Cheng, J. Lei, and Z. Zhang, “Finite element model modification 
based on improved double-chain quantum genetic algorithm,”  Journal 
of Wuhan University of Technology (Transportation Science and 
Technology), vol. 46, no. 3, pp. 548-551, June 2022, doi: 10.3963/j.issn. 
2095-3844.2022.03.031 

[31] X. Li, Q. Li, and J. Zhang, “Research on global path planning of 
unmanned vehicles based on improved ant colony algorithm in the 
complex road environment,” Measurement and Control, vol. 55, no. 9–
10, pp. 945–959, November 2022, doi: 10.1177/00202940221118132. 

[32] J. Li, C. Huang, and M. Pan, “Path planning algorithms for self-driving 
vehicle based on improved RRT-Connect,” Transportation Safety and 
Environment, pp. tdac061, December 2022, doi: 10.1093/tse/tdac061. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

607 | P a g e  

www.ijacsa.thesai.org 

[33] R. S. Amal and J. S. Ivan, “A quantum genetic algorithm for 
optimization problems on the Bloch sphere,” Quantum Inf Process, vol. 
21, no. 2, pp. 43, February 2022, doi: 10.1007/s11128-021-03368-7. 

[34] Y. Li, S. Qin, and L. Jing, “Research on flight trajectory optimization 
based on quantum genetic algorithm,” J. Phys.: Conf. Ser., vol. 1549, no. 
2, pp. 022074, June 2020, doi: 10.1088/1742-6596/1549/2/022074. 

[35] S. Y.Li, and P. C. Li, "Quantum genetic algorithm based on real 
encoding and gradient information of object function." Journal of Harbin 
Institute of Technology, vol. 38, no. 8, pp. 1216-1223, August 2006. 

[36] X. Fan, J. Wang, H. Wang, L. Yang, and C. Xia, “LQR Trajectory 
Tracking Control of Unmanned Wheeled Tractor Based on Improved 
Quantum Genetic Algorithm,” Machines, vol. 11, no. 1, pp. 62, January 
2023, doi: 10.3390/machines11010062. 

 


