
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

617 | P a g e

www.ijacsa.thesai.org

Weight Optimization Based on Firefly Algorithm for

Analogy-based Effort Estimation

Ayman Jalal AlMutlaq, Dayang N. A. Jawawi, Adila Firdaus Binti Arbain

Department of Software Engineering-School of Computing-Faculty of Engineering,

Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Abstract—Proper cost estimation is one of the vital tasks that

must be achieved for software project development. Owing to the

complexity and uncertainties of the software development

process, this task is ambiguous and difficult. Recently, analogy-

based estimation (ABE) has become one of the popular

approaches in this field due to its effectiveness and practicability

in comparing completed projects and new projects in estimating

the development effort. However, in spite of its many

achievements, this method is not capable to guarantee accurate

estimation confronting the complex relation between independent

features and software effort. In such a case, the performance of

the ABE can be improved by efficient feature weighting. This

study introduces an enhanced software estimation method by

integrating the firefly algorithm (FA) with the ABE method for

improving software development effort estimation (SDEE). The

proposed model can provide accurate identification of similar

projects by optimising the performances of the similarity

function in the estimation process in which the most relevant

weights are assigned to project features for obtaining the more

accurate estimates. A series of experiments were carried out

using six real-world datasets. The results based on the statistical

analysis showed that the integration of the FA and ABE

significantly outperformed the existing analogy-based

approaches especially for the ISBSG dataset.

Keywords—Analogy-based estimation; firefly algorithm;

software cost estimation; weight optimization

I. INTRODUCTION

Software development effort is considered one of the most
significant measures estimated in the software projects owing
to the fact that planning, developing, and all other vital
processes of the project largely rely on correct estimation of the
development effort [1]. Accurate estimation of software
development metrics has become a critical issue for researchers
in recent years in the software project management field [2-4].
The unstable nature of software project requirements, related
hardware platforms, and the continuous change in software
development frameworks complicate the process of estimation
[5, 6]. Uncertain and insufficient available information to be
used in equations, relations, formulas, and so on, become a
major problem confronted by researchers in this field [4, 7].

Recently, analogy-based estimation has been found by
many researchers as the most adaptable technique in software
effort estimation [8, 9]. Analogy Based Estimation (ABE) can
be defined as the selection of the previously completed projects
similar in nature to the target project and deriving effort
estimation based on these selected projects [10, 11]. Although
the analogy-based estimation method is a simple and

straightforward process, the process is extremely difficult due
to the non-normality of software development data. [12].
Generally, the non-normality of software projects is the major
issue that affects all comparison based approaches including
the analogy based estimation method [13-15]. To address these
issues thereby improving the estimation performance,
appropriate weights of project attributes are evaluated in
several research works [16, 17]. The weighting process is
affected by irrelevant and complex projects and those projects
that are out of the overall trend of the dataset [18, 19].

Various project attributes must be taken into consideration
in the weighting process, compatible with principles of
software engineering [20-22]. The inaccurate software
development effort will result from attributes that are given the
same weight even though they have different level of influence
on estimation accuracy [23]. However, determining attribute
weights used in the similarity function is a challenging issue in
the ABE methods. Optimization, intensive search, and
correlation analysis are the most prominent methods for
attribute weighting. Correlation analysis tries to figure out the
degree of dependency between software effort and other
project attributes [24-26]. Intensive search applies in-depth
search to determine the best subset of attributes [17, 27, 28].
Generally, the optimization methods tend to enhance the
attribute weighting or feature selection in the ABE similarity
function component [3, 29, 30].

Essentially, the majority of literature optimization
approaches are motivated by nature, for example particle
swarm optimization (PSO) which imitates fish schooling
behaviour and bird flocking, ant Colony Optimization which
imitates the ants’ behaviour and the artificial Bee Colony
(ABC) technique which mimics the bees' behaviour in
searching for diet [31, 32]. Recently, the firefly algorithm (FA)
which imitates some tropic firefly swarms has been introduced
as a new metaheuristic algorithm [33]. Essentially, fireflies
tend to be attracted to each other with higher intensity. This
technique is typically different from other algorithms such as
PSO and the Artificial Bee Colony (ABC). As such the FA can
have two benefits: automatic regrouping and local attractions.
As the intensity of light changes with distance, depending on
the absorbing factor, the attraction between fireflies can be
global or local, and therefore all global and local manners will
be visited. Additionally, fireflies can also sub-divide and hence
reorganize into sub-groups as neighbouring attraction is
stronger than distant attraction; therefore it could be likely that
each sub-group will group around a local mode [33-35]. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

618 | P a g e

www.ijacsa.thesai.org

behaviour particularly helps the FA to be fit for the
optimization problem.

Comparative studies revealed that the FA algorithm is very
promising and could outperform many state-of-the-art
optimization techniques like PSO and GA [36] , and Artificial
Bee Colony ABC [37].Therefore, inspired by the above
motivations among others, this research attempt to integrate FA
with the ABE method to better optimize feature weights for
improving the software development effort estimation. The
main goal of this study is to improve the ABE model by
optimizing the feature weights. To our knowledge, no research
investigation has been conducted on the impact of FA on
feature weighting for the ABE model.

Rest of the paper is organized as follow. Section II explains
research background. The related work of the study is
presented in Section III. The detail of the proposed work is
described in Section IV. The experimental design is elaborated
in Section V. Results and discussion of the study is detailed in
Section VI. Section VII presents statistical analysis of the
proposed model compared to related models. Section VIII
concludes this research study.

II. BACKGROUND

This section presents the background of the FABE model.
We first discuss the concept of analogy-based estimation,
which includes different steps of the ABE process. Further,
each analogy estimation metric is described, which includes the
similarity function and the solution function. Finally, in this
section, the concept of the Firefly algorithm is also presented.

A. Analogy-Based Estimation (ABE)

The ABE method was initiated as a substitute for
algorithmic-based software development effort estimation. In
this technique, software project estimation is carried out by
comparison with earlier accomplished projects and identifying
the most similar projects to the board projects [38]. Owing to
its suitability, the analogy-based estimation method has been
popularly applied for software development in several studies.
Essentially, ABE comprises four main modules, namely,
historical dataset, K-nearest neighbours, similarity function,
and solution function. More specifically, the ABE process is
made up of steps as follows:

 Historical data creation through artificial or real
datasets.

 Acquisition of new project features in a consistent
manner with previous datasets.

 Applying predetermined similarity functions for
example the Euclidean function to retrieve projects
similar to the new projects.

 Predefined solution function is used to determine the
new project’ cost.

A similarity function is used in ABE for estimating the
resemblance between two projects based on their feature
comparison[38]. There are different similarity functions which
include Manhattan similarity (MS) and the Euclidean similarity
(ES). The Euclidean distance (ED) is the most popular

similarity function which particularly involves distance
between particular points. The similarity function is commonly
used in optimization problems where distances are compared.
MS is another popular similarity function in which the normal
distance of Euclidean space is substituted by a new
measurement where the distance between the locations is the
sum of their coordinate’s differences. These metrics are
popularly applied for measuring the similarity in ABE. The
nature of the projects at the normality level and the dataset can
considerably affect the performance of similarity functions. ES
function is shown in Equation 1:

 ()

[√∑ (

)]

 (1)

 (
)

{

(
)

}

 (2)

Where, is the weight (which ranges between),
allocated to each feature, are the projects.

represents the feature of each project, is used to gain a
nonzero result and represents the number of features.

The MS representation is like the ES formula, but it
calculates the complete difference between features. The
mathematical representation of the MS function can be given
as:

 ()

[∑ (
)

]
 (3)

 (
)

{

|
 |

} (4)

After identifying the K most similar projects, it would be
possible to calculate the target project's effort based upon the
selected features or attributes. The commonly used solution
function include the Closest Analogy (CA) [11], the inverse
weighted mean (IWM) [39], the average, and median of the
most similar projects [40]. Mean is the average of effort for
 while median is considered as effort median for similar
projects with K . In practice, Equation 5 adjusts the
proportion of each project by using Inverse Weighted Mean
(IWM).

 ∑
 ()

∑ ()

 (5)

Where and represents the new projects and the most
similar kth project, respectively.

 demonstrates the value of

effort of kth and denotes the total number of the projects.

B. Firefly Algorithm

Yang developed the Firefly algorithm (FA) which reflects
the characteristic flashing behaviour of fireflies [33]. Firefly
algorithm comes with three assumptions: i) fireflies are
unisexual: fireflies could attract each other irrespective of their
gender.) The degree of attraction of fireflies is proportional

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

619 | P a g e

www.ijacsa.thesai.org

to the brightness and both are inversely proportional to
distance. If there are no brighter fireflies then fireflies will have
random movement. iii) Firefly brightness is dependent on the
objective function. In FA, fireflies show up in a swarm to
resolve a particular optimization task through brightness which
is identified by the fitness function, and movements of low
brightness fireflies to high brightness which is determined by
attractiveness.

In FA, the attraction between the flies involves two aspects;
the various light intensities and the modeling of attraction. For
a particular firefly at position brightness is given as
 () () while attraction is proportional to the flies and is
associated with the distance among fireflies .

Equation (6) demonstrates the inverse square of intensity ()
in which denotes the intensity of light from the source.

 ()
 (6)

Supposing an absorption factor of the environment ,
intensity is given in Equation 7 in which is the original
intensity.

 ()

 (7)

Essentially, the ED is given in Equation 8, which signifies
the distance between a firefly at position and another at

position . Where is the constituent of the spatial

coordinate

 ‖ ‖ √∑ (
)

 (8)

A firefly attracts a brighter one as demonstrated in Eq .9

in which attraction can be given by

 (), and

 [

] denotes the randomness based on the

randomization parameter .

 () [

] (9)

Additionally, variations of attractiveness are controlled by γ
which in turn influences the behavior and convergence speed
of FA.

III. RELATED WORK

For the past years, several research works have been
employed by different researchers to apply weighting
techniques for improving ABE. One of these methods is using
correlation coefficient analysis which is considered for feature
selection and weighting in terms of software development
effort estimation (SDEE) [41, 42] . In this case, project features
with weak correlation are considered the low features and are
assigned low weights while the features with higher correlation
are given the higher weight and considered the most similar.
The project features with no correlation are removed from the
set of historical projects.

Weighting-based methods, known as Rough Set Analysis
have been proposed for feature selection to better enhance the
ABE performance [17, 43, 44]. In rough set analysis, feature
dependency analysis generates several sub-sets of features

named classes [45]. The most similar features are obtained by
considering the intersection of all the classes. The frequency of
attributes in reducts, the number of attributes in a core set, and
the frequency of presence of attributes in decision rules are
used to build the weighting model in the rough set technique.
Another non-algorithmic method for estimation is Gray Theory
(GT) in which gray depicts the fuzzy process, where the white
and black represent known and unknown information
respectively [45]. It is a statistical technique for finding the
similarity degree by comparing two projects' features. Since it
also uses a comparison technique, it was employed to enhance
the performances [46, 47]. One of the vital aspects of
 is the solution function since it greatly influences the
estimation performance's correctness. According to various
studies, several attempts have been made to adjust expressions
as the solution function to enhance performance [15, 48-50].

Over many years, to modify the feature weighting of the
software estimation model, several optimization techniques
have been introduced. The genetic algorithm (GA) is
considered widely used optimization techniques for feature
weights computation in the ABE. Huang and Chiu [51] utilized
Genetic Algorithm to identify the best parameters in their
defined non-linear/linear equation(s). The parameters involved
in equations were determined as an improvement in the ABE’s
performances. There has been a combination of various
methods with a Genetic Algorithm for enhancing accuracy of
estimation model such as the Gray Relational Similarity (GRS)
method [46], regression techniques [52], and also linear
adjustment [15]. For example, Bardsiri, et al. [12, 53]
integrates Genetic Algorithms with fuzzy logic and artificial
Neural Network, to develop a localized effort estimation
process.

PSO has also been applied in many studies for improving
the software development effort estimation. For example,
Sheta, et al. [54, 55], Lin, and Tzeng [55] utilized the PSO
technique to enhance the performances of the COCOMO
estimation technique. In some scenarios, PSO has been shown
to be more computationally efficient than GA [56]. Wu et al.
applied the PSO algorithm for feature weight optimization in
the predefined similarity measure of the software estimation
approach [57]. Liu, et al. used PSO to reduce errors during the
training phase and enhance estimation [58]. Azzeh, et al. [2]
utilized the PSO algorithm to identify the optimum decision
variable where the trade-off between several evaluation metrics
is illustrated. Differential evolution have been used for feature
weight optimization in ABE [23]. ABC has also been applied
for the ABE optimization and indicated to outperform the PSO
method [3]. Bardsiri, et al. integrated PSO with simulated
annealing (SA) for feature weight optimization in ABE model
[59]. Ferrucci, et al. [60] conducted a research on the influence
of the fitness function. They showed that the model
performance could be enhanced by choosing suitable and
optimized performance measures. Essentially, the optimization
of the fitness functions performs an important impact in
estimation due to the complexity of software project.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

620 | P a g e

www.ijacsa.thesai.org

IV. THE PROPOSED FA-BASED OPTIMIZATION FOR

ANALOGY BASED ESTIMATION (FABE)

In the proposed approach, the FA is integrated with the
ABE model for improving the estimation accuracy.
Adaptability and Flexibility are two important properties of the
FA which make it capable to mitigate the issue of the
vagueness and complexity of software project attributes [33,
61]. Essentially, the main purpose of the FA is to identify the
most suitable feature weights that are to be used in the
similarity function. Weights are allocated for parameter
optimization to enhance the ABE performance. The system
architectures of the training and testing of the proposed
approach are illustrated in Fig. 1 and Fig. 2 respectively,
whereas Algorithm 2 shows the Pseudo-code of FABE.

A. Training Stage

Fig. 1 illustrates the training phase architecture of the
FABE approach. In the training stage, historical project data is
utilized for predicting the efforts of the training dataset.

In this stage, the model adjusts the weights of features
based on the FA in the Analogy-based Estimation similarity
function. The dependent feature is the development effort; all
others are considered independent features. In the training
phase all available dataset projects are divided into (basic,
train, test) subsets. For model construction in training stage
basic and training subsets are used. For model evaluation in
testing stage the basic and test subsets are involved. Training
projects are compared with basic projects to find suitable
weights and also testing projects are compared with basic for
performance evaluation. A project is taken away from the
training set and applied to the similarity function as a new
project that is to be determined.

Fig. 1. Training stage.

Estimated Effort

Yes

Yes No

Training data

Similarity function

Solution function

MRE

Is there project

left

Retrieve the k-Nearest

Neighbours

𝐌𝐌𝐑𝐄 𝐏𝐑𝐄𝐃 (𝟎.𝟐𝟓)

Take Project

Historical Data

Randomized generated features

weights Input

Ith Target Weight

Terminate

Optimal Weight

No

ABE

- Evaluate the fitness of fireflies

- Update light intensity

- Rank the fireflies and find

 the best

- Move fireflies to their better solution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

621 | P a g e

www.ijacsa.thesai.org

Algorithm 1: FABE Algorithm

Inputs :

f (.) objective function f(x)

 randomized parameter

 attraction coefficient

 Light Absorption Coefficient

POP population Size

Step 1: Initialize the population of n fireflies.

Step 2: new project is selected form training dataset, and the remaining others
projects are processed by ABE as historical projects.

Step 3: FABE feature weight parameter vector is encoded for the training

project.

Step 4: weight vector of range [0, 1] is generated randomly.

Step 5: The training project similarity metric is evaluated for the weight

vector selected randomly from pop.

Step 6: From the historical dataset obtain K closest analogies used in ABE,

and then predict effort value of the training project using different solution

functions.

Step 7: Until all training cases are treated with the same identical random

weight vector (created for the first training case) repeat steps 2-6.

Step 8: MRE for each individual is calculated based on the objective function.

Step 9: Training projects set accuracy metrics (MMRE, PRED (0.25)) are

evaluated.

Step 10: The Evolution step // Given that stopping criteria is not fulfilled.

Step 10.1: Evaluate the fitness of fireflies using objective function
Step 10.2: Update light intensity of the fireflies
Step 10.3: Rank the fireflies and find the best
Step 10.4: Move fireflies to their better solution

Step 10.5: Go to step 12 if the stopping criteria have been met. (maximum
number of iterations)

Step 11: Go to Step 10.

Step 12: EXIT.

Output: The best Candidate solution with the optimal weight vector is

chosen for the following Testing Stage.

The FA algorithm assigns weights to the independent
features used in the similarity function. The considered project
is compared with the basic projects based on the Equation (1).
The most similar projects are discriminated by the similarity
function to the removed project and take them to the solution
function. Finally, the effort is determined in a solution
function, and the is calculated. This procedure is
continued until all training projects are estimated. In the next
step, the error and prediction performances MMRE and PRED
(0.25) are calculated for a training group based on the
values. Reduce the value of and increases (.)
are the main goal of any estimation method which motivates
this study to Fine-tune FA for MMRE value minimization.

The weights are recorded to be used in the testing stage if
the termination requirements are met; otherwise, the FA
updates the weights taking into account the obtained
performance parameters. The similarity function is given new
weights, and all computations are carried out once more for the
training projects. Until the termination criteria are met, this
process is continued. The training phase of the model is shown
in Fig. 1. There are two rounds in the training phase, as shown
in the image, with the first one having to do with calculating
the for training projects and the second one having to
do with adjusting weights using the FA approach.

B. Testing Stage

The primary purpose of this phase will be to assess the
model's performance using hypothetical projects. Basic and
testing projects are used as the inputs for the similarity function
at this stage to examine how the suggested model performs.
Additionally, the training stage's optimized weights are used to
modify the similarity function. A project is separated from
testing projects, as was done in the training stage, and then put
up against basic projects through similarity function. Most
resemble projects to the removed project are chosen and
forwarded to predefined solution function. The amount of
MRE is calculated after estimating the effort. This procedure is
repetitive for all testing projects and, eventually, the value of
 and are calculated. Fig. 2 illustrates the test
phase of the proposed model. As previously mentioned, the
project feature weights proposed by FA are produced to help
the ABE accurately estimate the training projects effort as
possible.

Fig. 2. Testing phase.

The ABE uses basic projects in this instance for
comparison reason. Thus, two thirds of the current projects
available in the given dataset (basic and training subsets) are
utilized to obtain possible best weights, and the rest of the
projects available are treated as a test set. To achieve the
required precision, FA randomly produces the weights and
modifies them over the iterations.

In the suggested approach, feature weighting is done
thereby helping the ABE in producing better performances.
The ideal set of feature weight vectors could differ from one
execution run to the next because FA is a dynamic process that
generates variable weights at each iteration. As a result, the
weight allocated to a feature cannot be taken as the feature's
importance but rather as a component that ABE must use.

V. EXPERIMENTAL DESIGN

The experimental strategy employed in this study is
presented in the following section. First, the datasets used for
the experiment to evaluate the accuracy of the proposed FABE

Effort

Estimation

Testing

data

Similarity

function

Solution
function

Retrieve the k-

Nearest

Neighbors

Historical

Data

Input from the

Training Stage

Optimal

Weight

Analogy Based Estimation

Process

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

622 | P a g e

www.ijacsa.thesai.org

technique are described, then the performance evaluation
metrics. Further in this section, the process involved in the
experimental setup, as well as the validation method, is
explained and presented.

A. Dataset Description

To evaluate the performances of the proposed model, we
employ six different datasets, namely, Desharnais, Maxwell,
COMMMO, China, NASA, and International Software
Benchmarking Standard Group (ISBSG) The Desharnais
dataset contains Canadian projects. China dataset is based on
Chinese software projects. United States software projects are
contained in Cocomo81 and Nasa93 datasets. The
dataset is constructed based on of Finnish banking projects.
Dejaeger et al. [62] claimed to group dataset to categories such
as size, development, project data, and environment features.
The Statistics of the datasets are given in Table I. Datasets
effort values skewness is up to 6.6 [62, 63] Indicating
asymmetrically distributed of effort for each dataset which is a
thread for accurate estimation models.

International Software Benchmarking Standard Group
(ISBSG) is established Australia software based non-
commercial organization, which gathers data on software
projects from numerous countries globally [64]. In this study
ISBSG Release 11 dataset is employed. 5052 completed
software projects detailed information have been collected.
Software projects data collected from 24 countries are exist in
the historical dataset. Majority of projects origin are come from
USA with 30.7% percentage of all dataset, followed by Japan
with 16.7%, Australia 15.9%, and Finland with 10.2%.

B. Cross Validation

The performance evaluation will typically be rather
optimistic if the model accuracy is calculated based upon that
projects that are used during the implementation phase.

As the errors will always be small, it might result in a
biased model evaluation for estimating accuracy [56]. Thus, to
better evaluate the model accuracy, a cross-validation approach
is applied, which splits the entire dataset into several train and
test sets. The results of datasets that are utilized during model
construction are contained in the training sets. In testing stage,
unseen datasets are utilized for evaluating the accuracy and the
performance of all training and testing sets are merged for
cross-validation. In this research, we used a three-fold cross-
validation method for proposed model performance evaluation
as illustrated in Table II.

As can be seen from Table II, six different arrangements
can be considered for the model. Where S1, S2, and S3 are the
three subsets randomly selected from the set of all projects as
basic, training and testing sets accordingly. The sets involve
the similar number of projects. At each fold, evaluation
measure is calculated for two different arrangements, and the
mean is considered as the result of that fold. Finally the
accuracy is determined based on the mean of results computed
from all three stages.

TABLE I. DATASETS USED IN EXPEREMENTS

Dataset Projects count Features Unit Max Min Mean Median

Maxwell 62 27 Hours 63,694 583 8223.2 5189.5

Nasa93 18 3 Months 138.3 5 49.47 26.5

Cocomo81 63 17 Months 11,400 6 686 98

Desharnais 77 12 Hours 23,940 546 5046 3647

China 499 18 Hours 54,620 26 3921 1829

TABLE II. ILASTRATION OF CROSS-VALIDATION

S

S1 S2 S3

Possible arrangements

 Basic set Train set Test set

Fold 1

Fold 2

Fold 3

C. Evaluation Metrics

Several metrics have been used by different studies for
evaluating the performance of the comparison-based software
estimation method. Accordingly, the most widely used
measures include Relative Error () Mean Relative Error
() Percentage of Prediction () and Mean
Magnitude of Relative Error () . The mathematical
representation of these metrics can be given as follows:

 (10)

| |

 (11)

 ∑

 (12)

 ()

 (13)

 (14)

 ()

 (15)

 (16)

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (17)

Projects with MRE >= X (X is usually reserved at 0.25) is
denoted as PRED(X) as shown in Equation 6 and 7 where N
denote the number of projects. Increase PRED and decrease
MMRE is the main target of all software development effort
estimation models, accordingly Araújo, et al. [65] proposed
Evaluation Function (EF) measure that combined both MMRE
and PRED in equation 9 to improve accuracy evaluation for
software prediction model. MRE considered as a biased
performance metric since its produce asymmetric distribution
[22, 66]. MMRE and PRED both are derived from MRE they
are also considered as biased performance measure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

623 | P a g e

www.ijacsa.thesai.org

Mean Absolute Error (MAE) produced non-asymmetric
distribution on other side. Equation 8 and 9 shows how MAE
can be calculated. Because of non-standardized residual MAE
is difficult to interpret. SA was introduced by [22] it can be
calculated by Equation 10 (in large number of runs the mean of
random guessing is denoted as Mean Absolute Residual
(MARpo)) which is enhanced by [67] and used later to
estimates effect size as seen in Equation 11 (sample standard
deviation for the random guessing is denoted as Spo).
Reliability of the estimation model can be measured by SA as
if the prediction model is stated as useful. SA negative values
are not acceptable while zero value shows that the estimation

model is unreliable. Effect size (Δ) evaluates the estimation

results and the effectiveness of the mode is compared with
random guessing. () categorizes values in small
(.) medium (.) and large (.). If the value is equal or
greater than to . the results is considered as favourable [2,
22].

VI. EXPERIMENTAL RESULTS AND DISCUSSION

As stated earlier, the ABE technique uses three control
parameters, including similarity function, solution function and
K-nearest neighbour. In the experiment of this research, ED is
adopted for similarity function. Median and mean, are
considered as the solution function to compute the estimation
values. This section presents the performance results of the
proposed FABE model. We first present the experimental
results in terms of the MMRE, MdMRE, and PRED based on
the different control parameters, namely, Similarity, KNN, and
solution function then the later the SA results. Further, the
comparison results of the proposed model with existing
methods are presented later in the section.

The proposed FABE model performance is compared and
validated with commonly ABE weighting variants techniques,
namely traditionally ABE, feature weighting with Genetic
Algorithm in ABE (GAABE) [51] , feature weighting with
Particle Swarm Optimization in ABE (PSOABE) [53], feature
weighting with Differential evolution in ABE (DABE) [23],
feature weight optimization with Bee colony optimization in
ABE (BABE) [3], these estimation models are trained with
historical data and algorithmic settings are tuned automatically.

A. Performance of the Proposed Model

Training quality estimation results are extremely affected
by data pre-processing before main model execution started. In
this study all the independent features were normalized in
range (0 to 1) to produce same effect on software effort
dependent feature. For the experimentation of the proposed
FABE approach, we first investigate the possibility of getting
the best settings of the model. To this end, we use different
evaluation metrics namely (MMRE, MdMRE, PRED, and SA)
on two different datasets which include Desharnais and
Maxwell datasets. Also to assess the effect of the similarity
function, the Euclidian similarity metric is employed. The
results of the different values of the KNN (from 1 to 5)
alongside respective solution function (Median, Inverse
Weighted Mean, and Mean) metrics are recorded and shown in
Table III to Table VI accordingly. Thus, in this section, the
experimental results are presented and discussed. The main
purpose of the experiment was to obtain the appropriate ABE

configuration for the proposed model based on the different
parameters (k value, similarity Metric, solution function).

Table III and Table IV demonstrate the simulation results
of the FABE technique on the Desharnais and Maxwell
datasets indicating various combinations of the key model
parameters, such as KNN, similarity function, and solution
function, respectively. From the results, it can be observed that
the K value at 3 and Mean solution function are the most
suitable setting as computed for both MMRE , MdMRE in the
training and testing stage of the model on all the datasets,
namely, Desharnais and Maxwell.

TABLE III. PERFORMANCE ON DESHARNAIS DATASET

Similarity K Solution
Training Testing

MMRE PRED MMRE PRED

Euclidean

1 Closest 0.015 0.685 0.056 0.889

2 Inverse 0.051 0.127 0.089 0.201

 Mean 0.011 0.115 0.015 0.199

3 Inverse 0.051 0.185 0.089 0.291

 Mean 0.033 0.131 0.017 0.299

 Median 0.059 0.115 0.021 0.289

4 Inverse 0.051 0.245 0.089 0.381

 Mean 0.033 0.169 0.054 0.321

 Median 0.044 0.190 0.031 0.377

5 Inverse 0.051 0.282 0.089 0.480

 Mean 0.049 0.245 0.081 0.488

 Median 0.081 0.245 0.055 0.452

TABLE IV. PERFORMANCE ON MAXWELL DATASET

Similarity K Solution
Training Testing

MMRE PRED MMRE PRED

Euclidean

1 Closest

0.041 0.701 0.019 0.095

2 Inverse 0.059 0.542 0.049 0.091

 Mean 0.084 0.052 0.045 0.081

3 Inverse 0.059 0.085 0.049 0.302

 Mean 0.044 0.059 0.070 0.069

 Median 0.061 0.042 0.081 0.089

4 Inverse 0.059 0.117 0.049 0.181

 Mean 0.062 0.082 0.304 0.145

 Median 0.044 0.067 0.480 0.163

5 Inverse 0.059 0.155 0.049 0.158

 Mean 0.040 0.077 0.271 0.104

 Median 0.039 0.086 0.220 0.126

However, the PRED (0.25) metric test performances
showed that the most appropriate ABE setting for both these
datasets was K=3 and the ―Inverse Weighted Mean‖ solution
function. Thus to further confirm the best configuration of the
model thereby obtaining better performance, we also
investigate evaluation for another performance measure SA on
the Desharnais and Maxwell datasets.

Table V and Table VI demonstrate the SA results of the
Euclidean similarity function for the K=3, K=4, and K=5 on
the Desharnais and Maxwell datasets respectively concerning

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

624 | P a g e

www.ijacsa.thesai.org

both testing and training stage of the proposed model. The
results were evaluated against, maximum, minimum, average,
and standard deviation for the SA. Table V demonstrates the
SA values for Desharnais datasets. From results analysis, it can
be concluded that best values of the SA as maximum and
average in the training stage fall at K=3, with values of 95.120
and 39.899 respectively. Likewise based on testing stage, the
more suitable values happened at K=3 with an average and
maximum value of 63.436 and 93.688 respectively.

The SA results for the Maxwell datasets are demonstrated
in Table VI. From observed results, it could be realized that the
best performance in the training stage is at K=3 with the value
of the Average SA and Maximum SA being 51.955 and 95.900
respectively. Similarly, based on testing stage, the most
appropriate performance was observed at K=3 and the
maximum and average values of 96.938 and 52.923
respectively. It should be noted that in the experiment,
and K=2 were not considered for comparison since at these
values all solutions functions were not covered. Eventually, we
also conducted a simulation study on SA for Maxwell and
Desharnais datasets to father support investigation of solution
function best suited for the ideal value of K. SA was chosen as
a guideline principle for further results analysis in order to its
generalization capability.

Table VII and Table VIII demonstrate the SA results on
three solution functions, namely, Inverse Weighted Mean,

Median, and Mean on the Desharnais and Maxwell datasets
indicating the respective maximum, minimum, average, and
standard deviation of the SA respectively. Table VII shows the
Minimum, Minimum, Standard Deviation, and Average of the
SA of solution function (median, mean, and inverse weighted
mean) for the Desharnais dataset. From the results, it can be
observed the average and maximum SA values were recorded
to be 35.027 and 56.445 respectively for the ―mean‖ as a
solution function. Similarly, Table VIII shows lists of the
maximum, minimum, average, and standard deviation of SA
for the ―mean‖, median, and inverse solution functions for the
Maxwell dataset. The results show that the average and optimal
maximum SA values were reported to be 65.157 and 98.019,
respectively, for the ―mean‖ solution function. Based on the
reported results in this section it was concluded that the most
appropriate setting of the ABE is the ―Mean ―as a solution
function and K=3.

B. Discussion

In this section the performance of the proposed FABE was
validated and compared with the state-of–the-art ABE models,
namely, traditional Analogy-Based Effort (ABE), GA-based
ABE, PSO-ABE, and BABE (Bee Colony-based), and
Differential Evolution in ABE(DABE). All estimation methods
were adjusted automatically using historical datasets and the
algorithm parameters.

TABLE V. SA RESULTS ON DESHARNAIS DATASET

K
Training Testing

Max. SA Min. SA Avg.SA Std.SA Max. SA Min. SA Avg.SA Std.SA

3 95.120 13.026 39.899 18.113 93.688 36.185 63.436 25.571

4 92.015 10.955 33.791 26.251 86.944 21.978 59.099 14.941

5 54.156 15.304 26.981 9.615 92.871 25.357 67.717 11.833

TABLE VI. SA RESULTS ON MAXWELL DATASET

K
Training Testing

Max. SA Min. SA Avg.SA Std.SA Max. SA Min. SA Avg.SA Std.SA

3 95.900 19.665 51.955 20.018 96.938 21.677 52.923 9.226

4 91.502 15.255 41.711 13.320 69.933 19.100 31.990 5.340

5 40.351 23.089 22.962 3.054 95.841 27.720 58.65 8.026

TABLE VII. RESULTS OF SOLUTION FUNCTIONS FOR BEST K VALUES ON DESHARNIAS DATASET

Solution

Function

Training Testing

Max. SA Min. SA Avg.SA Std.SA Max. SA Min. SA Avg.SA Std.SA

Mean 56.445 29.843 35.027 3.018 89.825 32.421 56.198 17.220

IWM 89.801 32.086 36.412 37.06 86.522 28.599 71.759 19.001

Median 90.221 23.311 54.082 15.217 84.025 51.512 65.979 14.098

TABLE VIII. RESULTS OF SOLUTION FUNCTIONS FOR BEST K VALUES ON MAXWELL DATASET

Solution

Function

Training Testing

Max. SA Min. SA Avg.SA Std.SA Max. SA Min. SA Avg.SA Std.SA

Mean 88.261 30.483 49.970 17.701 98.019 51.220 65.157 16.551

IWM 87.016 16.921 37.028 28.990 85.990 35.255 59.988 15.071

Median 91.910 44.526 71.990 18.007 72.051 54.044 58.100 13.166

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

625 | P a g e

www.ijacsa.thesai.org

TABLE IX. PRECISIONS VALUES FOR FRIEDMAN STATISTICAL ANALYSIS TEST

Estimation

Models

Datasets

China Cocomo81 Nasa93 Maxwell Desharnais ISBSG

ABE 12.493 24.531 11.488 13.411 13.235 41.27

GAABE 86.196 91.812 90.324 88.423 89.332 51.638

BABE 97.621 99.201 94.982 84.18 84.205 68.82

DABE 96.509 98.94 94.234 84.91 83.66 65.09

PSOABE 92.88 88.016 93.01 83.63 88.854 56.08

FABE 98.426 99.711 95.009 85.661 85.012 71.803

Table IX shows the SA comparison results of the proposed
FABE model with the existing approaches on six datasets
namely Desharnais, Maxwell, Nasa93, China, and ISBSG
based on the ―Mean‖ solution function and K=3 Euclidian
similarity. The SA values of FABE model for training and
testing on Cocomo81, Nasa93 and China are (97.005, 99.711),
(96.752, 95.009) and (96.973, 98.426) respectively. The
values for this proposed model on each dataset are as,
Cocomo81 (Training:0.234,Testing: 0.129), China
(Training:0.219 ,Testing: 0.209) ,and Nasa93
(Training:0.251,Testing:0.159). From the detailed comparison
results, it can be observed that the proposed FABE approach
outperforms existing models.

Fig. 3. FABE percentage of improvement against existing models.

TABLE X. FABE PERCENTAGE OF IMPROVEMENT

ABE GAABE DABE PSOABE BABE

Cocomo81 76% 8% 1% 12% 0%

Maxwell 72% -3% 2% 2% 1%

China 87% 13% 2% 6% 1%

Desharnais 72% -5% 2% -3% 1%

Nasa93 84% 6% 1.5% 2% 1%

ISBSG 30% 20% 6% 16% 3%

Fig. 3 and Table X demonstrate the average improvements
achieved by the proposed FABE model compared to the
existing models. For example in Cocomo81 dataset, it
presented 8%, 1%, 12%, and 76 against GABE, DABE,
PSOABE and traditional ABE. It presented 6%, 1.5%, 2%, 1%
and 84% against GABE, DABE, PSOABE, BABE and
traditional ABE respectively on Nasa93 dataset. For
Cocomo81 dataset FABE performance is found at par BABE.
In China, it presented improvements of 13%, 2%, 6%, 1% and

87% against GABE, DABE, PSOABE, BABE and traditional
ABE respectively. It presented a percentage decrease of 5%
and 3% against GABE and PSOABE respectively on
desharnais dataset, whereas showed an improvement of 1%,
2%, and 72% against BABE, DABE and traditional ABE. In
Maxwell dataset, FABE presented 2%, 2%, 1% and 72%
improvement against DABE, PSOABE and traditional ABE
respectively whereas it presented a percentage decrease of 3%
against GABE. For ISBSG that considered the largest among
all given datasets, it presented 20%, 6%, 16%, 3% and 30%
against GABE, DABE, PSOABE,BABE and traditional ABE
respectively, which is considered as significant improvement.

It can be concluded from result analysis that the size and
type of dataset affect weight optimization techniques
performance on ABE model. In the ISBSG dataset FABE
outperformed existing optimization weight techniques
significantly on the selected software projects for ABE model.
Statistical analysis to validate FABE model performance is
performed since results on different datasets are various.

VII. STATISTICAL PERFORMANCE EVALUATION

Statistical analysis is very important in finding the
appropriateness of one technique to another. From the
discussion in the previous section, it is obvious that the FABE
approach provides the best results compared to the compared
methods but now using statistical analysis this will be further
confirmed. In this research owing to the fact that software
engineering datasets have an issue such that each sub-
population has non-contact variance, we employed
nonparametric test for the analysis. A null hypothesis would be
specified prior performing the test. This determines the
differences or equality among the results of the models and
enables alternative hypotheses to support the opposite
condition to be assessed.

The null hypothesis is denoted as , and the alternative
hypothesis is represented as . This test can be used to reject
the hypothesis at a particular of significance level . The p-
value is indicated with this level, which represents achieve
probability at least as high as expected while null hypothesis is
valid. It is recommended to apply p-value instead of since it
can estimate results significantly (as p value is small this show
strong validation against null hypothesis) [68]. Non-parametric
tests can be classified into multiple comparisons like Friedman
test and pair wise like Wilcoxon Signed test, in case of
experiment that considers more than two algorithms or models
it is recommended to use multiple comparisons test [69, 70]. In
this case, the following hypothesis is considered:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

626 | P a g e

www.ijacsa.thesai.org

 : All feature weight optimization prediction models are
equivalent on ABE.

To test the null hypothesis, we employed the Freidman test
that is stated by Demšar[70] and García, et al [71]. For
Friedman test, initially, original results transformed into ranks
each model according to each dataset. Best model value is
assigned rank 1; second-best one is assigned rank 2 and so on.

Accordingly, we assign ranks
 , to the of models on the

 of data sets based on their accuracy. The Freidman
statistic () can be given by equation.

()

 ()
 (18)

Whereas is Chi-Square value is given by
 in equation.

 ()
[∑

 ()

] (19)

The Degree of Freedom (DF) is equal to K-1, in this
performed experiments, value of K=6 and so the value of

DF=5. The sigma value of
 in related studies is considered as

0.01 or less. Based on Chi-square table the value of
 should

be greater than 15.086. Friedman test statistic is presented in
Table XII. Chi-Square value computed as 19.714, which allows
the null hypothesis to be rejected. For each model test ranks are
presented in Table XIII and also descriptive statistics of
Friedman Test presented in Table XI.

The worst and best-performance model can be identified
after the null hypothesis is rejected. From Table XIII which
represents mean ranks best-worst performance information can
be derived. It can be concluding from Table XIII that FABE is
performing best model followed by BABE. The lowest ranked
model among comparative models is ABE.

TABLE XI. DESCRIPTIVE STATISTIC OF FRIDMAN TEST

Model N Mean Std. Deviation Minimum Maximum
Percentiles

25th 50th 75th

ABE 6 19.40467 11.737169 11.488 41.270 12.24175 13.32300 28.71575

GAABE 6 82.95417 15.456858 51.638 91.812 77.55650 88.87750 90.69600

DABE 6 87.10217 12.525246 65.090 98.940 79.01750 89.20700 97.11675

PSOABE 6 83.74500 13.992835 56.080 93.010 76.74250 88.43500 92.91250

BABE 6 88.28983 11.472514 68.820 99.201 80.35875 89.94600 98.01600

FABE 6 89.60367 10.847327 71.803 99.711 81.70975 91.33500 98.74725

TABLE XII. DESCRIPTIVE STATISTIC OF FRIEDMAN TEST

N 6

Chi-Square 19.714

df 5

Asymp. Sig. .001

TABLE XIII. MEAN RANKS OF MODELS

Model Mean Rank

ABE 1.00

GAABE 3.50

DABE 3.50

PSOABE 3.00

BABE 4.50

FABE 5.50

VIII. CONCLUSION

In this research, we proposed a weight optimization method
for analogy-based estimation based on the firefly algorithm
(FA). An estimation model is built and assessed during the
training and testing phases of the suggested framework. FA
considers all potential weights and chooses those that will
produce the more accurate estimations. By giving project
features the most suitable weights, the ABE method's
comparison process quality was enhanced. Six datasets were
used to test the accuracy of the proposed approach and a cross-
validation method was used to calculate the performance
metrics for the MMRE, PRED (0.25), MdMRE, SA, and Size

Measure. The positive outcomes demonstrated that the
suggested model can greatly improve the accuracy of
estimations based on different metrics. The effectiveness of the
proposed FABE technique was demonstrated in all datasets
when the obtained results were contrasted with six widely used
estimating models. The combination of FA and ABE resulted
in a high-performance model for estimating software
development effort, according to the findings from the datasets.
In future work we intended to combine existing technique in
this study with missing data imputation models to pursue for
furthermore improvement on estimation accuracy.

REFERENCES

[1] Jones, T.C., Estimating software costs. 2007: McGraw-Hill, Inc.

[2] Azzeh, M., et al., Pareto efficient multi-objective optimization for local
tuning of analogy-based estimation. Neural Computing and
Applications, 2016. 27(8): p. 2241-2265.

[3] Shah, M.A., et al., Ensembling artificial bee colony with analogy-based
estimation to improve software development effort prediction. IEEE
Access, 2020. 8: p. 58402-58415.

[4] Gautam, S.S. and V. Singh, The state‐of‐the‐art in software development
effort estimation. Journal of Software: Evolution and Process, 2018.
30(12): p. e1983.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

627 | P a g e

www.ijacsa.thesai.org

[5] Trendowicz, A. and R. Jeffery, Software project effort estimation.
Foundations and Best Practice Guidelines for Success, Constructive
Cost Model–COCOMO pags, 2014: p. 277-293.

[6] Kaur, A. and K. Kaur, Systematic literature review of mobile application
development and testing effort estimation. Journal of King Saud
University-Computer and Information Sciences, 2022. 34(2): p. 1-15.

[7] Jadhav, A., M. Kaur, and F. Akter, Evolution of software development
effort and cost estimation techniques: five decades study using
automated text mining approach. Mathematical Problems in
Engineering, 2022. 2022: p. 1-17.

[8] Wen, J., et al., Systematic literature review of machine learning based
software development effort estimation models. Information and
Software Technology, 2012. 54(1): p. 41-59.

[9] Jorgensen, M. and M. Shepperd, A systematic review of software
development cost estimation studies. IEEE Transactions on software
engineering, 2006. 33(1): p. 33-53.

[10] Idri, A., F. azzahra Amazal, and A. Abran, Analogy-based software
development effort estimation: A systematic mapping and review.
Information and Software Technology, 2015. 58: p. 206-230.

[11] Walkerden, F. and R. Jeffery, An empirical study of analogy-based
software effort estimation. Empirical software engineering, 1999. 4(2):
p. 135-158.

[12] Bardsiri, V.K., et al., A flexible method to estimate the software
development effort based on the classification of projects and
localization of comparisons. Empirical Software Engineering, 2014.
19(4): p. 857-884.

[13] Dolado, J.J., On the problem of the software cost function. Information
and Software Technology, 2001. 43(1): p. 61-72.

[14] Li, Y.-F., M. Xie, and T.N. Goh, A study of project selection and feature
weighting for analogy based software cost estimation. Journal of
Systems and Software, 2009. 82(2): p. 241-252.

[15] Chiu, N.-H. and S.-J. Huang, The adjusted analogy-based software effort
estimation based on similarity distances. Journal of Systems and
Software, 2007. 80(4): p. 628-640.

[16] Sigweni, B. and M. Shepperd. Feature weighting techniques for CBR in
software effort estimation studies: a review and empirical evaluation. in
Proceedings of the 10th International Conference on Predictive Models
in Software Engineering. 2014.

[17] Li, J. and G. Ruhe, Analysis of attribute weighting heuristics for
analogy-based software effort estimation method AQUA+. Empirical
Software Engineering, 2008. 13(1): p. 63-96.

[18] Sehra, S.K., et al., Research patterns and trends in software effort
estimation. Information and Software Technology, 2017. 91: p. 1-21.

[19] Phannachitta, P. Robust comparison of similarity measures in analogy
based software effort estimation. in 2017 11th International Conference
on Software, Knowledge, Information Management and Applications
(SKIMA). 2017. IEEE.

[20] Ali, A. and C. Gravino, Improving software effort estimation using bio-
inspired algorithms to select relevant features: An empirical study.
Science of Computer Programming, 2021. 205: p. 102621.

[21] Chen, Z., et al. Feature subset selection can improve software cost
estimation accuracy. in ACM SIGSOFT Software Engineering Notes.
2005. ACM.

[22] Shepperd, M. and S. MacDonell, Evaluating prediction systems in
software project estimation. Information and Software Technology,
2012. 54(8): p. 820-827.

[23] Benala, T.R. and R. Mall, DABE: Differential evolution in analogy-
based software development effort estimation. Swarm and Evolutionary
Computation, 2018. 38: p. 158-172.

[24] Keung, J.W., B.A. Kitchenham, and D.R. Jeffery, Analogy-X: providing
statistical inference to analogy-based software cost estimation. IEEE
Transactions on Software Engineering, 2008. 34(4): p. 471-484.

[25] Kocaguneli, E., et al., Exploiting the essential assumptions of analogy-
based effort estimation. IEEE Transactions on Software Engineering,
2011. 38(2): p. 425-438.

[26] Malathi, S. and S. Sridhar, Detection of Aberrant Data Points for an
effective Effort Estimation using an Enhanced Algorithm with Adaptive
Features. Journal of Computer Science, 2012. 8(2): p. 195.

[27] Tosun, A., B. Turhan, and A.B. Bener, Feature weighting heuristics for
analogy-based effort estimation models. Expert Systems with
Applications, 2009. 36(7): p. 10325-10333.

[28] Jodpimai, P., P. Sophatsathit, and C. Lursinsap. Estimating software
effort with minimum features using neural functional approximation. in
2010 International Conference on Computational Science and Its
Applications. 2010. IEEE.

[29] Shahpar, Z., V. Khatibi, and A. Khatibi Bardsiri, Hybrid PSO-SA
approach for feature weighting in analogy-based software project effort
estimation. Journal of AI and Data Mining, 2021. 9(3): p. 329-340.

[30] Dashti, M., et al., LEMABE: a novel framework to improve analogy-
based software cost estimation using learnable evolution model. PeerJ
Computer Science, 2022. 7: p. e800.

[31] Slowik, A., Swarm Intelligence Algorithms: A Tutorial. 2020.

[32] Blum, C. and D. Merkle, Swarm intelligence: introduction and
applications. 2008: Springer Science & Business Media.

[33] Yang, X.-S. Firefly algorithms for multimodal optimization. in
International symposium on stochastic algorithms. 2009. Springer.

[34] Das, S., et al., Real-parameter evolutionary multimodal optimization—A
survey of the state-of-the-art. Swarm and Evolutionary Computation,
2011. 1(2): p. 71-88.

[35] Fister, I., et al., A comprehensive review of firefly algorithms. Swarm
and Evolutionary Computation, 2013. 13: p. 34-46.

[36] Yang, X.-S., Firefly algorithm, stochastic test functions and design
optimisation. arXiv preprint arXiv:1003.1409, 2010.

[37] Khaze, S.R., S. Hojjatkhah, and A. Bagherinia, Evaluation the efficiency
of artificial bee colony and the firefly algorithm in solving the
continuous optimization problem. arXiv preprint arXiv:1310.7961,
2013.

[38] Shepperd, M. and C. Schofield, Estimating software project effort using
analogies. IEEE Transactions on software engineering, 1997. 23(11): p.
736-743.

[39] Kadoda, G., et al. Experiences using case-based reasoning to predict
software project effort. in Proceedings of the EASE 2000 conference,
Keele, UK. 2000. Citeseer.

[40] Angelis, L. and I. Stamelos, A simulation tool for efficient analogy
based cost estimation. Empirical software engineering, 2000. 5(1): p. 35-
68.

[41] Keung, J.W. and B. Kitchenham. Optimising project feature weights for
analogy-based software cost estimation using the mantel correlation. in
14th Asia-Pacific Software Engineering Conference (APSEC'07). 2007.
IEEE.

[42] Wen, J., S. Li, and L. Tang. Improve analogy-based software effort
estimation using principal components analysis and correlation
weighting. in 2009 16th Asia-Pacific Software Engineering Conference.
2009. IEEE.

[43] Li, J., et al., A flexible method for software effort estimation by analogy.
Empirical Software Engineering, 2007. 12(1): p. 65-106.

[44] Li, J. and G. Ruhe. Decision support analysis for software effort
estimation by analogy. in Third International Workshop on Predictor
Models in Software Engineering (PROMISE'07: ICSE Workshops
2007). 2007. IEEE.

[45] Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning about Data
Kluwer Academic Publishers. Dordrecht, 1991.

[46] Hsu, C.-J. and C.-Y. Huang, Comparison of weighted grey relational
analysis for software effort estimation. Software Quality Journal, 2011.
19(1): p. 165-200.

[47] Song, Q. and M. Shepperd, Predicting software project effort: A grey
relational analysis based method. Expert Systems with Applications,
2011. 38(6): p. 7302-7316.

[48] Jørgensen, M., U. Indahl, and D. Sjøberg, Software effort estimation by
analogy and ―regression toward the mean‖. Journal of Systems and
Software, 2003. 68(3): p. 253-262.

[49] Kaushik, A., P. Kaur, and N. Choudhary, Stacking regularization in
analogy-based software effort estimation. Soft Computing, 2022. 26(3):
p. 1197-1216.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

628 | P a g e

www.ijacsa.thesai.org

[50] Azzeh, M., A.B. Nassif, and L.L. Minku, An empirical evaluation of
ensemble adjustment methods for analogy-based effort estimation.
Journal of Systems and Software, 2015. 103: p. 36-52.

[51] Huang, S.-J. and N.-H. Chiu, Optimization of analogy weights by
genetic algorithm for software effort estimation. Information and
software technology, 2006. 48(11): p. 1034-1045.

[52] Oliveira, A.L., et al., GA-based method for feature selection and
parameters optimization for machine learning regression applied to
software effort estimation. information and Software Technology, 2010.
52(11): p. 1155-1166.

[53] Bardsiri, V.K., et al., A PSO-based model to increase the accuracy of
software development effort estimation. Software Quality Journal, 2013.
21(3): p. 501-526.

[54] Sheta, A.F., A. Ayesh, and D. Rine, Evaluating software cost estimation
models using particle swarm optimisation and fuzzy logic for NASA
projects: a comparative study. International Journal of Bio-Inspired
Computation, 2010. 2(6): p. 365-373.

[55] Lin, J.-C. and H.-Y. Tzeng. Applying particle swarm optimization to
estimate software effort by multiple factors software project clustering.
in 2010 International Computer Symposium (ICS2010). 2010. IEEE.

[56] Bardsiri, V.K., et al., Increasing the accuracy of software development
effort estimation using projects clustering. IET software, 2012. 6(6): p.
461-473.

[57] Wu, D., J. Li, and Y. Liang, Linear combination of multiple case-based
reasoning with optimized weight for software effort estimation. The
Journal of Supercomputing, 2013. 64(3): p. 898-918.

[58] Liu, Q., et al. Optimizing non-orthogonal space distance using pso in
software cost estimation. in 2014 IEEE 38th Annual Computer Software
and Applications Conference. 2014. IEEE.

[59] Shahpar, Z., V.K. Bardsiri, and A.K. Bardsiri, Polynomial analogy‐
based software development effort estimation using combined particle
swarm optimization and simulated annealing. Concurrency and
Computation: Practice and Experience, 2021. 33(20): p. e6358.

[60] Ferrucci, F., et al. Genetic programming for effort estimation: an
analysis of the impact of different fitness functions. in 2nd International
Symposium on Search Based Software Engineering. 2010. IEEE.

[61] Ghatasheh, N., et al., Optimizing software effort estimation models
using firefly algorithm. arXiv preprint arXiv:1903.02079, 2019.

[62] Dejaeger, K., et al., Data mining techniques for software effort
estimation: a comparative study. IEEE transactions on software
engineering, 2011. 38(2): p. 375-397.

[63] Menzies, T., et al., The promise repository of empirical software
engineering data. West Virginia University, Department of Computer
Science, 2012.

[64] González-Ladrón-de-Guevara, F., M. Fernández-Diego, and C. Lokan,
The usage of ISBSG data fields in software effort estimation: A
systematic mapping study. Journal of Systems and Software, 2016. 113:
p. 188-215.

[65] Araújo, R.d.A., A.L. Oliveira, and S. Soares, A shift-invariant
morphological system for software development cost estimation. Expert
Systems with Applications, 2011. 38(4): p. 4162-4168.

[66] Myrtveit, I. and E. Stensrud, Validity and reliability of evaluation
procedures in comparative studies of effort prediction models. Empirical
Software Engineering, 2012. 17(1): p. 23-33.

[67] Langdon, W.B., et al., Exact mean absolute error of baseline predictor,
MARP0. Information and Software Technology, 2016. 73: p. 16-18.

[68] Zar, J.H., Biostatistical analysis. 1999: Pearson Education India.

[69] Derrac, J., et al., Analyzing convergence performance of evolutionary
algorithms: A statistical approach. Information Sciences, 2014. 289: p.
41-58.

[70] Demšar, J., Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine learning research, 2006. 7: p. 1-30.

[71] García, S., et al., Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information sciences,
2010. 180(10): p. 2044-2064.

