
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

671 | P a g e

www.ijacsa.thesai.org

Proposed Secure Activity Diagram for Software

Development

Madhuri N. Gedam
1
, Bandu B. Meshram

2

 Research Scholar, Dept. of Computer Engineering, Veermata Jijabai Technological Institute (VJTI), Mumbai, India
1

 Professor, Dept. of Computer Engineering, Veermata Jijabai Technological Institute (VJTI), Mumbai, India
2

Abstract—Unified Modeling Language (UML) activity

diagrams are derived from use case diagrams. It becomes

essential to incorporate security features and maintain

consistency in the diagrams during analysis phase of Software

Development Life Cycle (SDLC). As part of current software

development practices, software security must be a constant

effort. The activity diagrams are used to model business process.

The detailed analysis of activity diagram is done. The challenge

lies in viewing the main activity diagram from attacker's

perspective and providing defense mechanism to mitigate the

attacks. This paper presents an extension of the activity diagram

named SecUML3Activity to provide security with Object

Constraint Language (OCL) constraints using Five Primary

Security Input Validation Attributes (FPSIVA) parameters for

input validation. It also proposed three security color code

notations and stereotypes in activity diagrams. White color is

used to represent activity diagram in normal state. Red color in

dotted line is used to represent attack activity components. Blue

color with double line is used to represent the defensive activity

components. The defense mechanism algorithm against SQL

Injection (SQLI) attack, Cross Site Scripting (XSS) attack, DoS/

DDoS attack, access validation attack is provided. The mapping

of Secure 3-Use Case diagram with SecUML3Activity diagram is

done through mathematical modeling.

Keywords—Unified modeling language; activity diagram;

object constraint language; SQL injection; use case diagram

I. INTRODUCTION

Unified modeling language (UML) is a visual language
rather than a programming language to help software
developers. It is used to build real-time systems and shows
visual representation of the behavior and structure of the
system in software development [3]. UML modeling can be
done with the help of tools like StarUML, Microsoft Visio,
ArgoUML, MagicDraw, BOUML, Visual Paradigm and the
like [24]. UML or Object Constraint Language (OCL) is used
in designing financial systems where incorporation of security
is a primary concern.

Activity diagram is used to show the diagrammatic flow of
events taking place in a use case diagram. It shows the
dynamic behavior of a system like control flow and object flow
from one action to another which is one of the main UML
modeling techniques [1][4]. It is used to model security
requirements in the business processes, modeling parallel and
concurrent flows in an actual system and illustrate the scenario
of detailing complex use cases [2][7][25].

In earlier work, Colored Petri Net (CPN) has been proposed
to ensure consistency between use cases and activity diagrams
[26][27][28]. Jurjens proposed UMLsec to specify security
information during the development of security critical systems
and provided tool-support for formal security verification using
security scenarios into a system design [33]. UMLsec employs
use case diagrams to capture security requirements. UMLsec
defines 21 stereotypes to represent fair exchange, non-
repudiation, role-based access control, secure communication
link, confidentiality, integrity, authenticity, freshness of a
message, secure information flow among components, and
guarded access. Some stereotypes also have associated tags and
constraints.

The foundation of secure SRS is consideration of security
requirements to mitigate severe vulnerabilities mentioned in
the vulnerability databases [15]. Secure SRS considers security
requirements like input validation, multi-factor authentication
to enhance UML use case, class and state transition diagrams
[4][5]. In this paper, we proposed security stereotypes, colored
notations to distinguish main activity diagram from attackers’
activity diagram and defensive activity diagram. FPSIVA
parameters based on OCL constraints are used to provide
defense mechanisms in activity diagram and mitigate
vulnerability in the analysis phase of SDLC. These stereotypes
help developers to build functionalities carefully and flawlessly
during the implementation process. Also, defense mechanism
algorithms are proposed in this research work to build secure
activity diagrams. The consistency between UML diagrams is
maintained through relationship between proposed
SecUML3Activity diagram and Secure 3-Use Case diagram
proposed by authors in earlier work [2].

The paper is organized as follows. Section II describes a
detailed literature survey of activity diagram, notations to draw
activity diagram, relationship of activity diagram with use case
diagram. Section III covers the proposed secure activity
diagram: SecUML3Activity with security color notations and
stereotypes using FPSIVA parameters, and defense mechanism
algorithm. Section IV is used for result and discussion related
to this work. Section V concludes the paper and gives direction
to the future work.

II. LITERATURE SURVEY

UML diagrams are used to visualize various perspectives of
the software system. Since they are dependent on each other,
the consistency between the diagrams is desired in earlier
phases of SDLC. In comparison to static modeling, consistency
is a more delicate issue in dynamic modeling. Non-compliance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

672 | P a g e

www.ijacsa.thesai.org

of consistency among these diagrams lead to errors being
introduced during software development and make it
vulnerable to attacks like SQLI, XSS, DoS/ DDoS attack and
access validation attack [12][13]. Relational Language for
Advanced Security (ReAlSec) is a security engineering tool to
find security threats [31]. A specification cannot be fully
represented by a UML diagram on its own. Consequently, the
dynamic diagrams would require a common notation among
them. The external behavior of the systems to be built is meant
to be expressed using use case diagrams and activity diagrams.
Activity diagrams are used to show the dynamic behavior
aspect of a given system by modeling data flow [1][2][18].

The Object Constraint Language (OCL) is a declarative
language and forms part of the UML standard and plays a
crucial role in the analysis phase of SDLC. It is an expression
language used to describe constraints and other modeling
artifacts that cannot be stated using conventional diagrammatic
notations [4][28]. OCL constraint is acting as a restriction on a
model to ensure consistency. Although it is designed at the
class level, its semantics are applied at the object level
[1][3][9][10][29]. The security of activity diagrams can be
enhanced using OCL [2][4].

Activity diagrams are basically used to represent flow of
events used in use case diagrams, modeling complex
requirements and implementation details [11][26]. These
diagrams look like data flow diagrams (DFDs) in structured
analysis (SA), However, DFDs in SA are used for capturing,
analyzing, and documenting requirements. They are best suited
for modeling parallel and concurrent flows in an actual system.
The activity can be explained as an operation of the system
[6][7]. Due to the richer constructs, it offers, such as
concurrency, split, and synchronization, the UML activity
diagram has been utilized in process modeling and workflow
modeling [20]. They have a significance in software testing
[10][17][30]. They are divided into two kinds such as atomic
activity diagram and compound activity diagram based on sub
activity state. Managing the compound activity diagram is a
significant problem when creating test cases [1].

A. Analysis of UML Activity Diagram

Some definitions of the activity diagram can be presented
in a formal manner.

1) Activity diagram (AD) is a tuple consisting of –

AD = (N, E, C, R)

where N, E, C, R are a finite set of activity nodes, directed
edges, containment and flow relationship between the nodes or
containments respectively.

Activity nodes consist of action nodes Na, object nodes No
and control nodes Nc.

N = Na ∪ No ∪ Nc

Directed edges are a finite set of edges.

E = {e1, e2, e3, en}

C contains graphical elements for containment and it is
formally defined as a tuple consisting of activities, interruptible
regions, exception handlers, expansion regions.

C = (Activities, IR, EH, ER)

The flow relationship R is explained as follows.

R ⊆ (N ∨ C) X E X (N ∨ C)

The control node consists of given disjoint sets as below.

Nc = I ∪ D ∪ M ∪ P ∪ J ∪ F

where I, D, M, P, J and F are finite sets of initial nodes,
decision/branch, merge, forks, joins and final nodes that cover
activity final and flow final nodes. So, F can be denoted as F =

Fa ∪ Ff, where Fa is a finite set of activity final nodes and Ff is

a finite set of flow final nodes. And F are finite sets of initial
nodes, decision/branch, merge, forks, joins and final nodes that
cover activity final and flow final nodes [19].

2) Activity diagram (AD) is a tuple consisting of –

D = (A, T, F, C, aI, aF)

where A, T, F, C, aI, aF are a finite set of activity states,
completion transitions, guard conditions, flow relationship,
initial activity state and final activity state respectively and
described as below.

A = {a1, a2,…, am}

T = {t1, t2,…,tn}

C = {c1, c2,….,cn}

F ⊆ (A X T X C) ∪ (T X C X A)

aI ∈ A

aF ∈ A

There is only one transition t such that (a1, t, a) ∈ F, and

(a, t’, a1) ∉ F or (aF, t’, a) ∉ F for any t’, a. The activity
diagram is used to represent composite activities. Each activity
node is handled individually and treats concurrent activities as
an interleaving sequence of activities [17][18].

3) Since every use case useCase gets converted to activity

diagram, the complete set of all activity diagrams AD contains

many aduseCase.

aduseCase ∈ AD

As each activity diagram consists of initial node, activity
nodes and activity partitions,

AD = {IN, AN, AP}

where, IN denotes the initial node. Every activity diagram
must have an initial node.

INuseCase ∈ IN

AN denotes the activity node. There may be zero or more
activity nodes in an activity diagram.

ANuseCase ∈ AN

AP denotes the activity partitions. There may be zero or
more activity partitions in an activity diagram.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

673 | P a g e

www.ijacsa.thesai.org

APuseCase ∈ AP

B. Activity Diagram Notations

The graphical notations are used for modeling activity
diagrams including nodes and edges. The diagrams must
ensure their semantics to conform to the UML activities
metamodel [6][8]. The activity diagram notations are shown in
Table I.

TABLE I. ACTIVITY DIAGRAM NOTATIONS

Element Symbol Description

Start

Start symbol in activity diagrams is used to

indicate the start of a process or workflow.

Activity

It outlines the tasks that participate in a
modeled process. It serves as the foundation

of an activity diagram.

Connector

It indicates the directional flow or control

flow of the activity. After a step in an activity
is complete, the flow is continued by an

outgoing arrow. A step in an activity is

initiated by an incoming arrow.

Joint/

Synchronizat

ion bar

Two ongoing tasks get combined and

reintroduce them to a flow in which only one

task is carried out at once.

Fork

Two concurrent operations are split from one
main flow of activity.

Decision

Minimum two paths diverge at a decision and
users get to view options. This symbol

indicates the branching or merging of various

flows.

Send signal

It conveys to a receiving activity that a signal

is being sent.

Receive

signal

It shows that an event has been accepted.
Flow that comes from this action is

completed once the event is received.

Option loop

It gives the designer the ability to depict a

repeating sequence inside the loop symbol.

Flow final

It denotes the end of a particular process

flow. The end of a process should be done
with a flow final symbol.

Condition
text

The developer comes to know under what

condition an activity flow should split off in

that direction.

End

It denotes the finish of an activity and the end

of all process flows.

C. Relationship of Activity Diagram with use Case Diagram

A systematic mapping of activity diagram with use case
Diagram is described below [22][23][26][27][28].

Rule 1: Every use case must be represented by at least one
activity diagram, else there will be inconsistency leading to
fault in software development.

ᴲuseCase∈UseCasesysModel: ∄ADuseCase ADsysModel

Rule 2: An actor in a use case must be an activity partition
in the corresponding activity diagram.

ᴲactor,(assoc(actor, UseCase), ∄ap ∈ APuseCase

Rule 3: Let use case diagrams UC1 includes UC2 where
UC1 is the including use case and UC2 is included use case.
Then event flows of both UC1 and UC2 must be specified in

the activity diagram. The action node in UC1 should refer to
the activity diagram specifying use case UC2.

include = (including, included) ∈ Include

where including, included∈ UseCase : actincluded ∈ACTincluding

Rule 4: Every flow of event mentioned in the use case
description or implied therein needs to be described in detail in
the related event of the activity diagram. This rule is only
applicable if the use case is further described in the activity
diagram.

Rule 5: The event in the use case diagram has a one-to-one
mapping with an action/activity state in the corresponding
activity diagram.

D. Object Constraint Language (OCL)

OCL is a formal specification language that can be used to
define expressions and constraints on object-oriented models
and other object modeling artifacts. IBM created the Object
Constraint Language in 1995. It was initially used as a business
engineering language, but it was later incorporated into the
Unified Modelling Language (UML) as a formal specification
language. Starting with version 1.1, OCL was included in the
official OMG (Object Management Group) standard for UML.
It enables programmers to communicate restrictions and
guidelines that control the organization and operation of
software systems. OCL 2.0 is the latest version as of
September 2021. OCL is a powerful language with built-in
capabilities for iterating over collections of objects, finding the
value of an item, and navigating across a group of related
objects. Primitive types such as Integer, Real, Boolean, and
String, as well as Collections types such as Set, Bag, ordered
set, and Sequence, are included in OCL's predefined standard
library [14]. OCL can be used in many ways. For any
expression over a UML model, it can be used as a query
language to specify invariants on classes and types in the class
model, type invariants for stereotypes, pre- and post-conditions
on operations and methods, guards, target (sets) for messages
and actions, constraints on operations, and derivation rules for
attributes [3][4]. As each OCL expression has a type, it is
considered as a typed language [4].

An activity diagram becomes more comprehensible when it
is modeled using UML notations. To non-technical individuals,
such as a client, the pictorial depiction makes knowledge
transfer simple. However, there can be certain discrepancies in
the diagrams if a programmer uses them as a reference when
building implementation code. For instance, it's possible that
the diagram doesn't show the beginning values for some
characteristics or doesn't clearly indicate the limitations. In
these circumstances, it is impossible for the programmer to
develop the entire program without consulting the required
specification or other documentation. OCL aids in the
improvement of the UML diagrams and, as a result, writes the
complete code for the same [4].

1) INVARIANT: It is a constraint that specifies a condition

that must always hold true for a particular class or a set of

objects. Invariants are used to define the integrity rules of a

system and ensure the consistency of the data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

674 | P a g e

www.ijacsa.thesai.org

Example-

context Person

inv: self.age > 0 and self.age < 120

A "Person" class that has an invariant specified on it.
According to the invariant, a person's age must be more than 0
and less than 120. By doing this, it is ensured that a person's
age is within a suitable range and that inaccurate or unrealistic
figures are avoided.

Invariants are typically expressed in the context of a class
and use the keyword "context" followed by the class name. The
"self" keyword refers to the instance of the class on which the
invariant is being evaluated. In this case, "self.age" points to
the age of the Person object.

2) PRE-CONDITIONS: In OCL, preconditions and

postconditions are used to define the conditions that must hold

true before and after an operation or method is executed,

respectively. They help define the expected behavior and

constraints associated with an operation.

Syntax

context <classifier>: <operation> (<parameters>)

Pre [<constraints name>]:

<Boolean OCL expression>

The examples of a precondition in OCL is as below.

Let's consider a class called "BankAccount" with a method
"withdraw" that deducts a specified amount from the account
balance. The precondition for this method could be that the
withdrawal amount should be positive and not exceed the
current balance.

context BankAccount :: withdraw(amount: Integer)

pre: amount > 0 and amount <= self. balance

In this example, the precondition specifies that the
"amount" parameter passed to the "withdraw" method should
be greater than 0 and less than or equal to the current balance
of the bank account. This ensures that a valid withdrawal
amount is provided and prevents overdrawing from the
account.

3) POST-CONDITIONS: Preconditions and

postconditions are used to document and enforce the expected

behavior of operations. They help in validating inputs and

ensuring the desired outcomes or effects of operations on

objects or systems.

Syntax

Context <classifier> :: <operation> (<parameters>)

Post [<constraints name >]:

 <Boolean OCL expression>

The examples of a postcondition in OCL is-

Let's consider the same "BankAccount" class with a
method "deposit" that adds a specified amount to the account
balance. The postcondition for this method could be that the
account balance should increase by the deposited amount.

context BankAccount::deposit(amount: Integer)

post: self.balance = self.balance@pre + amount

In this example, the postcondition specifies that the
"balance" property of the bank account after executing the
"deposit" method should be equal to the balance before the
method was called plus the deposited amount. This ensures that
the deposit operation updates the account balance correctly
[14].

III. PROPOSED SECURE ACTIVITY DIAGRAM:

SECUML3ACTIVITY

In this proposed SecUML3Activity diagram, dynamic
aspects of the system are shown with security stereotypes in
color code notations, OCL constraints and defense mechanism
algorithms. An illustration of a dynamic security specification
is the operation of an authentication mechanism. There is not a
comprehensive design-level behavioral definition of security
stereotypes in any of the dynamic security standards that
developers and programmers might employ during the
implementation stage. In this paper, we are proposing security
features for SecUML3Activity diagram which is an extension
of detailed analysis of Login Use Case of Secure 3-Use Case
diagram proposed by authors [4].

A. Proposed Security Notations and Stereotypes in Activity

Diagrams

It is easier to understand an activity diagram when it is
modeled using UML notations. Information can be easily
communicated to non-technical staff members, such as a client
by way of a picture. However, there might be certain gaps in
the UML diagrams when a programmer uses them to write
implementation code. For instance, it is possible that the
diagram doesn't show the initial values for certain attributes or
doesn't clearly define the constraints. Writing the entire code
without consulting the requirement specification or other
documentation becomes challenging for the programmer. OCL
plays an important role to clarify the UML diagrams, and
accordingly write the complete code for the same. Since
activity diagram is a behavior model, the relationship between
model elements is usually more complex. Software engineering
research encourages systematic literature review for
identifying, evaluating, and interpreting research question [32].
The use of colors has been recognized in software engineering
research to make software modeling more comprehensible. The
proposed activity diagram notations are represented in various
colors codes along with color description as mentioned in
Table II.

The proposed colored notations are helpful in visual
representation and reduce the cognitive load of software
developers. The white color is used to represent normal activity
diagram notations; red color in dotted line represents attacks
performed by external entities. The double lined blue color is
used to represent the attack mitigation and providing defense
mechanism. These colored notations for SecUML3Activity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

675 | P a g e

www.ijacsa.thesai.org

diagrams are mentioned in Table III for attack and defensive
activity.

TABLE II. COLOR NOTATIONS DESCRIPTION

Color Description

White White represent component is in normal state.

Red

Red color is used to represent/highlight insecure or threatened

components. These components are more likely to get attacked

successfully by outside entities.

Blue

Blue is to represent the defensive or precautionary components.

These components act as defensive measures to avoid or mitigate

attack.

TABLE III. PROPOSED NOTATIONS FOR SECUML3ACTIVITY DIAGRAM

Symbol
Activity Diagram

Notations
Attack Notations

Defense

Notations

Start

Activity

Connector

Joint/
Synchronization

bar

Fork

Decision

Send signal

Receive signal

End

The stereotypes proposed by authors are used to develop
secure implementation. The developer can prevent attacks like
Buffer Overflow (BOF), SQL Injection (SQLI), Encryption,
Session Expiration, Connection flooding for login into the
system.

Stereotype: << BufferOverflow >>

Tag: {BOF}

Stereotype: <<Encryption>>

Tag: {Ecryptfield}

Stereotype: <<SQLi>>

Tag: { SQLfield }

If the logged in user remains idle for more than specified
time, the session must be forcibly killed to prevent session
expiration attacks using

Stereotype: <<SessionExpiry>>

Tag: {Exp_Time}

If there is a vulnerability in an application to allow more
connections than the service provider supports, the stereotype
must be inserted in the diagram part that represents the
maximum number of allowed connections.

Stereotype: <<maxconn>>

Tag: {Maxconn}

B. Proposed Secure Constraints in SecUML3Activity

Diagram

The OCL constraint is proposed to check the length, any
special characters in entered username and password in the
login page with the help of constraints. The foundation for
applying Five Primary Security Input Validation Attributes
(FPSIVA) in the web design phase is OCL [16][21]. It defines
FPSIVA which can be used to design activity diagrams in
software development. The below mentioned stereotypes used
in activity diagrams are designed using FPSIVA parameters.

.<<Precondition >>

Context Login :: checkCredentials()

Pre: user name <=12

Pre: Pwd >=8

<<Invariant >>

Context Login :: checkCredentials()

 user name =Boolean

Pwd=Boolean

<<Invariant >>

Context Login :: checkCredentials()

Is active=Boolean

It must be ensured that post condition invariants to be
applied after login entry to homepage as mentioned below –

<<Postcondition>>

Context Home :: checkAllowUser()

Post: valid User=Boolean

Post: Pwd=Ecrypt(password)

The password needs to be encrypted for transferring over
the communication network. Number of attempts by malicious
user can be detected with the help of following constraint -

Context Login Invariant :

No. of attempt : self. User > 5

Activity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

676 | P a g e

www.ijacsa.thesai.org

FPSIVA parameters can be used for input validation in
activity diagram such as -

(i) var.type : < type > - It is used to validate the type of
input data and verify if it can be accepted < type >.

user name: string

(ii) var.format : < pattern > - It is used to validate the
format of input data and verify if it can be accepted < pattern >.

(iii) var.length : < number > - It is used to validate the
length of input data.

 user name.length : 12, Pwd.length :8

(iv) var. Charset: < pattern > - It is used to check characters
with its < pattern >

user name.charset : [A-Z, a-z, 0-9].

(v) var.value : < reasonableness > - It is used to check
reasonable values of input data.

No of attempts.value:5.

C. SecUML3ActivityDesign

The proposed SecUML3Activity diagram for Login use
case of College Management System (CMS) is divided into
three swim lanes like Login Activity, Attack Activity, and
Defense Activity. The complete flow of the system is shown
by the Activity diagram. The swimlane of the activity diagram
will be mapped with 2 swim lanes. The first swimlane will be
simulated for attack. Each activity with a dotted line in red
color notation and second swimlane will be simulated for
providing defense mechanisms in blue color double line
notations for the attacks. Due to space constraint, we have
shown the Login activity of the case study. The proposed
security color code notations, stereotypes and constraints are
simulated with the login activity diagram in College
Management case study as shown in Fig. 1. The login activity
end element A is connected to start element of attack activity
diagram. The end element of attack activity diagram B is
connected to start element of defense activity diagram.

Fig. 1. Proposed SecUML3Activity diagram of Login CMS Use Case.

For clear visualization of the activity diagram, each activity
as well as complete proposed SecUML3Activity diagram is
shown in Appendix A (Fig. 2 to Fig. 5).

D. Proposed relationship between SecUML3 Activity and

Secure 3 Use Case Diagram

Activity diagrams are basically behavioral representations
of use case diagrams with the flow of events. The login use
case proposed by the author at [2] is simulated in SecUML3
Activity Diagram. The Secure 3-UseCase is already proposed
with the Secure SRS model with CIA-AAA verification
during authentication of user’s login to the system. The
security of use cases is enhanced by considering functional
requirements, non-functional requirements, and quality
attributes in Secure SRS model [2]. The notations, stereotypes
and defense algorithms used in Secure 3-UseCase are inherited
in SecUML3 Activity Diagram of College Management
System (CMS) to mitigate the attacks in the real world.

Based on SecUML3Activity diagram for Login use case
shown in Fig. 1, i.e.

LoginCMS ∈ Secure3UseCaseCMS

adLogin ∈ SecUML3ADCMS

where Initial node is INLogin ∈ INCMS

and Activity partition is Faculty ∈ APLogin

There is consistency between Secure 3-UseCase diagram
and SecUML3Activity Diagram through the relationship
mentioned below.

∃Login∈Secure3UseCaseCMS: ∃adLogin∈ SecUML3ADCMS

E. Proposed Defense Mechanism Algorithm

The following Defense Mechanism Algorithm against
Web based attacks were defined.

1) SQL injection: SQLI attacks take place on software

applications through different methods like Tautologies,

Illegal/Logically Incorrect Queries, UNION Query, Piggy-

Backed Queries, Timing Inference attack.

Incident € {Web page Field Access, URL Header Access}

Algorithm 1: Defense Mechanism Algorithm against SQL
Injection

INPUT: SQL Injection through text fields in the web page.

OUTPUT: A secure web page that is free from SQLi.

Start

Read text entered by user in text fields

Create insert parameterized queries instead of string concatenation

Create roles.

 For each role,

 | {

 | Assign a User

 | }

 For each user,

 | {

 | Grant appropriate permissions to accomplish Role

 Based Access Control

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

677 | P a g e

www.ijacsa.thesai.org

 | }

 | If User has permission to perform action on Database

 | | {

 | | Fire Query

 | | }

 | Else

 | |{

 | | Drop user inserted malicious query.

 | | Use escape Queries for user inputs to get rid of

 | | special characters.

 | | }

End

2) Cross Site Scripting (XSS): XSS attack occurs when

dynamic content that hasn't been checked for malicious

content, proper validation makes entry into a web page field.

Incident € {Web page Field Access, URL Header Access}

Algorithm 2: Defense Mechanism Algorithm against Cross
Site Scripting

INPUT: Input field on web page, URL header access used for

taking input

OUTPUT: External script is executed

Start

Insert <body onload=alert (Testing XSS’)> into input field.

Submit input

 | If alert is shown in web browser then

 | | {

 | | Simple XSS is performed.

 | | Web service is vulnerable to XSS attack.

 | | }

 | Else

 | | {

 | | Web service is not vulnerable to XSS attack.

 | | }

End

3) Check for DoS/DDoS attacks: DoS/DDoS attacks are

classified into different types like Ping of Death, TCP SYN

Attack, ICMP Smurf, UDP Flood attack. TCP SYN Attacks

arising due to bugs in operating system can be prevented using

security patches. Intrusion Detection Systems (IDS) are

helpful to identify and stop illegal intrusion into the systems.

Firewalls can be placed into the network to block traffic

coming from unknown IP. Routers can be used to limit

network access and dropping suspected traffic using Access

Control List (ACL).

Incident € {URL Header Access}

Algorithm 3: Defense Mechanism Algorithm against DoS/
DDoS attack

INPUT: DoS/ DDoS attack through URL header access of web page.

OUTPUT: A secure web page that is free from DoS/ DDoS attack.

Start

Read (User Inputs like Source IP address, Destination IP address,

Payload)

Extract IP header

 | If Source IP ∈ BlackIP List, then

 | | {

 | | Drop Packet

 | | }

 | Else if Payloadsize > Payloadthreshold then

 | | {

 | | Drop packet and add to BlackIP List

 | | }

 | End if

End

4) Check for access validation: Due to absence of

centralized middleware in Web page, it becomes necessary to

specify the address (URI) of the page and the transport

protocol (HTTP). Hence, Access validation can be done with

the help of secure key management like security tokens for

secure authentication.

Incident € {Web page Field Access, URL Header Access}

Algorithm 4: Defense Mechanism Algorithm to check for
access validation

INPUT: request through text fields, URL header access in the web

page.

OUTPUT: A secure web page that is free from mis-user access

attack.

Start

Issue security tokens to WSC through Security Token Service

Bind the same security token with WSP

Validate security token for transaction

 | If WSC Security Token ∈ WSP Security Token, then

 | | {

 | | Allow payload for transaction

 | | }

 | Else

 | | {

 | | Drop payload and cancel the transaction

 | | }

End

IV. RESULT AND DISCUSSION

Based on extensive literature survey, security with OCL
constraints using Five Primary Security Input Validation
Attributes (FPSIVA) parameters for input validation is
provided. The web modeling of software applications
consisting of various security-colored notations and stereotypes
in secure activity diagrams is proposed to distinguish main
activity diagram from attackers’ activity diagram and defensive
activity diagram. Also, defense mechanism algorithms are
proposed to build secure activity diagrams. The consistency
between UML diagram is maintained through relationship
between proposed SecUML3Activity diagram and Secure 3-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

678 | P a g e

www.ijacsa.thesai.org

Use Case diagram proposed by authors in earlier work. The
various BTech and MTech software Projects are implemented
using secure analysis.

Proposed SecUML3Activity diagram is derived from the
Secure 3 Use Case diagram proposed by the author in their
earlier work [2]. The proposed strategy is to maintain
consistencies between these UML diagrams to avoid errors,
defects, vulnerabilities that may arise in software development.
This relationship between these two UML diagrams is well
explained through mathematical modeling. The input
validation of parameters is done through OCL constraints using
Five Primary Security Input Validation Attributes (FPSIVA)
parameters. The use of colors has been recognized by Software
Engineering research to make graphical software models easier
to follow, hence as per requirement of secure activity diagrams,
three security color code notations and stereotypes in activity
diagrams are proposed to distinguish the activities. White color
is used to represent activity diagram in normal state. Red color
in dotted line is used to represent attack activity components.
Blue color with double line is used to represent the defensive
activity components. The defense mechanism algorithms
against SQL Injection (SQLI), Cross Site Scripting (XSS),
DoS/ DDoS attack, access validation is also provided for
making system more secure and robust.

V. CONCLUSION AND FUTURE WORK

The main purpose of this research is to provide security in
activity diagrams to prevent external and internal attacks on the
web application. The defects, errors, and problems in the
software systems occur due to inconsistencies between UML
diagrams in analysis phase.

The security features of SecUML3Activity diagram in
analysis phase of SDLC can be mapped with component
diagram of software architecture, secure data structure design
and secure algorithms design against top 10 attacks on
software. This standardized proposed secure UML stack with
defense mechanism can be used as the reference document for
the coding phase and help developers to build more secure
applications. The work is in progress.

REFERENCES

[1] M. Abbasa, R. Rioboob, C. Yellesc, C. Snookd , “Formal Modeling and
Verification of UML Activity Diagrams (UAD) with FoCaLiZe”,
Elsevier , pp. 1-27, September 2020.

[2] M. Gedam, B. Meshram, "Proposed Secure 3-Use Case Diagram,"
International Journal of Systems and Software Security and Protection,
IGI Global, pp. 1-18 2022.

[3] S. Hayat, F. Toufik, M., “UML/OCL based design and the transition
towards temporal object relational database with bitemporal data”,
Elsevier , pp. 1-10,August 2019.

[4] E.Sunitha, P. Samuel, “Enhancing UML Activity Diagrams using OCL”,
2013 IEEE International Conference on Computational Intelligence and
Computing Research, pp. 1-6, IEEE, 2013.

[5] M. Mohsin, M.Umair Khan, “UML-SR: A Novel Security Requirements
Specification Language” , 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security (QRS), pp. 342- 349, IEEE,
2019.

[6] Y. Abushark, T. Miller, J. Thangarajah, M. Winikoff, J.
Harland,“Requirements specification via activity diagrams for agent-
based systems”, 31, 423–468 (2017). Springer, pp.1-46, February
2016.

[7] A. Rodríguez , E. Fernández-Medina , J. Trujillo , M. Piattini ,“Secure
business process model specification through a UML 2.0 activity
diagram profile”, Decision Support Systems, Elsevier, pp. 446–465,
2011.

[8] An Oracle White Paper, “Getting Started With Activity Modeling”,
Oracle Corporation,USA, pp.1-9, May 2007.

[9] L. Tan, Z. Yang, J. Xie, “OCL Constraints Automatic Generation for
UML Class Diagram”, IEEE, pp. 392-395, 2010.

[10] T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, I. Porres, “ Model-based
testing using UML activity diagrams: A systematic mapping Study”
Computer Science Review Elsevier, pp. 1-15 ,July 2019.

[11] Analysis and Design: The Making of Information Systems. Springer,
Berlin, Heidelberg, pp. 235–351, 2008.

[12] E. Germán, Rodríguez , J. Torres, P. Flores, D. E Benavides, “Cross-site
scripting (XSS) attacks and mitigation: A survey”, Computer Networks,
Elsevier, pp.1-27, 2019.

[13] I. Martínez , A. Campazas-Vega, ,A. Higueras, V. DelCastillo, C.
Aparicio, C. Fernández-Llamas, "SQL injection attack detection in
network flow data", Computers & Security, Elsevier,pp.1-11, 2023.

[14] Object Constraint Language-OMG Document Number: formal/2014-
02-03,pp.1-262.

[15] M. Gedam, B.Meshram, "Vulnerabilities & Attacks in SRS for Object-
Oriented Software Development," Lecture Notes in Engineering and
Computer Science: Proceedings of The World Congress on Engineering
and Computer Science 2019, 22-24, San Francisco, USA, pp94-99,
October, 2019.

[16] M. Gedam, J. Varshapriya, B. Meshram, "Proposed Secure Content
Modeling of Web Software Model," Proceedings of The National
Conference on Recent Innovations In Engineering Science &
Technology, pp. pp.13001- 13005, April 2019.

[17] W. Thanakorncharuwit, S. Kamonsantiroj, L. Pipanmaekaporn,
“Generating Test Cases from UML Activity Diagram Based on Business
Flow Constraints”, ACM, pp. 155-160, December 2016.

[18] L. Yu1, X. Tang, L. Wang1, L. Xuand, “Simulating Software Behavior
based on UML Activity Diagram”, Changsha, China, ACM, pp. 1-4,
October 2013.

[19] X. Dong, N. Philbert, Zongtian , Wei Liu, “Towards Formalizing UML
Activity Diagrams in CSP”,International Symposium on Computer
Science and Computational Technology, IEEE ,pp.1-4. 2008.

[20] D. Yang, L. Tong, “Modeling E-government Administrative Processes
Using Unified Modeling Language”, 2006 IEEE International
Conference on Service Operations and Logistics, and Informatics. IEEE,
pp. 983-987, 2006.

[21] P. Hayati, N. Jafari, S. Rezaei, S. Sarenche, “Modeling Input Validation
in UML”, 19th Australian Conference on Software Engineering, IEEE,
pp. 663-672, 2008.

[22] M. Alanazi, “Basic Rules to Build Correct UML Diagrams”,
International Conference on New Trends in Information and Service
Science, IEEE, pp. 72-76, 2009.

[23] D. Torre, Y. Labiche, M. Genero, M. Elaasar, “A systematic
identiÞcation of consistency rules for UML diagrams”, The Journal of
Systems & Software, , pp.1-29, 2018.

[24] M. Ozkaya, F. Erata, “A Survey on the Practical Use of UML for
Different Software Architecture Viewpoints”. Information and Software
Technology, . Elsevier, pp.1-27, 2020.

[25] M. Guilherme, Tatibana , F. Barreto V. Benitti, “Use case or activity
diagram, that is the question!”, ACM,pp. 1-7, 2019.

[26] J. Chanda, A. Kanjilal, S. Sengupta, S. Bhattacharya. “Traceability of
Requirements and Consistency Verification of UML UseCase, Activity
and Class diagram: A Formal Approach”, International Conference on
Methods and Models in Computer Science (ICM2CS),pp. 1-4, 2009.

[27] Y. Shinkawa, “Inter-Model Consistency in UML Based on CPN
Formalism”, 13th Asia Pacific Software Engineering Conference
(APSEC '06), pp.414-418, 2006.

[28] P. G. Sapna, H. Mohanty. “Ensuring Consistency in Relational
Repository of UML Models”, 10th International Conference on
Information Technology (ICIT 2007),pp.217-222, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

679 | P a g e

www.ijacsa.thesai.org

[29] E. Fernandez-Medina, M. Piattini and M.A. Serrano, “Specification of
security constraint in UML,” Proceedings IEEE 35th Annual 2001
International Carnahan Conference on Security Technology , IEEE, pp
19 Oct. 2001.

[30] M. Shirole, M. Kommuri, R. Kumar, “Transition sequence exploration
of UML activity diagram using evolutionary algorithm. Proceedings of
the 5th India Software Engineering, ACM, pp.97-100, 2012.

[31] M. Hamdi , N Essaddi and N Boudriga,“ ReAlSec: A Relational
Language for Advanced Security Engineering,” 2009 International

Conference on Advanced Information Networking and Applications,
Bradford, UK, 29 May 2009.

[32] B. Kitchenham, “Guideline for Performing Systematic Literature
Reviews in Software Engineering”, EBSE Technical Report, pp.1-65,
July 2007.

[33] J. Jurjens, “UMLsec: Extending UML for Secure Systems
Development”, Lecture Notes in Computer Science, Springer, pp. 412–
425, 2002.

APPENDIX-A

1) Login Activity Diagram

Fig. 2. Login activity.

2) Attack Activity Diagram

Fig. 3. Attack activity.

3) Defensive Activity Diagram

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

680 | P a g e

www.ijacsa.thesai.org

Fig. 4. Defensive activity.

4) Proposed SecUML3Activity Diagram

Fig. 5. Proposed SecUML3Activity.

