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Abstract—Proper cost estimation is one of the vital tasks that 

must be achieved for software project development. Owing to the 

complexity and uncertainties of the software development 

process, this task is ambiguous and difficult. Recently, analogy-

based estimation (ABE) has become one of the popular 

approaches in this field due to its effectiveness and practicability 

in comparing completed projects and new projects in estimating 

the development effort. However, in spite of its many 

achievements, this method is not capable to guarantee accurate 

estimation confronting the complex relation between independent 

features and software effort. In such a case, the performance of 

the ABE can be improved by efficient feature weighting. This 

study introduces an enhanced software estimation method by 

integrating the firefly algorithm (FA) with the ABE method for 

improving software development effort estimation (SDEE). The 

proposed model can provide accurate identification of similar 

projects by optimising the performances of the similarity 

function in the estimation process in which the most relevant 

weights are assigned to project features for obtaining the more 

accurate estimates. A series of experiments were carried out 

using six real-world datasets. The results based on the statistical 

analysis showed that the integration of the FA and ABE 

significantly outperformed the existing analogy-based 

approaches especially for the ISBSG dataset.  
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I. INTRODUCTION 

Software development effort is considered one of the most 
significant measures estimated in the software projects owing 
to the fact that planning, developing, and all other vital 
processes of the project largely rely on correct estimation of the 
development effort [1]. Accurate estimation of software 
development metrics has become a critical issue for researchers 
in recent years in the software project management field [2-4]. 
The unstable nature of software project requirements, related 
hardware platforms, and the continuous change in software 
development frameworks complicate the process of estimation 
[5, 6]. Uncertain and insufficient available information to be 
used in equations, relations, formulas, and so on, become a 
major problem confronted by researchers in this field [4, 7]. 

Recently, analogy-based estimation has been found by 
many researchers as the most adaptable technique in software 
effort estimation [8, 9]. Analogy Based Estimation (ABE) can 
be defined as the selection of the previously completed projects 
similar in nature to the target project and deriving effort 
estimation based on these selected projects [10, 11]. Although 
the analogy-based estimation method is a simple and 

straightforward process, the process is extremely difficult due 
to the non-normality of software development data. [12]. 
Generally, the non-normality of software projects is the major 
issue that affects all comparison based approaches including 
the analogy based estimation method [13-15]. To address these 
issues thereby improving the estimation performance, 
appropriate weights of project attributes are evaluated in 
several research works [16, 17]. The weighting process is 
affected by irrelevant and complex projects and those projects 
that are out of the overall trend of the dataset [18, 19]. 

Various project attributes must be taken into consideration 
in the weighting process, compatible with principles of 
software engineering [20-22]. The inaccurate software 
development effort will result from attributes that are given the 
same weight even though they have different level of influence 
on estimation accuracy [23]. However, determining attribute 
weights used in the similarity function is a challenging issue in 
the ABE methods. Optimization, intensive search, and 
correlation analysis are the most prominent methods for 
attribute weighting. Correlation analysis tries to figure out the 
degree of dependency between software effort and other 
project attributes [24-26]. Intensive search applies in-depth 
search to determine the best subset of attributes [17, 27, 28]. 
Generally, the optimization methods tend to enhance the 
attribute weighting or feature selection in the ABE similarity 
function component [3, 29, 30]. 

Essentially, the majority of literature optimization 
approaches are motivated by nature, for example particle 
swarm optimization (PSO) which imitates fish schooling 
behaviour and bird flocking, ant Colony Optimization which 
imitates the ants’ behaviour and the artificial Bee Colony 
(ABC) technique which mimics the bees' behaviour in 
searching for diet [31, 32]. Recently, the firefly algorithm (FA) 
which imitates some tropic firefly swarms has been introduced 
as a new metaheuristic algorithm [33]. Essentially, fireflies 
tend to be attracted to each other with higher intensity. This 
technique is typically different from other algorithms such as 
PSO and the Artificial Bee Colony (ABC). As such the FA can 
have two benefits: automatic regrouping and local attractions. 
As the intensity of light changes with distance, depending on 
the absorbing factor, the attraction between fireflies can be 
global or local, and therefore all global and local manners will 
be visited. Additionally, fireflies can also sub-divide and hence 
reorganize into sub-groups as neighbouring attraction is 
stronger than distant attraction; therefore it could be likely that 
each sub-group will group around a local mode [33-35]. This 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

618 | P a g e  

www.ijacsa.thesai.org 

behaviour particularly helps the FA to be fit for the 
optimization problem. 

Comparative studies revealed that the FA algorithm is very 
promising and could outperform many state-of-the-art 
optimization techniques like PSO and GA [36] , and Artificial 
Bee Colony ABC [37].Therefore, inspired by the above 
motivations among others, this research attempt to integrate FA 
with the ABE method to better optimize feature weights for 
improving the software development effort estimation. The 
main goal of this study is to improve the ABE model by 
optimizing the feature weights. To our knowledge, no research 
investigation has been conducted on the impact of FA on 
feature weighting for the ABE model. 

Rest of the paper is organized as follow. Section II explains 
research background. The related work of the study is 
presented in Section III. The detail of the proposed work is 
described in Section IV. The experimental design is elaborated 
in Section V. Results and discussion of the study is detailed in 
Section VI. Section VII presents statistical analysis of the 
proposed model compared to related models. Section VIII 
concludes this research study. 

II. BACKGROUND 

This section presents the background of the FABE model. 
We first discuss the concept of analogy-based estimation, 
which includes different steps of the ABE process. Further, 
each analogy estimation metric is described, which includes the 
similarity function and the solution function. Finally, in this 
section, the concept of the Firefly algorithm is also presented. 

A. Analogy-Based Estimation (ABE) 

The ABE method was initiated as a substitute for 
algorithmic-based software development effort estimation. In 
this technique, software project estimation is carried out by 
comparison with earlier accomplished projects and identifying 
the most similar projects to the board projects [38]. Owing to 
its suitability, the analogy-based estimation method has been 
popularly applied for software development in several studies. 
Essentially, ABE comprises four main modules, namely, 
historical dataset, K-nearest neighbours, similarity function, 
and solution function. More specifically, the ABE process is 
made up of steps as follows: 

 Historical data creation through artificial or real 
datasets. 

 Acquisition of new project features in a consistent 
manner with previous datasets. 

 Applying predetermined similarity functions for 
example the Euclidean function to retrieve projects 
similar to the new projects. 

 Predefined solution function is used to determine the 
new project’ cost. 

A similarity function is used in ABE for estimating the 
resemblance between two projects based on their feature 
comparison[38]. There are different similarity functions which 
include Manhattan similarity (MS) and the Euclidean similarity 
(ES). The Euclidean distance (ED) is the most popular 

similarity function which particularly involves distance 
between particular points. The similarity function is commonly 
used in optimization problems where distances are compared. 
MS is another popular similarity function in which the normal 
distance of Euclidean space is substituted by a new 
measurement where the distance between the locations is the 
sum of their coordinate’s differences. These metrics are 
popularly applied for measuring the similarity in ABE. The 
nature of the projects at the normality level and the dataset can 
considerably affect the performance of similarity functions. ES 
function is shown in Equation 1: 
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Where,    is the weight (which ranges between        ), 
allocated to each feature,          are the projects.          

  
represents the     feature of each project,   is used to gain a 
nonzero result and   represents the number of features. 

The MS representation is like the ES formula, but it 
calculates the complete difference between features. The 
mathematical representation of the MS function can be given 
as: 
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After identifying the K most similar projects, it would be 
possible to calculate the target project's effort based upon the 
selected features or attributes. The commonly used solution 
function include the Closest Analogy (CA) [11], the inverse 
weighted mean (IWM) [39], the average, and median of the 
most similar projects [40]. Mean is the average of effort for 
    while median is considered as effort median for similar 
projects with K    . In practice, Equation 5 adjusts the 
proportion of each project by using Inverse Weighted Mean 
(IWM). 
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Where    and    represents the new projects and the most 
similar kth project, respectively.    

 demonstrates the value of 

effort of kth    and   denotes the total number of the projects. 

B. Firefly Algorithm 

Yang developed the Firefly algorithm (FA) which reflects 
the characteristic flashing behaviour of fireflies [33]. Firefly 
algorithm comes with three assumptions: i) fireflies are 
unisexual: fireflies could attract each other irrespective of their 
gender.   ) The degree of attraction of fireflies is proportional 
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to the brightness and both are inversely proportional to 
distance. If there are no brighter fireflies then fireflies will have 
random movement. iii) Firefly brightness is dependent on the 
objective function. In FA, fireflies show up in a swarm to 
resolve a particular optimization task through brightness which 
is identified by the fitness function, and movements of low 
brightness fireflies to high brightness which is determined by 
attractiveness. 

In FA, the attraction between the flies involves two aspects; 
the various light intensities and the modeling of attraction. For 
a particular firefly at position    brightness    is given as 
 (  )    ( ) while attraction   is proportional to the flies and is 
associated with the distance      among fireflies         . 

Equation (6) demonstrates the inverse square of intensity  ( ) 
in which    denotes the intensity of light from the source. 

 ( )      
      (6) 

Supposing an absorption factor of the environment  , 
intensity is given in Equation 7 in which    is the original 
intensity. 
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Essentially, the ED is given in Equation 8, which signifies 
the distance between a firefly at position    and another at 

position   . Where     is the     constituent of the spatial 

coordinate    
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A firefly   attracts a brighter one   as demonstrated in Eq .9 

in which attraction can be given by  
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Additionally, variations of attractiveness are controlled by γ 
which in turn influences the behavior and convergence speed 
of FA. 

III. RELATED WORK 

For the past years, several research works have been 
employed by different researchers to apply weighting 
techniques for improving ABE. One of these methods is using 
correlation coefficient analysis which is considered for feature 
selection and weighting in terms of software development 
effort estimation (SDEE) [41, 42] . In this case, project features 
with weak correlation are considered the low features and are 
assigned low weights while the features with higher correlation 
are given the higher weight and considered the most similar. 
The project features with no correlation are removed from the 
set of historical projects. 

Weighting-based methods, known as Rough Set Analysis 
have been proposed for feature selection to better enhance the 
ABE performance [17, 43, 44]. In rough set analysis, feature 
dependency analysis generates several sub-sets of features 

named classes [45]. The most similar features are obtained by 
considering the intersection of all the classes. The frequency of 
attributes in reducts, the number of attributes in a core set, and 
the frequency of presence of attributes in decision rules are 
used to build the weighting model in the rough set technique. 
Another non-algorithmic method for estimation is Gray Theory 
(GT) in which gray depicts the fuzzy process, where the white 
and black represent known and unknown information 
respectively [45]. It is a statistical technique for finding the 
similarity degree by comparing two projects' features. Since it 
also uses a comparison technique, it was employed to enhance 
the     performances [46, 47]. One of the vital aspects of 
    is the solution function since it greatly influences the 
estimation performance's correctness. According to various 
studies, several attempts have been made to adjust expressions 
as the solution function to enhance performance [15, 48-50]. 

Over many years, to modify the feature weighting of the 
software estimation model, several optimization techniques 
have been introduced. The genetic algorithm (GA) is 
considered widely used optimization techniques for feature 
weights computation in the ABE. Huang and Chiu [51] utilized 
Genetic Algorithm to identify the best parameters in their 
defined non-linear/linear equation(s). The parameters involved 
in equations were determined as an improvement in the ABE’s 
performances. There has been a combination of various 
methods with a Genetic Algorithm for enhancing accuracy of 
estimation model such as the Gray Relational Similarity (GRS) 
method [46], regression techniques [52], and also linear 
adjustment [15]. For example, Bardsiri, et al. [12, 53] 
integrates Genetic Algorithms with fuzzy logic and artificial 
Neural Network, to develop a localized effort estimation 
process. 

PSO has also been applied in many studies for improving 
the software development effort estimation. For example, 
Sheta, et al. [54, 55], Lin, and Tzeng [55] utilized the PSO 
technique to enhance the performances of the COCOMO 
estimation technique. In some scenarios, PSO has been shown 
to be more computationally efficient than GA [56]. Wu et al. 
applied the PSO algorithm for feature weight optimization in 
the predefined similarity measure of the software estimation 
approach [57]. Liu, et al. used PSO to reduce errors during the 
training phase and enhance estimation [58]. Azzeh, et al. [2] 
utilized the PSO algorithm to identify the optimum decision 
variable where the trade-off between several evaluation metrics 
is illustrated. Differential evolution have been used for feature 
weight optimization in ABE [23]. ABC has also been applied 
for the ABE optimization and indicated to outperform the PSO 
method [3]. Bardsiri, et al. integrated PSO with simulated 
annealing (SA) for feature weight optimization in ABE model 
[59]. Ferrucci, et al. [60] conducted a research on the influence 
of the fitness function. They showed that the model 
performance could be enhanced by choosing suitable and 
optimized performance measures. Essentially, the optimization 
of the fitness functions performs an important impact in 
estimation due to the complexity of software project. 
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IV. THE PROPOSED FA-BASED OPTIMIZATION FOR 

ANALOGY BASED ESTIMATION ( FABE) 

In the proposed approach, the FA is integrated with the 
ABE model for improving the estimation accuracy. 
Adaptability and Flexibility are two important properties of the 
FA which make it capable to mitigate the issue of the 
vagueness and complexity of software project attributes [33, 
61]. Essentially, the main purpose of the FA is to identify the 
most suitable feature weights that are to be used in the 
similarity function. Weights are allocated for parameter 
optimization to enhance the ABE performance. The system 
architectures of the training and testing of the proposed 
approach are illustrated in Fig. 1 and Fig. 2 respectively, 
whereas Algorithm 2 shows the Pseudo-code of FABE. 

A. Training Stage 

Fig. 1 illustrates the training phase architecture of the 
FABE approach. In the training stage, historical project data is 
utilized for predicting the efforts of the training dataset. 

In this stage, the model adjusts the weights of features 
based on the FA in the Analogy-based Estimation similarity 
function. The dependent feature is the development effort; all 
others are considered independent features. In the training 
phase all available dataset projects are divided into (basic, 
train, test) subsets. For model construction in training stage 
basic and training subsets are used. For model evaluation in 
testing stage the basic and test subsets are involved. Training 
projects are compared with basic projects to find suitable 
weights and also testing projects are compared with basic for 
performance evaluation. A project is taken away from the 
training set and applied to the similarity function as a new 
project that is to be determined. 

 

Fig. 1. Training stage. 
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Algorithm 1: FABE Algorithm 

Inputs :  

f (.)  objective function f(x) 

   randomized parameter  

  attraction coefficient  

   Light Absorption Coefficient 

POP  population Size 

Step 1: Initialize the population of n fireflies.  

Step 2: new project is selected form training dataset, and the remaining others 
projects are processed by ABE as historical projects. 

Step 3: FABE feature weight parameter vector is encoded for the training 

project. 

Step 4: weight vector of range [0, 1] is generated randomly. 

Step 5: The training project similarity metric is evaluated for the weight 

vector selected randomly from pop. 

Step 6: From the historical dataset obtain K closest analogies used in ABE, 

and then predict effort value of the training project using different solution 

functions. 

Step 7: Until all training cases are treated with the same identical random 

weight vector (created for the first training case) repeat steps 2-6.  

Step 8: MRE for each individual is calculated based on the objective function. 

Step 9: Training projects set accuracy metrics (MMRE, PRED (0.25)) are 

evaluated. 

Step 10: The Evolution step // Given that stopping criteria is not fulfilled. 

Step 10.1: Evaluate the fitness of fireflies using objective function  
Step 10.2: Update light intensity of the fireflies  
Step 10.3: Rank the fireflies and find the best  
Step 10.4: Move fireflies to their better solution  

Step 10.5: Go to step 12 if the stopping criteria have been met. (maximum 
number of iterations) 

Step 11: Go to Step 10. 

Step 12: EXIT. 

Output: The best Candidate solution with the optimal weight vector is 

chosen for the following Testing Stage.  

The FA algorithm assigns weights to the independent 
features used in the similarity function. The considered project 
is compared with the basic projects based on the Equation (1). 
The most similar projects are discriminated by the similarity 
function to the removed project and take them to the solution 
function. Finally, the effort is determined in a solution 
function, and the     is calculated. This procedure is 
continued until all training projects are estimated. In the next 
step, the error and prediction performances MMRE and PRED 
(0.25) are calculated for a training group based on the     
values. Reduce the value of      and increases      ( .  ) 
are the main goal of any estimation method which motivates 
this study to Fine-tune FA for MMRE value minimization. 

The weights are recorded to be used in the testing stage if 
the termination requirements are met; otherwise, the FA 
updates the weights taking into account the obtained 
performance parameters. The similarity function is given new 
weights, and all computations are carried out once more for the 
training projects. Until the termination criteria are met, this 
process is continued. The training phase of the model is shown 
in Fig. 1. There are two rounds in the training phase, as shown 
in the image, with the first one having to do with calculating 
the      for training projects and the second one having to 
do with adjusting weights using the FA approach. 

B. Testing Stage 

The primary purpose of this phase will be to assess the 
model's performance using hypothetical projects. Basic and 
testing projects are used as the inputs for the similarity function 
at this stage to examine how the suggested model performs. 
Additionally, the training stage's optimized weights are used to 
modify the similarity function. A project is separated from 
testing projects, as was done in the training stage, and then put 
up against basic projects through similarity function. Most 
resemble projects to the removed project are chosen and 
forwarded to predefined solution function. The amount of 
MRE is calculated after estimating the effort. This procedure is 
repetitive for all testing projects and, eventually, the value of 
     and      are calculated. Fig. 2 illustrates the test 
phase of the proposed model. As previously mentioned, the 
project feature weights proposed by FA are produced to help 
the ABE accurately estimate the training projects effort as 
possible. 

 
Fig. 2. Testing phase. 
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technique are described, then the performance evaluation 
metrics. Further in this section, the process involved in the 
experimental setup, as well as the validation method, is 
explained and presented. 

A. Dataset Description 

To evaluate the performances of the proposed model, we 
employ six different datasets, namely, Desharnais, Maxwell, 
COMMMO, China, NASA, and International Software 
Benchmarking Standard Group (ISBSG) The Desharnais 
dataset contains Canadian projects. China dataset is based on 
Chinese software projects. United States software projects are 
contained in Cocomo81 and Nasa93 datasets. The         
dataset is constructed based on of Finnish banking projects. 
Dejaeger et al. [62] claimed to group dataset to categories such 
as size, development, project data, and environment features. 
The Statistics of the datasets are given in Table I. Datasets 
effort values skewness is up to 6.6 [62, 63] Indicating 
asymmetrically distributed of effort for each dataset which is a 
thread for accurate estimation models. 

International Software Benchmarking Standard Group 
(ISBSG) is established Australia software based non-
commercial organization, which gathers data on software 
projects from numerous countries globally [64]. In this study 
ISBSG Release 11 dataset is employed. 5052 completed 
software projects detailed information have been collected. 
Software projects data collected from 24 countries are exist in 
the historical dataset. Majority of projects origin are come from 
USA with 30.7% percentage of all dataset, followed by Japan 
with 16.7%, Australia 15.9%, and Finland with 10.2%. 

B. Cross Validation 

The performance evaluation will typically be rather 
optimistic if the model accuracy is calculated based upon that 
projects that are used during the implementation phase. 

As the errors will always be small, it might result in a 
biased model evaluation for estimating accuracy [56]. Thus, to 
better evaluate the model accuracy, a cross-validation approach 
is applied, which splits the entire dataset into several train and 
test sets. The results of datasets that are utilized during model 
construction are contained in the training sets. In testing stage, 
unseen datasets are utilized for evaluating the accuracy and the 
performance of all training and testing sets are merged for 
cross-validation. In this research, we used a three-fold cross-
validation method for proposed model performance evaluation 
as illustrated in Table II. 

As can be seen from Table II, six different arrangements 
can be considered for the model. Where S1, S2, and S3 are the 
three subsets randomly selected from the set of all projects as 
basic, training and testing sets accordingly. The sets involve 
the similar number of projects. At each fold, evaluation 
measure is calculated for two different arrangements, and the 
mean is considered as the result of that fold. Finally the 
accuracy is determined based on the mean of results computed 
from all three stages. 

TABLE I.  DATASETS USED IN EXPEREMENTS 

Dataset Projects count Features Unit Max Min Mean Median 

Maxwell 62 27 Hours 63,694 583 8223.2 5189.5 

Nasa93 18 3 Months 138.3 5 49.47 26.5 

Cocomo81 63 17 Months 11,400 6 686 98 

Desharnais 77 12 Hours 23,940 546 5046 3647 

China 499 18 Hours 54,620 26 3921 1829 

TABLE II.  ILASTRATION OF CROSS-VALIDATION 

S 

S1 S2 S3 

Possible arrangements 

 Basic set Train set Test set 

Fold 1 
                  

                  

Fold 2 
                  

                  

Fold 3 
                  

                  

C. Evaluation Metrics 

Several metrics have been used by different studies for 
evaluating the performance of the comparison-based software 
estimation method. Accordingly, the most widely used 
measures include Relative Error (  )  Mean Relative Error 
(   )  Percentage of Prediction (    )  and Mean 
Magnitude of Relative Error (    ) . The mathematical 
representation of these metrics can be given as follows: 
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Projects with MRE >= X (X is usually reserved at 0.25) is 
denoted as PRED(X) as shown in Equation 6 and 7 where N 
denote the number of projects. Increase PRED and decrease 
MMRE is the main target of all software development effort 
estimation models, accordingly Araújo, et al. [65] proposed 
Evaluation Function (EF) measure that combined both MMRE 
and PRED in equation 9 to improve accuracy evaluation for 
software prediction model. MRE considered as a biased 
performance metric since its produce asymmetric distribution 
[22, 66]. MMRE and PRED both are derived from MRE they 
are also considered as biased performance measure. 
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Mean Absolute Error (MAE) produced non-asymmetric 
distribution on other side. Equation 8 and 9 shows how MAE 
can be calculated. Because of non-standardized residual MAE 
is difficult to interpret. SA was introduced by [22] it can be 
calculated by Equation 10 (in large number of runs the mean of 
random guessing is denoted as Mean Absolute Residual 
(MARpo) ) which is enhanced by [67] and used later to 
estimates effect size as seen in Equation 11 (sample standard 
deviation for the random guessing is denoted as Spo ). 
Reliability of the estimation model can be measured by SA as 
if the prediction model is stated as useful. SA negative values 
are not acceptable while zero value shows that the estimation 

model is unreliable. Effect size (Δ) evaluates the estimation 

results and the effectiveness of the mode is compared with 
random guessing. ( ) categorizes values in small 
( . )  medium ( . ) and large ( . ). If the value is equal or 
greater than to  .  the results is considered as favourable [2, 
22]. 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

As stated earlier, the ABE technique uses three control 
parameters, including similarity function, solution function and 
K-nearest neighbour. In the experiment of this research, ED is 
adopted for similarity function. Median and mean, are 
considered as the solution function to compute the estimation 
values. This section presents the performance results of the 
proposed FABE model. We first present the experimental 
results in terms of the MMRE, MdMRE, and PRED based on 
the different control parameters, namely, Similarity, KNN, and 
solution function then the later the SA results. Further, the 
comparison results of the proposed model with existing 
methods are presented later in the section. 

The proposed FABE model performance is compared and 
validated with commonly ABE weighting variants techniques, 
namely traditionally ABE, feature weighting with Genetic 
Algorithm in ABE (GAABE) [51] , feature weighting with 
Particle Swarm Optimization in ABE (PSOABE) [53], feature 
weighting with Differential evolution in ABE (DABE) [23], 
feature weight optimization with Bee colony optimization in 
ABE (BABE) [3], these estimation models are trained with 
historical data and algorithmic settings are tuned automatically. 

A. Performance of the Proposed Model 

Training quality estimation results are extremely affected 
by data pre-processing before main model execution started. In 
this study all the independent features were normalized in 
range (0 to 1) to produce same effect on software effort 
dependent feature. For the experimentation of the proposed 
FABE approach, we first investigate the possibility of getting 
the best settings of the model. To this end, we use different 
evaluation metrics namely (MMRE, MdMRE, PRED, and SA) 
on two different datasets which include Desharnais and 
Maxwell datasets. Also to assess the effect of the similarity 
function, the Euclidian similarity metric is employed. The 
results of the different values of the KNN (from 1 to 5) 
alongside respective solution function (Median, Inverse 
Weighted Mean, and Mean) metrics are recorded and shown in 
Table III to Table VI accordingly. Thus, in this section, the 
experimental results are presented and discussed. The main 
purpose of the experiment was to obtain the appropriate ABE 

configuration for the proposed model based on the different 
parameters (k value, similarity Metric, solution function). 

Table III and Table IV demonstrate the simulation results 
of the FABE technique on the Desharnais and Maxwell 
datasets indicating various combinations of the key model 
parameters, such as KNN, similarity function, and solution 
function, respectively. From the results, it can be observed that 
the K value at 3 and Mean solution function are the most 
suitable setting as computed for both MMRE , MdMRE in the 
training and testing stage of the model on all the datasets, 
namely, Desharnais and Maxwell. 

TABLE III.  PERFORMANCE ON DESHARNAIS DATASET 

Similarity K Solution 
Training Testing 

MMRE PRED MMRE PRED 

Euclidean 

1 Closest 0.015 0.685 0.056 0.889 

2 Inverse 0.051 0.127 0.089 0.201 

 Mean 0.011 0.115 0.015 0.199 

3 Inverse 0.051 0.185 0.089 0.291 

 Mean 0.033 0.131 0.017 0.299 

 Median 0.059 0.115 0.021 0.289 

4 Inverse 0.051 0.245 0.089 0.381 

 Mean 0.033 0.169 0.054 0.321 

 Median 0.044 0.190 0.031 0.377 

5 Inverse 0.051 0.282 0.089 0.480 

 Mean 0.049 0.245 0.081 0.488 

 Median 0.081 0.245 0.055 0.452 

TABLE IV.  PERFORMANCE ON MAXWELL DATASET 

Similarity K Solution 
Training Testing 

MMRE PRED MMRE PRED 

Euclidean 

1 Closest 
 

0.041 0.701 0.019 0.095 

2 Inverse 0.059 0.542 0.049 0.091 

 Mean 0.084 0.052 0.045 0.081 

3 Inverse 0.059 0.085 0.049 0.302 

 Mean 0.044 0.059 0.070 0.069 

 Median 0.061 0.042 0.081 0.089 

4 Inverse 0.059 0.117 0.049 0.181 

 Mean 0.062 0.082 0.304 0.145 

 Median 0.044 0.067 0.480 0.163 

5 Inverse 0.059 0.155 0.049 0.158 

 Mean 0.040 0.077 0.271 0.104 

 Median 0.039 0.086 0.220 0.126 

However, the PRED (0.25) metric test performances 
showed that the most appropriate ABE setting for both these 
datasets was K=3 and the ―Inverse Weighted Mean‖ solution 
function. Thus to further confirm the best configuration of the 
model thereby obtaining better performance, we also 
investigate evaluation for another performance measure SA on 
the Desharnais and Maxwell datasets. 

Table V and Table VI demonstrate the SA results of the 
Euclidean similarity function for the K=3, K=4, and K=5 on 
the Desharnais and Maxwell datasets respectively concerning 
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both testing and training stage of the proposed model. The 
results were evaluated against, maximum, minimum, average, 
and standard deviation for the SA. Table V demonstrates the 
SA values for Desharnais datasets. From results analysis, it can 
be concluded that best values of the SA as maximum and 
average in the training stage fall at K=3, with values of 95.120 
and 39.899 respectively. Likewise based on testing stage, the 
more suitable values happened at K=3 with an average and 
maximum value of 63.436 and 93.688 respectively. 

The SA results for the Maxwell datasets are demonstrated 
in Table VI. From observed results, it could be realized that the 
best performance in the training stage is at K=3 with the value 
of the Average SA and Maximum SA being 51.955 and 95.900 
respectively. Similarly, based on testing stage, the most 
appropriate performance was observed at K=3 and the 
maximum and average values of 96.938 and 52.923 
respectively. It should be noted that in the experiment,     
and K=2 were not considered for comparison since at these 
values all solutions functions were not covered. Eventually, we 
also conducted a simulation study on SA for Maxwell and 
Desharnais datasets to father support investigation of solution 
function best suited for the ideal value of K. SA was chosen as 
a guideline principle for further results analysis in order to its 
generalization capability. 

Table VII and Table VIII demonstrate the SA results on 
three solution functions, namely, Inverse Weighted Mean, 

Median, and Mean on the Desharnais and Maxwell datasets 
indicating the respective maximum, minimum, average, and 
standard deviation of the SA respectively. Table VII shows the 
Minimum, Minimum, Standard Deviation, and Average of the 
SA of solution function (median, mean, and inverse weighted 
mean) for the Desharnais dataset. From the results, it can be 
observed the average and maximum SA values were recorded 
to be 35.027 and 56.445 respectively for the ―mean‖ as a 
solution function. Similarly, Table VIII shows lists of the 
maximum, minimum, average, and standard deviation of SA 
for the ―mean‖, median, and inverse solution functions for the 
Maxwell dataset. The results show that the average and optimal 
maximum SA values were reported to be 65.157 and 98.019, 
respectively, for the ―mean‖ solution function. Based on the 
reported results in this section it was concluded that the most 
appropriate setting of the ABE is the ―Mean ―as a solution 
function and K=3. 

B. Discussion 

In this section the performance of the proposed FABE was 
validated and compared with the state-of–the-art ABE models, 
namely, traditional Analogy-Based Effort (ABE), GA-based 
ABE, PSO-ABE, and BABE (Bee Colony-based), and 
Differential Evolution in ABE(DABE). All estimation methods 
were adjusted automatically using historical datasets and the 
algorithm parameters. 

TABLE V.  SA RESULTS ON DESHARNAIS DATASET 

K 
Training Testing 

Max. SA Min. SA Avg.SA Std.SA Max. SA Min. SA Avg.SA Std.SA 

3 95.120 13.026 39.899 18.113 93.688 36.185 63.436 25.571 

4 92.015 10.955 33.791 26.251 86.944 21.978 59.099 14.941 

5 54.156 15.304 26.981 9.615 92.871 25.357 67.717 11.833 

TABLE VI.  SA RESULTS ON MAXWELL DATASET 

K 
Training Testing 

Max. SA Min. SA Avg.SA Std.SA Max. SA Min. SA Avg.SA Std.SA 

3 95.900 19.665 51.955 20.018 96.938 21.677 52.923 9.226 

4 91.502 15.255 41.711 13.320 69.933 19.100 31.990 5.340 

5 40.351 23.089 22.962 3.054 95.841 27.720 58.65 8.026 

TABLE VII.  RESULTS OF SOLUTION FUNCTIONS FOR BEST K VALUES ON DESHARNIAS DATASET 

Solution 

Function 

Training Testing 

Max. SA Min. SA Avg.SA Std.SA Max. SA Min. SA Avg.SA Std.SA 

Mean 56.445 29.843 35.027 3.018 89.825 32.421 56.198 17.220 

IWM 89.801 32.086 36.412 37.06 86.522 28.599 71.759 19.001 

Median 90.221 23.311 54.082 15.217 84.025 51.512 65.979 14.098 

TABLE VIII.  RESULTS OF SOLUTION FUNCTIONS FOR BEST K VALUES ON MAXWELL DATASET  

Solution 

Function 

Training Testing 

Max. SA Min. SA Avg.SA Std.SA Max. SA Min. SA Avg.SA Std.SA 

Mean 88.261 30.483 49.970 17.701 98.019 51.220 65.157 16.551 

IWM 87.016 16.921 37.028 28.990 85.990 35.255 59.988 15.071 

Median 91.910 44.526 71.990 18.007 72.051 54.044 58.100 13.166 
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TABLE IX.  PRECISIONS VALUES FOR FRIEDMAN STATISTICAL ANALYSIS TEST 

Estimation 

Models 

Datasets 

China Cocomo81 Nasa93 Maxwell Desharnais ISBSG 

ABE 12.493 24.531 11.488 13.411 13.235 41.27 

GAABE 86.196 91.812 90.324 88.423 89.332 51.638 

BABE 97.621 99.201 94.982 84.18 84.205 68.82 

DABE 96.509 98.94 94.234 84.91 83.66 65.09 

PSOABE 92.88 88.016 93.01 83.63 88.854 56.08 

FABE 98.426 99.711 95.009 85.661 85.012 71.803 

Table IX shows the SA comparison results of the proposed 
FABE model with the existing approaches on six datasets 
namely Desharnais, Maxwell, Nasa93, China, and ISBSG 
based on the ―Mean‖ solution function and K=3 Euclidian 
similarity. The SA values of FABE model for training and 
testing on Cocomo81, Nasa93 and China are (97.005, 99.711), 
(96.752, 95.009) and (96.973, 98.426) respectively. The   
values for this proposed model on each dataset are as, 
Cocomo81 (Training:0.234,Testing: 0.129), China 
(Training:0.219 ,Testing: 0.209) ,and Nasa93 
(Training:0.251,Testing:0.159). From the detailed comparison 
results, it can be observed that the proposed FABE approach 
outperforms existing models. 

 

Fig. 3. FABE percentage of improvement against existing models. 

TABLE X.  FABE PERCENTAGE OF IMPROVEMENT  

 
ABE GAABE DABE PSOABE BABE 

Cocomo81 76% 8% 1% 12% 0% 

Maxwell 72% -3% 2% 2% 1% 

China 87% 13% 2% 6% 1% 

Desharnais 72% -5% 2% -3% 1% 

Nasa93 84% 6% 1.5% 2% 1% 

ISBSG 30% 20% 6% 16% 3% 

Fig. 3 and Table X demonstrate the average improvements 
achieved by the proposed FABE model compared to the 
existing models. For example in Cocomo81 dataset, it 
presented 8%, 1%, 12%, and 76 against GABE, DABE, 
PSOABE and traditional ABE. It presented 6%, 1.5%, 2%, 1% 
and 84% against GABE, DABE, PSOABE, BABE and 
traditional ABE respectively on Nasa93 dataset. For 
Cocomo81 dataset FABE performance is found at par BABE. 
In China, it presented improvements of 13%, 2%, 6%, 1% and 

87% against GABE, DABE, PSOABE, BABE and traditional 
ABE respectively. It presented a percentage decrease of 5% 
and 3% against GABE and PSOABE respectively on 
desharnais dataset, whereas showed an improvement of 1%, 
2%, and 72% against BABE, DABE and traditional ABE. In 
Maxwell dataset, FABE presented 2%, 2%, 1% and 72% 
improvement against DABE, PSOABE and traditional ABE 
respectively whereas it presented a percentage decrease of 3% 
against GABE. For ISBSG that considered the largest among 
all given datasets, it presented 20%, 6%, 16%, 3% and 30% 
against GABE, DABE, PSOABE,BABE and traditional ABE 
respectively, which is considered as significant improvement. 

It can be concluded from result analysis that the size and 
type of dataset affect weight optimization techniques 
performance on ABE model. In the ISBSG dataset FABE 
outperformed existing optimization weight techniques 
significantly on the selected software projects for ABE model. 
Statistical analysis to validate FABE model performance is 
performed since results on different datasets are various. 

VII. STATISTICAL PERFORMANCE EVALUATION 

Statistical analysis is very important in finding the 
appropriateness of one technique to another. From the 
discussion in the previous section, it is obvious that the FABE 
approach provides the best results compared to the compared 
methods but now using statistical analysis this will be further 
confirmed. In this research owing to the fact that software 
engineering datasets have an issue such that each sub-
population has non-contact variance, we employed 
nonparametric test for the analysis. A null hypothesis would be 
specified prior performing the test. This determines the 
differences or equality among the results of the models and 
enables alternative hypotheses to support the opposite 
condition to be assessed. 

The null hypothesis is denoted as   , and the alternative 
hypothesis is represented as   . This test can be used to reject 
the hypothesis at a particular of significance level  . The p-
value is indicated with this level, which represents achieve 
probability at least as high as expected while null hypothesis is 
valid. It is recommended to apply p-value instead of   since it 
can estimate results significantly (as p value is small this show 
strong validation against null hypothesis) [68]. Non-parametric 
tests can be classified into multiple comparisons like Friedman 
test and pair wise like Wilcoxon Signed test, in case of 
experiment that considers more than two algorithms or models 
it is recommended to use multiple comparisons test [69, 70]. In 
this case, the following hypothesis is considered: 
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  : All feature weight optimization prediction models are 
equivalent on ABE. 

To test the null hypothesis, we employed the Freidman test 
that is stated by Demšar[70] and García, et al [71]. For 
Friedman test, initially, original results transformed into ranks 
each model according to each dataset. Best model value is 
assigned rank 1; second-best one is assigned rank 2 and so on. 

Accordingly, we assign ranks   
  , to the     of   models on the 

    of   data sets based on their accuracy. The Freidman 
statistic (  ) can be given by equation. 

   
(   )  

 

 (   )   
     (18) 

Whereas is Chi-Square value is given by   
  in equation. 

  
  

   

 (   )
[∑   

  
 (   ) 

  ]  (19) 

The Degree of Freedom (DF) is equal to K-1, in this 
performed experiments, value of K=6 and so the value of 

DF=5. The sigma value of   
  in related studies is considered as 

0.01 or less. Based on Chi-square table the value of   
  should 

be greater than 15.086. Friedman test statistic is presented in 
Table XII. Chi-Square value computed as 19.714, which allows 
the null hypothesis to be rejected. For each model test ranks are 
presented in Table XIII and also descriptive statistics of 
Friedman Test presented in Table XI. 

The worst and best-performance model can be identified 
after the null hypothesis is rejected. From Table XIII which 
represents mean ranks best-worst performance information can 
be derived. It can be concluding from Table XIII that FABE is 
performing best model followed by BABE. The lowest ranked 
model among comparative models is ABE. 

TABLE XI.  DESCRIPTIVE STATISTIC OF FRIDMAN TEST  

Model N Mean Std. Deviation Minimum Maximum 
Percentiles 

25th 50th 75th 

ABE 6 19.40467 11.737169 11.488 41.270 12.24175 13.32300 28.71575 

GAABE 6 82.95417 15.456858 51.638 91.812 77.55650 88.87750 90.69600 

DABE 6 87.10217 12.525246 65.090 98.940 79.01750 89.20700 97.11675 

PSOABE 6 83.74500 13.992835 56.080 93.010 76.74250 88.43500 92.91250 

BABE 6 88.28983 11.472514 68.820 99.201 80.35875 89.94600 98.01600 

FABE 6 89.60367 10.847327 71.803 99.711 81.70975 91.33500 98.74725 

TABLE XII.  DESCRIPTIVE STATISTIC OF FRIEDMAN TEST 

N 6 

Chi-Square 19.714 

df 5 

Asymp. Sig. .001 

TABLE XIII.  MEAN RANKS OF MODELS 

Model Mean Rank 

ABE 1.00 

GAABE 3.50 

DABE 3.50 

PSOABE 3.00 

BABE 4.50 

FABE 5.50 

VIII. CONCLUSION 

In this research, we proposed a weight optimization method 
for analogy-based estimation based on the firefly algorithm 
(FA). An estimation model is built and assessed during the 
training and testing phases of the suggested framework. FA 
considers all potential weights and chooses those that will 
produce the more accurate estimations. By giving project 
features the most suitable weights, the ABE method's 
comparison process quality was enhanced. Six datasets were 
used to test the accuracy of the proposed approach and a cross-
validation method was used to calculate the performance 
metrics for the MMRE, PRED (0.25), MdMRE, SA, and Size 

Measure. The positive outcomes demonstrated that the 
suggested model can greatly improve the accuracy of 
estimations based on different metrics. The effectiveness of the 
proposed FABE technique was demonstrated in all datasets 
when the obtained results were contrasted with six widely used 
estimating models. The combination of FA and ABE resulted 
in a high-performance model for estimating software 
development effort, according to the findings from the datasets. 
In future work we intended to combine existing technique in 
this study with missing data imputation models to pursue for 
furthermore improvement on estimation accuracy. 
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