
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

661 | P a g e  

www.ijacsa.thesai.org 

Enhanced Gravitational Search Algorithm Based on 

Improved Convergence Strategy 

Norlina Mohd Sabri1*, Ummu Fatihah Mohd Bahrin2 , Mazidah Puteh3  

College of Computing-Informatics and Media, 

Universiti Teknologi MARA Cawangan Terengganu, Kampus Kuala Terengganu, Malaysia 

 

 
Abstract—Gravitational search algorithm (GSA) is one of the 

metaheuristic algorithms that has been popularly implemented in 

solving various optimization problems. The algorithm could 

perform better in highly nonlinear and complex optimization 

problems. However, GSA has also been reported to have a weak 

local search ability and slow searching speed to achieve its 

convergence. This research proposes two new parameters in 

order to improve GSA’s convergence strategy by improving its 

exploration and exploitation capabilities. The parameters are the 

mass ratio and distance ratio parameters. The mass ratio 

parameter is related to the exploration strategy, while the 

distance ratio parameter is related to the exploitation strategy of 

the enhanced GSA (eGSA). These two parameters are expected 

to create a good balance between the exploration and the 

exploitation strategies in eGSA. There are seven benchmark 

functions that have been tested on eGSA. The results have shown 

that eGSA has been able to produce good performance in the 

minimization of fitness values and execution times, compared 

with two other GSA variants. The testing results have shown that 

the enhancements made to GSA have successfully improved the 

algorithm’s convergence strategy. The improved convergence has 

also been able to improve the algorithm’s solution quality and the 

processing time. It is expected that eGSA could be applied in 

many fields and solve various optimization problems efficiently. 
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I. INTRODUCTION 

Gravitational Search Algorithm (GSA) is a physics based 
metaheuristic algorithm which has been adapted to solve 
various optimization problems. The algorithm has been one of 
the popular optimization algorithms that has been adopted by 
the researchers [1]. GSA has been reported to have the 
capability to solve highly nonlinear and complex engineering 
optimization problems effectively [2-4]. Based on literatures, 
GSA has demonstrated better performance in solving 
optimization problems such as for constrained, unconstrained, 
continuous, discrete and multi objective optimizations [5, 6]. 
The algorithm has produced better performance than the other 
well-known algorithms such as Particle Swarm Optimization 
(PSO) and Genetic Algorithm (GA) in solving various 
optimization problems [5, 7, 8]. 

Among of the advantages of GSA are such as simple 
concept, less control parameters and able to balance the 
exploration and exploitation in the optimization [9-12]. The 
exploration capability is related to the ability of the algorithm 
to expand the search space for good solutions. Algorithms must 
use exploration strategies at the beginning to avoid trapping in 

the local optimum. Exploitation in the metaheuristics is related 
to the convergence strategy or the ability to find the near 
optimal solution among good solutions. The strategies to 
achieve convergence are different for each of the algorithms. 
An optimal result is determined by the good balance between 
the exploration and exploitation capabilities. 

As for GSA, the algorithm’s exploitation characteristic has 
been reported to produce longer execution time to reach the 
optimal solution [13, 14]. The presence of agents with heavier 
masses at the end of run has contributed to longer 
computational time needed for the algorithm to reach the 
optimal solution. It has been reported that GSA suffers long 
computational time compared to other well-known algorithms. 
Based on literatures, the original GSA has been reported to 
have a poor local search ability and slow searching speed in the 
last iteration. The particles tend to get stuck in the local optima 
in the last stage of iterations. Due to the problem, the swarm 
cannot converge to the optimal point even though the particles 
could cluster to a small domain [15-17]. The algorithm requires 
more time to reach the optimal solution due to the presence of 
heavier masses at the end of run [18, 19]. 

Based on the reported problems, GSA has been suffering 
from the weak exploitation in certain problem domains. Due to 
the weakness, many enhancements and modifications have 
been done to GSA in order to improve its performance. 
Various GSA variants have been designed in order to improve 
its convergence rate, computational time and the solution 
quality. Some of the variants have focused on the 
modifications of the behavior of GSA by introducing new 
parameters or functions to the algorithm’s structure. Among of 
the previously introduced parameters are L´evy flight operator 
and disruption operator [20,21]. The L´evy flight operator is 
designed to avoid the premature convergence, while the 
disruption operator improves the exploration and exploitation 
abilities of GSA. The other concepts are the adaptation of 
clustering method, stochastic local neighborhood search, chaos 
theory and natural selection rules [22-25]. These concepts have 
been introduced to reduce the complexity and computation of 
GSA and to avoid from local optima. The concepts which are 
related to physics theory such as astrophysics, mass dispersed 
gravity and wave function have also been introduced to the 
standard GSA in order to improve the algorithm’s performance 
[26, 27, 21]. These modifications could enhance the global 
searching capability of GSA and also help the agent to escape 
from local optima. 

The previous enhancements have considered the balance 
between the exploration and exploitation capabilities of the 
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algorithm to achieve efficient searches. The good balance of 
the exploration and exploitation capabilities could be achieved 
by assigning the specific parameters or operators to the 
algorithm to produce specific capabilities [21]. Based on 
literatures, there are many additional parameters that have been 
introduced such as the escape velocity operator to improve the 
velocity [28], differential factor parameter to balance the global 
and local searches [29], chaotic perturbation operator to 
improve the exploitation [24] and disruption operator to avoid 
weaker agents [21]. GSA tends to get stuck in the last iteration 
after performing well at the beginning. Due to the problem, 
there is a need to add new operators into GSA in order to 
increase its efficiency in solving nonlinear optimization 
problems [30]. Hence, this research is proposing the 
enhancement of GSA with the introduction of mass ratio 
parameter and distance ratio parameter to the algorithm. The 
mass ratio parameter is designed to improve the exploration 
strategy, while the distance ratio parameter is designed to 
improve the exploitation strategy. The objective of the research 
is to improve the convergence of GSA by improving both of 
the exploration and exploitation capabilities of the algorithm. 
In this research, the original structure of GSA is modified to 
further improve its performance. The new parameters have 
been designed based on the basis that the parameters should be 
able to select only better agents as the active agents for the 
calculation of forces, while improving the exploration and 
exploitation capabilities. It is expected that this proposed 
convergence strategy could improve GSA in obtaining better 
optimal solution and improve its computational time. 

This paper is organized into several sections. The earlier 
sections present the introduction and overview of GSA. The 
later sections explains the enhancements of GSA, the 
benchmark testing, results of the analyses and discussion. 
Finally the paper is summarized through the conclusion of the 
research. 

II. LITERATURE REVIEW 

A. Gravitational Search Algorithm (GSA) 

Gravitational Search Algorithm (GSA) was developed by 
Rashedi et al. in 2009, which was based on Newton’s law of 
gravity and law of motion [31]. In Newton’s law of gravity, the 
force between two objects is directly proportional to the 
product of their masses and inversely proportional to the square 
of the distance between the objects. The second law of motion 
states that when a force is applied to an object, the acceleration 
is depending on the force and the mass. GSA is represented by 
agents, which carry their own masses in the search space. The 
following steps show the basic procedures of GSA: 

1) Randomized initialization. 

2) Fitness evaluation of agents. 

3) Update G(t), best(t), worst(t) and Mi(t) for i = 1,2,...,N. 

4) Calculation of the total force in different directions. 

5) Calculation of acceleration and velocity. 

6) Updating agents’ position. 

7) Repeat steps 2 to 6 until the stopping criterion is 

reached. 

Based on the GSA procedures, the first step is the random 
initialization of the population of agents. The fitness values of 
the agents are evaluated in the second step. In the third step, the 
gravitational constant G(t) is updated based on the time 
execution, while the agents’ masses, best and worst of the 
population are evaluated. In the fourth step, based on the 
evaluations, the total force in different direction of agents is 
calculated. The total force value leads to the updates of the 
acceleration and velocity of an agent as in the fifth step. 
Equation (1) and (2) show the computation of the acceleration 
a and the velocity v respectively. The acceleration a of an agent 
at iteration t is calculated based on the total force, Fid(t) and 
mass, Mii(t) as shown by (1). In the sixth step, the position 
value x of an agent is calculated based on (3) after the velocity 
value v has been obtained. After the maximum iteration has 
been reached, the execution would stop and return the optimal 
solution. In GSA, the biggest mass corresponds to the optimal 
solution while its position is the solution to the problem. 

ai
d(t) = Fi

d(t) / Mii(t)                      (1) 

vi
d(t+1) = randi x vi

d(t) + ai
d(t)     (2) 

xi
d(t+1) = xi

d(t) + vi
d(t+1)            (3) 

III. METHODOLOGY 

A. Enhancements of GSA 

GSA has widely been improved since its introduction in 
2009. Over the years, various GSA variants have been 
designed in order to improve its performance. The significant 
contributions in GSA have been focusing on improving the 
convergence rate, reducing computational efforts and 
improving the solution quality. Based on the previous studies 
on the improvement of GSA, the enhancements could be 
categorized into two approaches. One of the approaches is the 
modifications of the behavior of GSA by introducing new 
parameters or functions to GSA structure, while another 
approach is the hybridization of GSA with other intelligent 
techniques. 

In this research, the exploration and the exploitation 
strategy of GSA is studied to overcome its convergence issues 
and improve the execution time. There are two new parameters 
that have been designed in the enhancements, namely mass 
ratio and distance ratio parameters. The mass ratio parameter is 
related to the exploration strategy, while the distance ratio 
parameter is related to the exploitation strategy of the enhanced 
GSA (eGSA). 

B. Mass Ratio Parameter 

The first enhancement of eGSA is the introduction of the 
mass ratio parameter, which is aimed to reduce the number of 
active agents in the search space. Based on the original concept 
of GSA, only Kbest agents should attract other agents to 
improve the algorithm’s performance [31]. Kbest agents are the 
set of agents with better fitness values and bigger masses. In 
GSA, only Kbest agents should apply forces to the others to 
control the exploration and exploitation capabilities of the 
algorithm. This research is proposing a mass ratio parameter to 
select the set of Kbest agents in the search space. Based on the 
parameter, only agents with bigger masses will become active 
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in attracting the other masses in the search space. The formula 
for the mass ratio parameter is shown in (4). 

Mass Ratio = Mi / Mbest                               (4) 

where: 

Mi = mass of an agent 

Mbest = biggest mass in the search space 

Based on (4), the mass ratio of an agent is obtained by 
dividing its mass with the biggest mass in the search space. 
The set of Kbest agents is the agents with mass ratio values in 
the interval [0.1, 1.0]. These Kbest agents would apply forces 
with each other within the given mass ratio values. This mass 
ratio approach is introduced to control the search for good 
candidate solutions in the search space based on the ratio of the 
biggest mass. Fig. 1 shows the concept of mass ratio approach 
among the agents. This approach is applying exploration at the 
beginning when all of the Kbest agents apply forces to each 
other. However, since Kbest is a function of time, its initial 
value of K0 will decrease linearly with lapse of time. By the end 
of the iteration, there will be only one Kbest agent that applies 
force to the others. By the end of the iteration, exploitation is 
obtained by the decrement of the Kbest agents in the forces 
attractions. This mechanism could improve the exploration 
strategy as only the good solutions would be considered, 
eliminating the worse ones. The global search efficiency of 
GSA could be improved by selecting only better masses for the 
accumulation of forces. This approach could attain the good 
coordination between exploration and exploitation capabilities 
as the exploration would fade out when the exploitation starts 
to fade in. 

 
Fig. 1. Only agents with bigger masses apply forces to each other in eGSA. 

C. Distance Ratio Parameter 

The second enhancement of eGSA is the introduction of the 
distance ratio parameter. This enhancement is inspired by the 
reported GSA’s local search weakness [32]. This second 
enhancement is based on the distance factor in the 
accumulation of forces between the agents. Based on the 
gravitational force formula as seen in the (5), the forces 
between two agents (F12) are directly proportional to the 
gravitational constant, G and their masses (M1 and M2). The 
forces are indirectly proportional to their distance (R2). 

F12 = GM1M2 / R2      (5)  

Based on (5), the force between the two agents (M1 and M2) 
would be higher when the distance between them is smaller. 
This formula has shown that an agent would have more 
attraction with other agents which are in shorter distances. 
Furthermore, the law of motion has stated that the force is 
directly proportional to the acceleration of the object. Equation 
(6) shows the acceleration, a, of an object is directly 
proportional to its force, F and indirectly proportional to its 
mass, m. Based on the equation, the smaller force would 
generate lower acceleration and vice versa. 

a = F/M     (6) 

In GSA, the acceleration is necessary to determine the 
velocity of an agent. Equation (2) has shown the formula for 
the velocity of the next iteration of an agent, vi(t+1) that is 
significantly influenced by the acceleration, ai(t). Based on (2), 
the low acceleration value would result in the lower velocity of 
an agent. Due to the lower velocity, the agent would continue 
their search in the bad area which would contribute to the 
decreased of the optimization result. Since the acceleration is 
depending on the force and the force is depending on the 
distance, the agents that are far away in the search space would 
generate lower velocities. The randi is a uniform random 
variable which is in the interval of between 0 and 1. The 
purpose of the random number is to give a randomized 
characteristic to the search. 

In this research, since the agents have already been selected 
through the mass ratio approach, the active agents in the search 
space are only the ones with the bigger masses. These agents 
are more efficient, have higher attractions and move slower 
than other lighter agents [31]. In order to help the agents to 
search the space more locally, the distance ratio parameter is 
introduced. Based on this parameter, only agents in shorter 
distance are selected for the accumulation of forces between 
agents. The accumulated force would be used to calculate the 
acceleration which would determine the velocity and position 
of an agent. The formula for the distance ratio is as shown in 
(7). 

Distance Ratio = Di,j / Di,max  (7) 

where: 

Di,j = distance of an agent from other agent. 

Di,max = the farthest distance with an agent. 

Equation (7) has shown that the distance ratio is obtained 
by dividing the distance of an agent from another agent with 
the distance of the farthest agent in the search space. The 
distance of the farthest agent changes with each agent in the 
search space. In this research, the distance ratio is set in the 
interval of [0.1, 1.0]. The distance ratio approach is adapted 
into GSA in order to speed up the process of obtaining the 
forces between agents while improving the quality of solution. 
This approach would select agents in shorter distances 
depending on the ratio setting and this would help the 
algorithm to search the space more locally. This distance ratio 
parameter is introduced to help in the search for optimal 
solution or global optima more efficiently. Based on the 
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literature, GSA requires more time to reach the optimal 
solution due to the presence of heavier masses at the end of run 
[33]. This approach would reduce the number of agents to be 
considered in the determination of the optimal solution at the 
end of run, hence could improve the algorithm’s local search 
efficiency and is expected to improve the execution time. 

D. Procedural Steps of eGSA 

This section provides a more detailed description on the 
procedural steps of the enhanced GSA (eGSA) by showing the 
formula in each step of the algorithm. There are altogether 10 
steps involved in order to obtain the final optimal result in each 
execution. The steps of the standard GSA has been briefly 
described in the earlier section. In eGSA, the concept of the 
algorithm is still based on the standard GSA, but with the 
additional enhancements to its structure. In the procedure, Step 
4 to Step 7 is the new enhancement in eGSA. The following 
shows the procedural steps of eGSA: 

Step 1: Agents initialization. 

Step 2: Fitness evaluation, best and worst fitness 
computations. 

Step 3: Gravitational constant (G) computation. 

Step 4: Agent’s Mass (Mi) and Mbest computations. 

Step 5: Selection of Kbest agents based on mass ratio 
parameter. 

Step 6: Farthest distance, Di,max computation. 

Step 7: Selection of agents based on distance ratio 
parameter. 

Step 8: Accelerations of agents’ computation based on total 
forces. 

Step 9: Velocities and positions of agents’ computation. 

Step 10: Repeat steps 2 to 9. 

The first step of eGSA is the agents’ initialization in the 
search space. Equation (8) shows the first step of GSA which is 
to initialize the positions of the N number of agents. 

Xi = ( xi
1,…xi

d, …, xi
k), for i= 1,2,..,N.  (8) 

Based on (8), xi
d represents the positions of the ith agent in 

the dth dimension, while k is the space dimension. 

The second step covers the computation of fitness 
evaluation for each agent, which led to the determination of the 
best and worst fitness among the agents. For example, the 
minimization function of GSA is selected. Equation (9) and 
(10) show the formula for the minimization problem. 

best(t) = min fit j(t)                   (9) 

j  {1,…,N} 

worst(t) = max fit j(t)                    (10) 

j  {1,…,N} 

Based on (9) and (10), the fit j(t) represents the fitness value 
of the jth agent at iteration t, best(t) and worst(t) represents the 
best and worst fitness at iteration t. 

In the third step, the gravitational constant (G) is computed. 
Equation (11) shows the formula to calculate G, which is 
computed at iteration t [34]. 

G(t) = G0e(-αt/T)                     (11) 

Based on (12), G0 and α have to be initialized at the 
beginning and will be reduced with time to control the search 
accuracy. The T is the total number of iterations. 

The fourth step is the computation of the agents’ masses. In 
the theoretical physics, there are actually three kinds of masses 
that have been identified. The masses are the active 
gravitational mass, passive gravitational mass and the inertial 
mass. In GSA, the active, passive and inertia masses of an 
agent are considered to be equal based on the theory of the 
general relativity [32]. Based on (12), Mai and Mpi are the 
active and passive gravitational masses respectively, while Mii 

is the inertia mass of the ith agent. Equation (12) shows that the 
three masses are actually equal. Equation (13) shows that the 
mass for each agent is calculated based on the worst and best 
fitness at the iteration t. Each of the mass i is then updated 
based on the other masses j as shown in the equation (14). 

Mai = Mpi = Mii = Mi,  i = l, 2, .... ,N.       (12) 

mi(t) =
fiti(t)-worst(t)

best(t)-worst(t)
 

mi(t) = fiti(t) – worst(t) / best(t) – worst(t)  (13) 

Mi(t) =
mi(t)

∑ mj(t)N
j=1

 

Mi(t) = mi(t) / Σj=1 mj(t)   (14) 

In this step, the calculation of masses for each of the agents 
has led to the determination of the best mass, Mbest. In order to 
apply the mass ratio parameter, the determination of Mbest has 
to be done in this step. 

In the fifth step, the Kbest agents are selected based on the 
mass ratio parameter as shown in (4). Based on the mass ratio 
approach, only Kbest agents would become active and apply 
forces with each other in the search space. The sixth step is the 
calculation of the farthest distance, Di,max among the Kbest 
agents. This step is necessary in order to apply the distance 
ratio parameter in the next step. 

The seventh step applies the other new distance approach 
parameter. In step 7, the active agents would be selected again 
based on the distance ratio parameter as shown in (7). Based on 
the distance ratio approach, only agents with shorter distances 
are selected for the calculation of forces between the agents. 

The eighth step covers the calculation for the acceleration 
of agents. Before the calculation of the acceleration, the value 
for Fij

d(t) has to be computed based on (15). Based on (15), 
Fij

d(t) is the force acting on agent i from agent j at dth 
dimension and tth iteration. Rij(t) is the Euclidian distance 
between two agents i and j at iteration t. G(t) is the computed 
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gravitational constant at the same iteration while ε is a small 
constant. 

Fij
d(t) = G(t).(Mpi(t) x Maj(t) / Rij(t) + ε).(xj

d(t) - xi
d(t)) (15) 

After the calculation of Fij
d(t), only then the total force that 

acts on the ith agent, Fi
d(t)  could be calculated based on (16). 

The total forces are calculated based on all of the agents that 
have been selected after the implementation of the distance 
ratio parameter. 

Fi
d(t) =    Σ  randj Fij

d(t)                    (16) 

j  Kbest, j ≠ i 

The acceleration of the ith agents at iteration t could be 
computed as already shown in (1). The ninth step covers the 
calculations for the velocity, vi and position, xi of each agent. 
The velocity and the position of the agents at the next iteration 
(t+1) are computed based on (2) and (3) respectively. The 
randi is the random variable in the interval [0,1] which would 
give the randomized characteristic to the search. 

The final step is to repeat the step 2 to step 9 until the 
iterations reach the maximum limit. The best fitness value at 
the final iteration is computed as the global fitness while the 
position of the corresponding agent is computed as the global 
solution of this problem. 

Based on these enhancements, the new flowchart for eGSA 
is shown in Fig. 2. The highlighted parts in the Fig. 2 show the 
enhancement that has been implemented in eGSA. 

E. Benchmark Functions Testing 

The enhanced GSA (eGSA) has been tested with seven 
benchmark test functions in order to validate its capabilities. 
The selected functions are the commonly used benchmark 
functions that have been applied to test the performance of an 
optimization algorithm [31, 35, 36]. The function names, their 
mathematical representations, characteristics and the search 
spaces are given in Table I. 

TABLE I.  BENCHMARK FUNCTIONS APPLIED IN THE EXPERIMENTS 

Function 

Name 

Mathematical 

Representation 

Charac- 

teristic 

Search 

Space 

Sphere F1 (X) = ∑ xn
i=1 𝑖

2
 Unimodal [-100,100]n 

Schwefel 
2.21 

F2 (X) = max {|𝑥𝑖|, 1 ≤ i ≤ n} Unimodal [-100,100]n 

Step F3 (X) = ∑ ([𝑥𝑖 
𝑛
𝑖=1 + 0.5])2 Unimodal [-100,100]n 

Quartic 
Noise 

F4 (X) = ∑ 𝑖𝑛
𝑖=1 𝑥𝑖

4 +
𝑟𝑎𝑛𝑑𝑜𝑚[0,1] 

Unimodal [-.28,1.28]n 

Rosenbrock 
F5 (X) = ∑ [𝑛−1

𝑖=1 100( 𝑥𝑖+1 −
 𝑥𝑖

2 ) 2 +   
              (𝑥𝑖 − 1)2] 

Multimodal [-30,30]n 

Schwefel 
2.26 

F6 (X) = ∑ −𝑥𝑖
𝑛
𝑖=1 sin(√|𝑥𝑖|) Multimodal [-500,500]n 

Rastrigin 
F7 (X) = ∑  [𝑛

𝑖=1 𝑥𝑖
2 −

10 cos(2𝜋𝑥𝑖 ) + 10] 
Multimodal [-.12,5.12]n 

* n = dimension 

Based on Table I, four of the functions are the unimodal 
functions while another three are the multimodal functions. 
The unimodal functions are the functions with only one single 
local minima and are commonly applied to test the 
convergence rate of a search. As for the multimodal, the 
functions have many local minima and are commonly applied 

to test the ability of the algorithm to escape from the local 
optima. The final result in the multimodal function is important 
as it shows the ability of an algorithm to find the global optima. 
In this benchmark testing, eGSA has been compared with 
another two modified or variants of GSA algorithms. The other 
two variants of GSA algorithms have been selected based on 
their almost similar concepts for enhancement with eGSA. 
Both of the algorithms have also been based on the distance of 
agents for their points of change in the GSA’s structure. The 
comparison algorithms are the Improved GSA (IGSA) and 
Hybrid Gravitational Search with Lévy Flight (HGSLF) [37, 
38]. The IGSA has been based on the disruption phenomena in 
the outerspace, where a star of the system could disrupt other 
objects under the influence of its gravitational force. In the 
IGSA algorithm, an agent is disrupted if the ratio of the 
distance between its mass and the neighbouring mass to its 
distance from the best solution is smaller than a specified 
threshold. As for the Lévy flight operator, it is applied to one of 
the mass if the distance between the two masses have become 
very near and both of them are not good solutions in the search 
space. 

The parameter settings for each of the algorithm have been 
provided in the Table II to Table IV respectively. Based on the 
tables, the standard GSA parameters are the gravitational initial 
value, alpha and epsilon. The value of Go and α determine the 
convergence speed and help to balance the exploration and 
exploitation of GSA [39]. As for the epsilon, ε, it helps in the 
updating strategy of GSA. The other parameter settings are for 
the new introduced parameters, which are the mass ratio and 
distance ratio for eGSA, the constant operator θ and small 
value ρ for IGSA and the treshold constant ξ for HGSLF. 
These new parameters would determine the exploration or 
exploitation capabilities of the algorithms respectively. 

TABLE II.  PARAMETER SETTING FOR EGSA 

Parameter Value 

Gravitational initial value, Go 100 

Alpha, α 20 

Epsilon, ε 0.00001 

Mass ratio 0.1 

Distance ratio 0.9 

TABLE III.  PARAMETER SETTING FOR IGSA 

Parameter Value 

Gravitational initial value, Go 100 

Alpha, α 20 

Epsilon, ε 0.0001 

θ (constant operator) 100 

ρ (small value) 10-16 

TABLE IV.  PARAMETER SETTING FOR HGSLF 

Parameter Value 

Gravitational initial value, Go 100 

Alpha, α 20 

Epsilon, ε 0.0001 

ξ (treshold constant) 10-3 
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Fig. 2. Flowchart of the enhanced GSA (eGSA). Adapted from (Rashedi et 

al.,2009). 

IV. RESULT AND DISCUSSION  

The experimental results in this research have been divided 
into the fitness values and processing times evaluations. These 
performance measurements have been evaluated based on the 
statistical analyses. 

A. Fitness Values 

This section provides the fitness value analyses from the 
results of the benchmark testing between eGSA and the other 
two comparison algorithms, IGSA and HGSLF. In the 
benchmark functions testing, each of the dimension of the 
function is 30 (n=30), the population size is 50 (N=50) and the 
maximum iteration (tmax) has been set to 1000. Based on Table 
I, the minimum values (fopt) for all of the 7 functions are 0, 
except for F6 which has a minimum value of -418.9829 x n. 
The minimization results of the benchmark functions testing 
for each of the algorithm are shown in the following Table V. 
The best, worst and the mean fitness of the solutions, which 
have been averaged over 30 runs have been recorded in the 
table. 

Based on Table V, the performance of eGSA is acceptable 
in all of the seven functions. Based on the overall results, 
eGSA is able to minimize the unimodal and multimodal 
functions. The mean fitness values for F1 (0.4822) and F2 (0) 
have been able to reach 0, while for F3 (6.6875), F4 (4.2713) 

and F5 (1.7320), the mean fitness values are almost reaching 0 
values. For F6 and F7, these multimodal functions have many 
local optima and are difficult to optimize. However, eGSA has 
been able to minimize the functions and the results are 
satisfying. Based on Table V, the overall results show that the 
performance of eGSA is better than IGSA and HGSLF in 
almost all of the functions. 

TABLE V.  MINIMIZATION RESULTS OF BENCHMARK FUNCTIONS 

Test Function  eGSA IGSA HGSLF 

F1 

Best 0.0191 20224.06 16124.47 

Worst 1.4021 28298.42 24884.73 

Mean 0.4822 24072.19 20618.17 

F2 

Best 0 0 0 

Worst 0 0 0 

Mean 0 0 0 

F3 

Best 6.0192 78.2867 17771.13 

Worst 7.5000 306.7619 22977.62 

Mean 6.6875 147.2939 20447.29 

F4 

Best 1.3216 72.7237 69.0424 

Worst 7.7193 137.6973 85.0527 

Mean 4.2713 104.4885 78.1088 

F5 

Best 0.2022 305.2722 472.9982 

Worst 3.4489 342.4960 613.2155 

Mean 1.7320 324.3189 538.8112 

F6 

Best -3360.7363 -2598.1066 -3937.7373 

Worst -2852.5944 -2187.7641 -3586.5394 

Mean -3150.2839 -2396.7062 -3780.7486 

F7 

Best 270.7417 378.7011 379.4766 

Worst 293.9898 445.3634 391.2795 

Mean 278.5284 414.4412 385.0295 

The performance of eGSA, IGSA and HGSLF for the 
minimizations of the unimodal functions F1 to F4 have been 
illustrated in Fig. 3 to Fig. 6. The figures show that eGSA is 
able to minimize and is able to converge with better mean 
fitness values compared to the other algorithms. As for IGSA 
and HGSLF, the algorithms still have been able to minimize 
and converge with larger values in most of the functions. 
However, IGSA has not been able to further minimize the 
results in F1 and F4. This is due to the decrement of the values 
in the minimization that have been very small, which is in 
decimal point values. In the early iteration of IGSA, most of 
the agents have been disrupted and their position values have 
been changed to become much smaller due to the 
multiplication with the D value. 

In this research, the algorithms have been coded using Java 
for experimental purposes. Java has some limitations such as 
limited floating point representation and the random numbers 
are generated based on the pseudorandom numbers. The initial 
seeding of the population is important as it would affect the 
final results. However, the HGSLF is still able to minimize 
most of the benchmark functions. In this research, it is the 
IGSA that has difficulties in the function minimizations, most 
probably due to its more complex additional structure and also 
due to Java limitation in the floating point representation. 
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Fig. 3. Performance of the algorithms in the minimization of F1. 

 
Fig. 4. Performance of the algorithms in the minimization of F2. 

 
Fig. 5. Performance of the algorithms in the minimization of F3. 

As for the multimodal functions, the performance results 
have been illustrated from Fig. 7 to Fig. 9. Fig. 7 shows that all 
of the algorithms have been able to minimize and obtain the 
fmin values of 0 for function F5. Fig. 8 and Fig.9 show that for 
functions F6 and F7, eGSA and HGSLF have been able to 
minimize and have obtained acceptable mean fitness values. 
However, IGSA is unable to further minimize as it tends to trap 
in the local optima as shown in the F6 and F7 results. In this 
experimental study, it is difficult for IGSA to search for the 
global optimum in the minimization of the F6 and F7 

functions. This is also due to the very small decrement values 
in the minimization of the functions. 

In this experimental study, the results of IGSA and HGSLF 
were not as good as that had been previously reported. The 
reported previous results have been tested using Matlab which 
has limitless floating point numbers. However, in this research, 
Java has been selected and used for experimental purposes 
compared to the standard Matlab tool. Java is also a popular, 
powerful and robust programming language that has been 
implemented in various applications. This research has shown 
that Java could also be used for the minimization of test 
functions for optimization problems. 

 

Fig. 6. Performance of the algorithms in the minimization of F4. 

 
Fig. 7. Performance of the algorithms in the minimization of F5. 

 
Fig. 8. Performance of the algorithms in the minimization of F6 
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Fig. 9. Performance of the algorithms in the minimization of F7 

B. Processing Times 

This section provides the processing times taken by eGSA, 
IGSA and HGSLF to minimize all of the seven benchmarks 
functions in this experimental study. Table VI shows the 
processing times for the seven benchmark test functions. 

TABLE VI.  PROCESSING TIMES FOR BENCHMARK TEST FUNCTIONS (MS) 

Test Function  eGSA IGSA HGSLF 

F1 

Min 671 3686 2215 

Max 814 3809 5042 

Mean 732 3745 3489.75 

F2 

Min 239 2883 2711 

Max 433 4435 4582 

Mean 314.40 3780 3543.25 

F3 

Min 615 3836 2702 

Max 650 3926 4618 

Mean 633.67 3871.25 3542.25 

F4 

Min 609 2448 4088 

Max 689 2576 6197 

Mean 646.25 2489 5280.75 

F5 

Min 800 3726 2873 

Max 994 4031 5353 

Mean 898.33 3866 3891.25 

F6 

Min 4707 4566 3932 

Max 5749 6095 4763 

Mean 5304.20 5242.75 4328.50 

F7 

Min 3822 3975 3885 

Max 4283 6021 5537 

Mean 3979 4845 4508.33 

Based on Table VI, the mean processing times of eGSA for 
most of the functions, except F6, have been the lowest 
compared to the other 2 algorithms. These faster processing 
times have been due to the eGSA concept which is to reduce 
the number of active agents in the search space. In eGSA, the 
active agents would be selected initially based on the mass 
ratio and then would further be selected based on the distance 
ratio. Table VII shows the average number of active agents in 
eGSA over the 30 runs after the mass ratio and distance ratio 
parameters have been applied in the search space. Based on the 
table, it could be seen that the number of active agents have 

been reduced from the initial number of 50 after the mass ratio 
parameter have been applied. These active agents are the 
agents with bigger masses and represent good solutions in the 
search space. This mass ratio has been applied to improve the 
exploration of good solutions in the search space. In order to 
further improve the solution quality and the processing times, 
the active agents are further selected for the accumulation of 
forces between agents. Thus, the number of active agents 
would further be decreased after the implementation of the 
distance ratio parameter. This distance ratio parameter has been 
applied to improve the exploitation capability of eGSA. Based 
on the distance ratio, only the neighboring agents within the 
specified ratio would be selected for the accumulation of 
forces. 

TABLE VII.  AVERAGE NUMBER OF ACTIVE AGENTS BASED ON EGSA 

CONCEPT 

 F1 F2 F3 F4 F5 F6 F7 

Mass ratio 11 21 10 23 18 23 25 

Distance ratio 8 16 7 20 14 19 21 

As for IGSA and HGSLF, the number of active agents in 
the search space would not be reduced. Based on their 
respective concepts, only the positions of the related agents 
would be changed in the search space. Thus, the processing 
times of both of the algorithms would not be reduced in this 
functions minimizations. In both of the algorithms, the position 
changes have been designed in order to further improve 
especially in the exploration capabilities of the algorithms. 

C. Discussion 

In the benchmark function testing, eGSA has been able to 
minimize and produce acceptable results. Based on the testing, 
the proposed enhancements have been able to improve the 
algorithm’s convergence strategy. In the minimization results, 
the mean fitnesses of eGSA in almost all of the test functions 
are better than IGSA and HGSLF. The execution time of eGSA 
are also lesser than the other two variants in all of the test 
functions testing. This shows that the introduction of the two 
new parameters has been able to improve on the exploration 
and exploitation capabilities of the algorithm [30]. The mass 
ratio parameter would improve the exploration, in which the 
algorithm would select only the good solutions based on the 
mass ratio in the search space and eliminate the weaker 
solutions. After the exploration, the distance ratio parameter 
would take over to improve the exploitation capability of the 
algorithm. Based on the distance ratio, only the nearest agents 
would be selected in finding the optimal solution. Due to this 
approach, the search space would become smaller in scale and 
the algorithm would be inclined to search more locally [31]. 
These two parameters are expected to create a good balance 
between the exploration and the exploitation strategies in the 
enhanced algorithm. It is expected that the enhanced GSA 
(eGSA) could achieve both the efficient global and local 
searches in order to improve its convergence to optimal 
solution. This would help in obtaining better solution quality 
and reduce the execution time in solving real world 
optimization problems. 
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V. CONCLUSION 

This paper has discussed on the improvement of GSA 
convergence strategy, which is based on the two 
enhancements. The first enhancement is to assign Kbest agents 
based on the mass ratio parameter. This approach could filter 
and reduce the number of active agents in the search space. 
The second enhancement is the implementation of the distance 
ratio parameter to select only the nearest agents for the 
accumulation of forces among the Kbest agents. This second 
approach would reselect the agents based on the distance in 
order to further improve the execution time and also improve 
the solution quality. 

The contribution of the research is the introduction of a 
new variant of GSA, namely enhanced GSA (eGSA) which 
could improve the algorithm’s convergence strategy. Improved 
convergence strategy is expected to improve the performance 
of GSA in terms of its solution quality and computational time. 
In this research, eGSA has been designed mainly to reduce the 
number of active agents for the accumulation of the 
gravitational forces. The mass ratio and distance ratio operators 
have been designed to select only the bigger masses which 
represent the best solutions in the search space. It is expected 
that eGSA could improve the exploration and exploitation 
capabilities compared to the standard GSA and other variants. 
Significantly, eGSA has been able to perform better than two 
other GSA variants in the benchmark testing. The conclusion 
that could be derived based on the testing results is that the 
enhancement made to GSA has been successfully improve the 
algorithm’s convergence, thus improving its solution quality 
and the processing time. The enhancements in the exploration 
and exploitation strategies of eGSA has enabled the algorithm 
to produce better results. The benchmark function testing 
results have shown that eGSA could produce good 
performance in solving minimization problems. 

In future, the research on the enhancements or 
modifications of GSA would continue to expand as GSA has 
increasingly gained attentions due to its acceptable 
performance in solving various optimization problems. 
Besides, currently there are various real world optimization 
problems that need to be explored and solved using 
metaheuristics approaches. 
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