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Abstract—In recent years, fused images have been developed 

for fast processing of medical images, which provide a more 

reliable basis for reducing the burden on physicians because they 

can contain multiple times the image information. In order to 

achieve fast and accurate recognition results in medical image 

recognition, avoid similar blocks and shadow fitting in CT/MR 

fusion images, and improve the entire medical system, in this 

study, CT/MRI image fusion of brain images is studied based on 

algorithms generated by Convolutional Neural Network (CNN). 

The study utilizes Rolling Guidance Filter (RGF) to divide 

medical CT/MRI images into two parts, one of which is used for 

model training and the other for image fusion. In the 

experiments, the results of all three experiments are compared 

with the Nonsub Sampled Contourlet Transform - Piecewise 

Convolutional Neural Network (NSCT - PCNN), and the CNN-

RGF MI/ IE/SSIM/AG values of CNN-RGF are superior 

compared to the conventional algorithm of NSCT-RCNN with an 

average improvement of 10.0% and above, and the resulting 

CNN-RGF observed meningitis, hydrocephalus, and cerebral 

infarction with an average of 24.8% higher compared to NSCT-

RCNN. The outcomes show that for brain image fusion and 

detection, the CNN-RGF approach put forward in the study 

performs better. 

Keywords—Convolutional neural network; image; integration; 

CT; MRI 

I. INTRODUCTION 

In recent years, medical imaging has been rapidly 
developing as it has started to be involved in disease diagnosis 
and widely used in clinical treatment. As the amount of 
comprehensive information increases, medical images using a 
single modality mode gradually fail to meet the needs of 
physicians. The information provided by traditional medical 
images can be too one-sided, and there are many tissues and 
organs in the human body, so doctors using the naked eye to 
identify the images will inevitably produce eye fatigue, thus 
affecting the accuracy of diagnosis [1, 2]. Moreover, the 
development of medical devices is really backward, and the 
blurriness of imaging is sometimes even lower than the 
resolution of the human eye, so it is necessary to consider the 
fusion of multiple images together. Through a method to 
aggregate multiple medical images into one, not only can the 
useful information be concentrated into one, which improves 
the image utilization rate, but also can reduce the amount of 
images for doctors to see, which is convenient for doctors to 
locate the precise lesion and target medication to patients, and 
perhaps treat more difficult and complicated diseases [3]. 
Therefore, research on fusing multiple images together is 
imminent. Recently, a classical algorithm, Convolutional 
Neural Network (CNN), has come into the view of researchers 

and become popular in image fusion. The CNN has powerful 
feature extraction capability, and the Rolling Guidance Filter 
(RGF) is able to handle the similarity blocks and anaglyph of 
fused images well [4]. Based on the advantages of both, this 
study establishes a CNN-RGF algorithm to fuse medical 
images at pixel level considering four plain objective quantities 
after CT/MRI fusion images. The aim is to achieve fast and 
accurate recognition results in medical image recognition, and 
to avoid similar blocks and shadow-fitting CT/MRI fused 
images. This will reduce the processing burden of doctors, 
improve their efficiency, and thus improve the whole medical 
system. The main contribution of the research is to extract and 
fuse different image information of the same target from 
different angles, levels, or types of sensors. At the same time, 
the low transparency information in the image is processed 
through image denoising, enhancement, and other image 
processing techniques, thereby significantly improving the 
accuracy, restoration, and reliability of the image, and 
providing clearer and more accurate expression for the 
generation of target images a fused image with complete 
content and rich image information. The innovation of the 
research lies in the use of a pyramid based multi-scale image 
decomposition method, which enables fusion at each 
decomposition level. Each source image is decomposed 
through a regional Laplacian pyramid, making the image 
features more distinct. Therefore, this method plays an 
important role in medical image fusion. 

The research structure is mainly divided into four parts. 
The first part is a summary of relevant research on medical 
image fusion at home and abroad. The second part is to build a 
brain CT/MRI image fusion model based on CNN, and 
introduce the specific improvement process and research of the 
algorithm. The third part is to analyze the performance of the 
constructed model, reflecting its performance through 
indicators such as accuracy and error. The fourth part is a 
summary and analysis of the research, discussing the 
achievements and shortcomings of the research, and proposing 
suggestions for future research directions. 

II. RELATED WORKS 

A very important branch of image processing technology, 
i.e., medical image fusion, has a very important role in doctors’ 
rapid treatment of patients, targeted drug administration, etc. 
Wang et al. [5] studied multi-feature fusion in depth and 
proposed a medical brain image algorithm based on it. Texture 
information was obtained by feature extraction of CNNs, and 
morphological features were obtained by feature extraction of 
voxel information. These two types of features were 
concatenated and then the feature selection stage was 
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optimized using a heuristic search algorithm. They analyzed 
experimentally to select the optimal values of the parameters 
based on the heuristic search and extracted the optimal feature 
subset after determining the parameter values. Finally, the 
algorithm improved the accuracy and efficiency of brain image 
classification compared to similar algorithms. Polinati et al. 
proposed a new method for medical image fusion, 
incorporating content decomposition and sigmoid function [6]. 
They considered and implemented the use of empirical wavelet 
transform for content-based decomposition for preserving 
edges and corner points. They discovered that using detail 
layer fusion directly results in significant artefacts, so they used 
the sigmoid function to improve weight scaling. They tested 
their suggested method with previous fusion methods after 
fusing 24 pairs of MRI-PET and MRI-SPECT pictures, and 
they discovered that both the qualitative and quantitative 
outcomes had significantly improved. By first filtering the CT 
and MR image sets through a set of various scaled filter sets, 
different pairs of representations of CT and MR were obtained. 
Each pair of different representations was then used to train the 
corresponding CNN to obtain the final fused image, and it was 
compared with nine recent state-of-the-art multimodal fusion 
methods. Wang et al. [7] proposed a fusion method based on a 
multi-CNN combination of fuzzy neural networks. The 
experimental findings demonstrated that in objective 
evaluation and visual quality, the fusion approach greatly 
exceeded other comparative fusion methods. The method 
excelled in four measures, enhanced multimodal medical 
picture fusion quality, and helped doctors diagnose diseases 
more accurately. A brand-new picture fusion technique based 
on sparse representation was proposed by Yu et al. [8]. They 
studied that after merging all source images into a joint matrix 
and training it by an algorithm, an overcomplete coefficient 
would be obtained that can be used to represent this matrix. 
The obtained over-completeness was used as coefficients of the 
image features and combined with choose-max fusion rules. 
The fused images were reconstructed from the connected 
coefficients and the overcomplete dictionary and compared 
with the conventional algorithms. They found that the method 
had better fusion performance compared to three state-of-the-
art algorithms. 

Using the non-subsampled shear wave transform (NSST), 
smooth wavelet transform, and impulsive coupled neural 
network, Singh and Gupta suggested a multilevel multimodal 
fusion model [9]. A weighted Laplace pyramid was used to 
extract structural features from the source image and apply 
them to an adaptive model that can map the feature weights 
used for low-band component fusion using absolute maxima 
and absolute differences, a rule that allows fusion of high-
frequency NSST components to preserve complex directional 
details. The first step was to use NSST to decompose the 
source image into optimal sparse multi-resolution components. 
The strategy, when compared to previous methods, 
dramatically improved medical picture fusion with good visual 
quality and improved computational metrics, according to 
experimental results. The non-subsampled contour wave 
transform (NSCT) domain image fusion approach was 
proposed by Yu et al. and is based on pulse-output neural 
networks (PCNN) and hybrid frog-leaping algorithms (SFLA) 
[10]. First, the source image was decomposed into low-

frequency and high-frequency subbands using NSCT, and 
secondly, different PCNN fusion rules were designed. Finally, 
the fused images were reconstructed by inverse NSCT. The 
fused image preserved more of the original image’s 
information with strong edge retention, according to a visual 
and quantitative examination of the experimental results. Guan 
et al. proposed an image fusion algorithm based on multi-scale 
analysis coupled with approximate sparse representation to 
better deal with the singularity of high-dimensional features of 
images and to take into account the fusion of image target 
features and average intensity information [11]. The high-
frequency and low-frequency information of the image was 
obtained by the scale analysis of the source image, and the 
specific target detail information was highlighted. The 
approximate sparse representation was designed to 
approximate the singular curve with the smallest coefficients. 
A decision mapping was constructed to analyze the activity and 
matching degree of all coefficients on the same subband and 
output the decision values, which were used to match and fuse 
the images. Then the final fused image was obtained by multi-
scale inverse transform. The experimental results showed that 
better visual effects can be obtained with high robustness and 
wide application. 

Multiple researchers have found that CT/MRI image fusion 
algorithms are very popular internationally and have achieved 
relatively successful data in experiments, with an overall 
success rate of over 80% for image fusion [12-16]. Although 
image fusion has made some progress, its effectiveness still has 
a significant room for improvement. Research has found that 
there is relatively little research on using CNN algorithms to 
form composite neural networks in image fusion. Therefore, 
combining CNN and RGF can leverage their respective 
advantages, compensate for the shortcomings of individual 
algorithms, and perfectly avoid their own shortcomings. The 
research aims to further improve the effectiveness of medical 
image fusion. 

III. CNN-BASED BRAIN CT/MRI IMAGE FUSION STUDY 

A medical image fusion method based on pyramid and 
CNN is proposed. By using multi-scale decomposition of 
pyramids that are more conducive to human visual perception, 
the fusion effect is improved. At the same time, the idea of 
support vector machine (SVM) is used to improve the CNN 
network, which does not rely on empirical initialization 
parameters and effectively extracts image features to obtain 
more suitable weight maps. The pooling and sampling layers in 
traditional CNN networks is removed to reduce the loss of 
image information. 

A. Application of Multi-Scale Geometric Transform in Image 

Fusion Algorithm 

The research on the overall framework of medical image 
fusion proposes a medical image fusion algorithm that can be 
summarized into the following four steps. The first step is to 
input the source image into an improved CNN and generate a 
weight map. The second step is pyramid decomposition, which 
uses the multi-scale image decomposition method of the 
pyramid to fuse at each decomposition level. Each source 
image is decomposed through the regional Laplace pyramid. 
The third step is coefficient fusion. The fourth step is the 

https://xueshu.baidu.com/s?wd=author:(S%20Polinati)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(Y%20Sun)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
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reconstruction of the Laplace pyramid. The specific framework 
diagram is shown in Fig. 1. 

Computed Tomography (CT) is an important tool for 
diagnosing lesions because of its rapid scanning capability, 
while Magnetic Resonance Imaging (MR) has the strongest 
resolution of soft tissue and can observe lesions without dead 
space [17-19]. By combining CT/MRI together, the accuracy 
of unimodal medical images can be greatly improved. For two 
images of the same target, the levels after fusion can be divided 
into three kinds, as in Fig. 2. 

From Fig. 2, the fusion of images can be divided into three 
levels: pixel, feature and decision. Among them, direct fusion 
from the original image is called pixel fusion; feature 
extraction of the original image once and then fusion is called 
feature fusion; feature extraction of the image that has been 
extracted once and then fusion is called decision fusion, 
implying that a decision can be made directly from the decision 
fused image. The contribution of decision fusion to CT/MRI of 
the brain is many, including but not limited to the timely 
detection of lesions, saving the time of doctors and providing a 
possibility of cure for patients. In order that no one will suffer, 
this study investigates the method of brain CT/MRI image 
fusion, which will be discussed in detail next. Independent 
individual neurons have simple structures, but neural network 
systems composed of large numbers of neurons are rich in 
behavior. The relationships between neurons are intricate and 

complex. The expressions of neurons are shown in Equation 
(1) [20]. 
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In the above Equation (1), the nonlinear function is denoted 

as f ; two neurons are defined as ,i j ; then the link between 

them is called 
ij and its threshold is called  . To reflect how 

much valid information is contained in the image, Mutual 
Information (MI) is chosen to judge the size of information 

data in the image. It supposes that there exist  ,X Y  as 

random variables and their distribution is jointly located at 

 ,p x y , then    p x p y  is called the edge of the 

distribution, then their relationship is as denoted in Equation 
(2). 
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Fig. 1. Overall framework of medical image fusion process. 
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Fig. 2. Three different levels of image fusion. 
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For problems involving brain images, it is not enough to 
discriminate the amount of data by MI alone, but also requires 
the complement of Information Entropy (IE). The smaller the 
IE, the more residual the image is, as indicated in Equation (3). 
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CNN is the most commonly used network model in 
medical field. A complete CNN mainly consists of input, 
convolutional, pooling, fully connected and output layers. 
Among them, the convolutional layer is the core of CNN and is 

also the source of the name of CNN. It assumes that 
i  

represents the full-valued vector, the convolution operation is 
noted as  , and the activation function is called  , the 

operations in the convolution layer are as expressed in 
Equation (4). 

 1i i i iH f H b  
                         (4) 

To construct multi-resolution images, the concept of Local 
Laplacian Pyramid (LLP) is also introduced. LLP has the 
power to not only accurately distinguish between the edges and 
textures of an image, but even to fuse the image with the tower 
layer. Due to many updates, LLP has never had any artifact 
problems. Before performing LLP operation on an image, a 
Gaussian Pyramid (GP) decomposition is performed, as in 
Equation (5). 
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In Equation (5), *

lG  is the image after GP processing, and 

,i j  means the current GP layer number. The image after 

undergoing GP decomposition cannot obtain the risk in the 
evolutionary process, such as the empirical risk, but also the 
information is lost [21]. To avoid information loss and at the 
same time deepen the impression of information in the 
network, the residual learning module is built according to 
Equations (3) to (5) as in Fig. 3. 

In Fig. 3, the input primitive image can finally obtain an 
optimized image of size 6*6*256 after first undergoing C-level 
evolution. Then two steps of weighting are performed, and 
after passing it, it can be input among LLP, which is calculated 
as Equation (6). 
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Fig. 3. Residual learning module. 

In Equation (6), the image output by LLP is called O , and 

the image of each layer is noted as 
iS . After a set of processes 

in LLP, the coefficients due to the decomposition are obtained, 

which are denoted as v , then  'I v  is also called the standard 

function based on the decomposition coefficients. The 

reconstruction operator is then denoted as collapsywhane  and 

the pixel value obtained from the LLP can be called g . In 

addition, , , r    are three variable parameters of LLP, which 

are intensity threshold, detail factor and ranging factor. The 
intensity threshold serves as a boundary to distinguish edges 
from details; the detail factor and the range factor control the 
enhancement and reduction, respectively, one controlling the 
details and the other controlling the range. After the GP and 
LP, the signal analysis is performed. The signal analysis tool is 
the well-known Multiscale Geometric Analysis (MGA), whose 
flow is shown in Fig. 4. 
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Fig. 4. Multi-scale geometric transformation image fusion. 
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In Fig. 4, the original image is first multi-scale transformed, 
which will result in a decomposed source image, and the fusion 
rule is applied to the decomposed image to fuse high-frequency 
coefficients or low-frequency coefficients, as appropriate. Then 
the fused coefficients are inverse multi-scale transformed, and 
finally the fused image is recombined to form [22]. For the 
fused image, the gap between the distortion and the original 
image is contacted, i.e., the Fidelity of Visual Information 
(VIFF) is calculated, as in Equation (7). 
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In Equation (7), the visual information degree of distortion 
or not is expressed by ,FVID FVIND , respectively. , ,A B F  

denotes the degree of information of the pixel and b  denotes 

the value of the coordinate at which it is located. 

B. MR/CT Medical Image Fusion based on the Combination 

of CNN and Rolling Guide Filtering 

RGF has the ability to guarantee smooth details even under 
scale measurement. RGF works iteratively and converges 
particularly fast; RGF works over a wide range, and small 
structure removal and edge restoration are its features, which 
are well suited for medical image studies. If it assumes that I  
is the input image, then G  represents the output image, the 

standard deviation of the Gaussian filter is noted as 2

S  and the 

pixel index can be expressed by ,p q  as in Equation (8). 
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means that it is available for normalization. When the RGF 
takes another approach to recover the edges, that must be the 
joint RGF iteration, at which time the source output of the filter 

is represented by 
tJ . When the filter iterates to t times, the 

output at that time is represented by 1tJ  , and the relationship 

between them is as in Equation (9). 
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In Equation (9), the weight range is controlled jointly using 
2, rI  . The CNN model is testing the activity level metric while 

using a huge number of photos to train its data and create 
adaptive fusion rules. CNN is able to greatly reduce the 
difficulty of designing fusion rules because image fusion with 
CNN is more efficient than manual design, as shown in Fig. 5. 

From Fig. 5, a normal image block size is 16*16, and after 
a nonlinear mapping, it gets 64 feature maps of size 16*16, 
which should be processed with special care to prevent 
information loss. 64 images undergo another nonlinear 
mapping, and then compression in the image, which can get 
128 refined images of 8*8. The refined image can also undergo 
a final expansion to obtain 256 8*8 results. This is already the 
limit of convolutional kernel, if it is too large, it is easy to 
cause information loss; if it is too small, the feature extraction 
is not obvious enough [23-25]. For medical class images, 
fluctuations in other local regions can be better characterized, 
so a new parametric max-min filtering algorithm is introduced, 
calculated as in Equation (10). 
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In Equation (10), the original image is recorded with I , the 

center of I  is noted as   and  ,i j  is any point. 
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mini filters. Images sometimes have similar shared blocks, 
which can be established in Equation (11). 
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Fig. 5. CNN structure. 
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In Equation (11), 
q  represents the Euclidean distance of 

the similar parts between the shared blocks. The given 

reference block is noted as 
qP , and the candidate block is 

defined as 
rP . The candidate blocks are to avoid gradient 

reciprocity and gradient destruction, and also to be adaptive to 
the weights that appear. The fusion of the input graph is set 
according to the known judging criteria, as in Fig. 6. 
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Fig. 6. Image fusion process. 

From Fig. 6, if the detail image has the feature of local 
similarity, then the block can be cut into a large number of 
square blocks of equal size, called Shared Similar Block (SSB), 
which is defined by Equation (12). 
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In Equation (12), the image ,A B  has k  similar blocks to 

the image ,A BW W
L L , respectively, and the SSB to be calculated 

is  S

WL r . The SSB is somewhat different from the traditional 

perceptron, as reflected in the optimization of the fixed 
denominator, and the optimization function is as in Equation 
(13). 

   

2

2min , 1 1
2

T

i i

W
y W x b i N   

     (13) 

In Equation (13), 

2

2min
2

W
 is defined as the large 

distance from all points to the shared plane, and 
iy  implies a 

regression analysis that can seek the optimal solution for 
learning ability and distance. For human vision, the color and 
state of the image are very sensitive, so a small deficiency in a 
key location can cause a large change. For medical matters, the 
larger the area of the image is the more informative it is. 
Medical imaging characteristics can prove that the largest and 
smallest pixel difference reflects important information. So for 
the study of images, the first step is to perform a pyramid 
decomposition so that the fusion applies to each level, as in 
Fig. 7. 

Original image. a

Original image. b

Improved 

algorithm

LW

LA

LB

LF F

W

 

Fig. 7. Improved algorithm for image fusion. 

In Fig. 7, the original images A, B and W are input to the 
algorithm based on the combination of rolling filter and CNN 
to obtain three initial images LA, LB and LW. The obtained three 
images are input into the Laplace pyramid and then feature 
fusion operation is performed to be able to output the final 
image F. The risk in this is mainly in two aspects, containing 
empirical risk and structural risk, to be considered 
simultaneously. The empirical risk is to be controlled by the 
generalization of the CNN, and the study is to control both 
time and geographic location because it is most influenced by 
environmental factors and other factors are negligible [26-28]. 
Structural risk reduction is to be achieved by dimensionality 
reduction of the CNN, as reflected in the histogram of the 
probability distribution of the input. The function mapping is 
then performed by hidden neurons, and assuming that the filter 
convolves the image support values and the standard 
convolution kernel of step size is maximally pooled, Equation 
(14) can be obtained. 
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    (14) 

In Equation (14), the kernel weights are represented by  ; 

u  denotes the scale of the maximum pool operation;  ,i j  is 

the coordinate;  f   represents the activation function of 

Relu, which is chosen to represent the elements of the previous 
layer of feedback for this operation. 

IV. ANALYSIS OF MEDICAL MR/CT IMAGE FUSION MODEL 

BASED ON CNN 

A. Determination of Model Parameters for Fused CNN-RGF 

For this study, the dataset from The First Affiliated 
Hospital of Harbin Medical University was used, and images 
of normal brains as well as common disease brains, such as 
brain atrophy, were selected. The experimental environment, 
i.e., the parameters, is shown in Table I. 

For the image processing, the image was first normalized 
and then compared with NSCT - PCNN for comparison, as 
shown in Fig. 8 [29, 30]. 
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TABLE I.  EXPERIMENTAL PARAMETERS 

GPU Internal storage 
Operating 

system 

Channel 

output 

NVID Tesla 

M60 
256GB*2 

128Ubnutu 

21.02.20 
64; 128; 256 

Flash memory Operator Input 
Filter 

parameters 

CUDA Too kit 

23.0 
Python 3.0 3*3; Floor2 

Step length 
Number residual 

blocks 
Display card CPU 

1 32 Tensor flow 2.40 
Windows 

X10 

Normal brain

NSCT – PCNN 

Imaging

CNN-RGF 

Imaging

Encephalatrophy

 

Fig. 8. Comparison chart of CT/MRI fusion effect. 

From Fig. 8, the brain luminosity of NSCT - PCNN 
imaging was not as bright as CNN-RGF, and even in the 
processing of details, it was obvious that CNN-RGF was more 
carefully discriminated. Even though NSCT - PCNN was more 
economically cost effective, it was more important to be 
medically rigorous. Then the dataset had to be trained 
iteratively as well as with error training, as in Fig. 9. 

From Fig. 9, the accuracy of CNN-RGF was lower than 
that of NSCT-PCNN until 200 iterations, but the error rate was 
higher than that of NSCT-RCNN with the increase of the 
iteration times. However, when the iteration times reached 200 
or more, the accuracy of CNN-RGF was unmatched by NSCT-
RCNN. Although the increase in the iteration times decreased 
the operational efficiency of the algorithm, the accuracy also 
increased with the iteration times. Since the recognition of 
brain images was important for brain diseases, the accuracy of 
image recognition was more important, and based on this, the 
CNN-RGF algorithm proposed in the study had more 
significant advantages. The corresponding results in Fig. 9 are 
shown in Table II. 

In Table II, the highest accuracy value of CNN-RGF was 
0.94, the average value was 0.85, and the error was 0.13; The 
highest accuracy of NSCT-PCNN was 0.81, with an average of 
0.69 and a deviation of 0.18. The minimum error value of 
CNN-RGF was 0.52, the average value was 0.64, and the 
deviation was 0.11. The highest accuracy of NSCT-PCNN was 
0.71, with an average of 0.86 and a deviation of 0.13. The 
results indicated that the proposed CNN-RGF model had 
higher accuracy and stability. 

B. Experimental Data Validation based on CNN-RGF Model 

To make the results more generalizable and applicable to 
all hospitals, this study provided a high-level evaluation of the 
results based on several common metrics. These were MI, IE, 
Structural Similarity (SSIM) and Average Grads (AG). The 
values obtained from the above four box indicators belonged to 
dimensionless values and were mainly used for comparison. 
Three common brain diseases were studied based on the four 
metrics, and the generated results were compared using NSCT-
RCNN with CNN-RGF, as shown in Fig. 10. 
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Fig. 9. Iterative training and error training of  datasets. 

TABLE II.  PERFORMANCE MEAN AND STANDARD DEVIATION OF MODEL TRAINING 

Algorithm 
Precision Deviation 

Highest Value Average Value Standard Deviation Minimum Average Value Standard Deviation 

CNN-RGF 0.94 0.85 0.13 0.52 0.64 0.11 

NSCT-PCNN 0.81 0.69 0.18 0.71 0.86 0.13 
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Fig. 10. Comparison of three kinds of encephalopathy and four indexes by 

using CNN-RGF (a) and NSCT-RCNN (b). 

From Fig. 10, firstly three brain diseases, including 
meningitis, hydrocephalus and cerebral infarction, were 
characterized in CNN-RGF which was higher than NSCT-
RCNN. In other words, the image quality obtained by fusion 
was better when CNN-RGF was used to characterize brain 
diseases. The CNN-RGF algorithm reached the optimum in all 
three groups of experiments for meningitis, hydrocephalus and 
cerebral infarction, and the enhancements for MI reached 25%, 
2.5% and 20.5%, respectively, which were the plain objective 
constants with the largest enhancements. The smallest 
improvement was SSIM, but it also reached 16.6%, 1.6%, and 
15.0%, respectively. Among them, MI could reflect the rate of 
change of image brightness, and SSIM could consider both 
brightness and contrast of the image. The MI and SSIM values 
were considered together, i.e., the higher their values, the 
clearer the image. The corresponding results in Fig. 10 are 
shown in Table III. 

In Table III, both CNN-RGF and NSCT-PCNN had higher 
evaluation values for various indicators in the same disease. In 
the standard deviation, CNN-RGF also exhibited better 
stability. To make the test results more comprehensive, their 
CT/MRI objective indexes were also evaluated, as shown in 
Fig. 11. 

In Fig. 11, CNN-RGF outperformed the NSCT-RCNN 
algorithm in all objective metrics when observing CT/MRI 
maps of the brain. The observation of MI in meningitis reached 
the optimal value, the observation of SSIM in cerebral 
infarction belonged to the suboptimal value, and the four 

objective values based on CT/MRI were improved by 22.5% 
on average compared with the NSCT-RCNN algorithm, which 
could provide a large number of medical CT/MRI quality 
images. Since medical images represent personal privacy, the 
First Hospital of Harbin Medical University did not keep some 
data. The dataset for this study required some pioneering, 
which largely limited the performance of the constructed 
model. The corresponding results in Fig. 11 are shown in 
Table IV. 

In Table IV, both CNN-RGF and NSCT-PCNN had higher 
evaluation values for various indicators in the same disease; In 
the standard deviation, CNN-RGF also exhibited better 
stability. Taking into account the implications, a 
complementary experiment was designed and implemented, 
i.e., based on MR/SPECTION metric observations, as shown in 
Fig. 12. 

TABLE III.  DETECTION INDEX RESULTS OF DIFFERENT ALGORITHMS IN 

ENCEPHALOPATHY 

Index 
Meningiti

s 

Hydrocephalu

s 

Cerebral 

infarction 

CNN-RGF 

MI 1.70±0.13 2.45±0.22 2.53±0.23 

IE 3..41±0.33 4.39±0.36 5.55±0.42 

SSI

M 
0.35±0.06 0.48±0.09 0.74±0.11 

AG 9.18±0.59 9.39±0.61 9.74±0.62 

NSCT-

PCNN 

MI 1.62±0.12 2.14±0.15 2.47±0.19 

IE 3.29±0.28 3.88±0.31 4.12±0.34 

SSI

M 
0.14±0.02 0.37±0.05 0.56±0.07 

AG 7.82±0.31 8.57±0.42 9.04±0.47 
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Fig. 11. Comparison of three kinds of encephalopathy and CT/MRI indexes 
by using CNN-RGF and NSCT-RCNN. 
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TABLE IV.  OBSERVATION RESULTS OF CT/MRI INDICATORS 

Index 
Meningiti

s 

Hydrocephalu

s 

Cerebral 

infarction 

CNN-RGF 

MI 4.34±0.24 3.51±0.33 2.38±0.34 

IE 6.99±0.44 5.05±0.32 5.52±0.31 

SSI

M 
0.70±0.07 0.61±0.04 0.89±0.07 

AG 5.76±0.70 4.80±0.13 6.46±0.68 

NSCT-

PCNN 

MI 3.50±0.50 2.07±0.34 1.42±0.58 

IE 3.29±0.28 3.88±0.31 4.12±0.34 

SSI

M 
0.14±0.02 0.37±0.05 0.56±0.07 

AG 7.82±0.31 8.57±0.42 9.04±0.47 
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Fig. 12. Comparison of  three kinds of encephalopathy and MR/SPECTION 

indexes by using CNN-RGF (a) and NSCT-RCNN (b). 

From Fig. 12, it was indeed very necessary to test the 
complementation experiment, i.e., it was very different from 
the previous images. However, the difference was only in the 
shape, and the specific values of the four indexes of the 
MR/SPECTION images were still better for CNN-RGF than 
for NSCT-RCNN. Testing MR/SPECTION images, the 
MI/IE/SSIM/AG values of CNN-RGF were obtained as 
1.77/5.77/2.17/6.45 for meningitis. The average values of 
MI/IE/SSIM/AG for hydrocephalus were 2.20/3.80/3.55/6.28; 
MI/IE/SSIM/AG for cerebral infarction were 
0.54/1.04/4.07/7.20. The average values were 24.8% higher 
than those of NSCT-RCNN, and the CT/MRI images produced 
by the CNN-RGF algorithm were clearer. It is proved that 
CNN-RGF can retain the details of CT/MRI images well and 
can provide better quality CT/MRI images. The corresponding 
results in Fig. 12 are shown in Table V. 

TABLE V.  OBSERVATION RESULTS OF MRI/SPECTION INDICATORS 

Index 
Meningiti

s 

Hydrocephalu

s 

Cerebral 

infarction 

CNN-RGF 

MI 1.77±0.35 2.20±0.41 0.54±0.08 

IE 3.80±0.47 5.77±0.69 1.04±0.13 

SSI

M 
2.17±0.08 3.55±0.25 4.07±0.38 

AG 6.45±0.81 8.38±0.76 7.20±0.48 

NSCT-

PCNN 

MI 0.82±0.04 1.03±0.05 0.27±0.03 

IE 4.24±0.39 2.17±0.11 0.46±0.07 

SSI

M 
0.82±0.16 1.05±0.13 2.17±0.28 

AG 5.82±0.68 6.28±0.75 6.17±0.47 

In Table IV, both CNN-RGF and NSCT-PCNN had higher 
evaluation values for various indicators in the same disease. In 
the standard deviation, CNN-RGF also exhibited better 
stability. To ensure the without loss of generality of the 
proposed method, NWPU VHR-10 data set was used to verify 
the model performance. The NWPU VHR-10 dataset was an 
aerial photography dataset, and aerial images were also 
processed using methods such as cropping and stitching. 
Therefore, CNN-RGF was studied for this dataset, and the 
performance results were reflected through accuracy and recall 
indicators. The specific results are shown in Table VI. 

TABLE VI.  THE APPLICATION EFFECT OF CNN-RGF ALGORITHM IN 

NWPU VHR-10 DATASET 

Comparison algorithm Precision Recall 

Neural Network 0.673 0.616 

K-Nearest Neighbor 0.785 0.690 

SVM 0.820 0.714 

CNN-RGF 0.913 0.873 

In Table VI, the accuracy of CNN-RGF in the NWPU 
VHR-10 dataset was 0.913, and the recall rate was 0.873. 
Compared to other models, the performance proposed in the 
study has significantly improved. Although its accuracy was 
slightly lower, which might be due to the complex environment 
of aerial images, the results demonstrated the effectiveness of 
the proposed method. 

V. CONCLUSION 

This research used the brain image data of the First 
Affiliated Hospital of Harbin Medical University, and used 
CNN to extract its features. The extracted image used RGF to 
process the image’s similar blocks and artifacts. Using the 
CNN-RGF method to fuse CT/MRI images, after the fusion 
was completed, it was first tested for naive objective quantities. 
The four simple objective indicators of CNN-RGF in 
meningitis, MI/IE/SSIM/AG, were 2.45/3.41/0.48/9.39; The 
MI/IE/SSIM/AG in Hydrocephalus was 1.70/4.39/0.35/9.74; 
The MI/IE/SSIM/AG in cerebral infarction was 
2.53/5.55/0.74/9.18. At the same time, NSCT-RCNN algorithm 
was selected for comparative experiments. The measured 
MI/IE/SSIM/AG values of NSCT-RCNN in meningitis, 
Hydrocephalus, and cerebral infarction were 
2.14/3.29/0.37/9.04, 1.62/4.12/0.14/7.82, 2.47/3.88/0.56/8.57, 
respectively. Among the three common brain diseases, the 
naive objective values obtained by CNN-RGF were higher than 
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those obtained by NSCT-RCNN, with an average improvement 
level of over 15%, indicating that the CT/MRI image quality 
obtained through CNN-RGF fusion was higher. To make the 
results universal, objective data testing of CT/MRI was 
supplemented. The CT/MRI objective data of CNN-RGF in 
meningitis, Hydrocephalus and cerebral infarction were 
4.34/6.99/0.70/5.76, 3.51/5.05/0.61/4.80, 2.38/5.52/0.70/6.46 
respectively; In NSCT-RCNN, they were 3.50/5.54/0.28/3.17, 
2.07/4.27/0.05/2.46, 1.42/5.38/0.28/3.24, respectively. The 
values obtained from the above results were all dimensionless 
and were mainly used for comparing the effectiveness of 
algorithms. Therefore, from the extensive testing, the CT/MRI 
objective data values obtained from CNN-RGF were higher 
than those from NSCT-RCNN, with an average improvement 
level of over 10%. This proved that the CT/MRI obtained 
through CNN-RGF fusion was more suitable for major 
hospitals. 

Because the first affiliated Hospital of Harbin Medical 
University lacked some data, the performance of the 
constructed model was limited. Due to scientific rigor, 
supplementary experiments were designed and implemented to 
observe MR/SPECTION indicators. The MR/SPECTION 
observations of meningitis in CNN-RGF were 
1.77/5.77/2.17/6.45, respectively. The observed value of 
Hydrocephalus on MR/SPECTION was 2.20/3.80/3.55/6.28; 
The observed values of MR/SPECTION for cerebral infarction 
were 0.54/1.04/4.07/7.20, with an average of 24.8% higher 
than NSCT-RCNN. Taking the human eye resolution MI=8.00 
as a reference, it could reach MI=2.40 as clear, indicating that 
for NSCT-RCNN fusion images, the characterization of 
meningitis and cerebral infarction cannot even reach the 
minimum standard. Compared with the traditional algorithm 
NSCT-RCNN, CNN-RGF was more suitable for application in 
hospitals. But there are not many medical images studied, 
because medical images have privacy and are not suitable for 
widespread dissemination. With the increase of volunteers, it is 
believed that future research can be improved. 

REFERENCES 

[1] X. Gao, M. Shi, X. Song, C. Zhang, and H. Zhang, “Recurrent neural 
networks for real-time prediction of TBM operating parameters,” Autom. 
Constr., vol. 15, pp. 130-140, February 2019. 

[2] J. H. Jung, H. Chung, Y. S. Kwon, and I. M. Lee, “An ANN to predict 
ground condition ahead of tunnel face using TBM operational data,” 
KSCE J. Civ. Eng., vol. 23, pp. 5-6, May 2019. 

[3] R. Hasanpour, J. Rostami, J. Schmitt, Y. Ozcelik, and B. Sohrabian, 
“Prediction of TBM jamming risk in squeezing grounds using Bayesian 
and artificial neural networks,” J. Rock Mech. Geotech. Eng., vol. 12, pp. 
21–31, February 2020. 

[4] L. Liu, W. Zhou, and M. Gutierrez, “Effectiveness of predicting 
tunneling-induced ground settlements using machine learning methods 
with small datasets,” J. Rock Mech. Geotech. Eng., vol. 14, pp. 1028-
1041, August 2022. 

[5] D. Wang, H. Zhao, and Q. Li, “Medical brain image classification based 
on multi-feature fusion of convolutional neural network,” J. Intell. Fuzzy 
Syst., vol. 38, pp. 127-137, January 2020. 

[6] S. Polinati, D. P. Bavirisetti, K. N. V. P. S. Rajesh, and R. Dhuli, 
“Multimodal medical image fusion based on content-based and PCA-
sigmoid,” Cur. Med. Imag., vol. 18, pp. 546-562, Number 2022. 

[7] L. Wang, J. Zhang, Y. Liu, J. Mi, and J. Zhang, “Multimodal medical 
image fusion based on Gabor representation combination of multi-CNN 
and fuzzy neural network,” IEEE Access, vol. 9, pp. 67634-67647, April 
2021. 

[8] N. N. Yu, T. S. Qiu, and W. H. Liu, “Medical image fusion based on 
sparse representation with KSVD,” Chin. J. Biomed. Eng., vol. 28, pp. 
168-172, May 2019. 

[9] S. Singh and D. Gupta, “Multistage multimodal medical image fusion 
model using feature-adaptive pulse coupled neural network,” Int. J. Imag. 
Syst. Technol., vol. 31, pp. 981-1001, November 2020. 

[10] M. Yu, C. Ning, and Y. Xue, “Brain medical image fusion scheme based 
on shuffled frog EAPING algorithm and adaptive pulse oupled neural 
network,” Image Process., vol. 6, pp. 1203-1209, December 2020. 

[11] J. S. Guan, S. B. Kang, and Y. Sun, “Medical image fusion algorithm 
based on multi-resolution analysis coupling approximate spare 
representation,” Future Gener. Comput. Syst., vol. 98, pp. 201-207, 
September 2019. 

[12] G. Wang, W. Li, X. Gao, B. Xiao, and J. Du, “Multimodal medical 
image fusion based on multichannel coupled neural P systems and max-
cloud models in spectral total variation domain,” Neurocomputing, vol. 
480, pp. 61-75, April 2022. 

[13] C. Wang, R. Nie, J. Cao, X. Wang, and Y. Zhang, “IGNFusion: An 
unsupervised information gate network for multimodal medical image 
fusion,” IEEE J. Sel. Top. Sig. Proc., vol. 16, pp. 854-868, June 2022. 

[14] K. P. Das and J. Chandra, “Multimodal classification on PET/CT image 
fusion for lung cancer: A comprehensive survey,” ECS Trans., vol. 107, 
pp. 3649-3673, 2022. 

[15] S. Akbar, S. A. Hassan, A. Shoukat, J. Alyami, and S. A. Bahaj, 
“Detection of microscopic glaucoma through fundus images using deep 
transfer learning approach,” Microsc. Res. Tech, vol. 85, pp. 2259-2276, 
February 2022. 

[16] M. T. Vo, A. H. Vo, T. Le, “A robust framework for shoulder implant 
X-ray image classification,” Data Technol. Appl., vol. 56, pp. 447-460, 
2022. 

[17] G. Xiao, “Problems of railway tunnel construction under some special 
geological conditions in China and their countermeasures,” Tunnel 
Constr., vol. 39, pp. 1748-1758, December 2019. 

[18] J. Li, W. Zhang, W. Diao, Y. C. Feng, X. Sun, and K. Fu, “CSF-Net: 
Color spectrum fusion network for semantic labeling of airborne laser 
scanning point cloud,” IEEE J. Sel. Top. Appl. Earth Observations 
Remote Sens., vol. 15, pp. 339-352, December 2022. 

[19] T. Feng, C. Wang, J. Zhang, B. Wang, and Y. Jin, “An improved 
artificial bee colony-random forest (IABC-RF) model for predicting the 
tunnel deformation due to an adjacent foundation pit excavation,” 
Undergr. Space, vol. 7, pp. 514-527, August 2022. 

[20] R. Chen, P. Zhang, H. N. Wu, Z. T. Wang, and Z. Q. Zhong, “Prediction 
of shield tunneling-induced ground settlement using machine learning 
techniques,” Front. Struct. Civil Eng., vol. 13, pp. 1363-1378, 
September 2019. 

[21] R. Zhu, J. Fang, S. Li, Q. Wang, H. Xu, J. Xue, and H. Yu, “Vehicle re-
identification in tunnel scenes via synergistically cascade forests,” 
Neurocomputing, vol. 381, pp. 227-239, March 2019. 

[22] G. X. Xu, X. Y. Xu, L. Wang, G. Q. Fu, P. Zhao, and A. Ding, “Sand-fix 
effects of Haloxylon ammodendron forests under the different densities 
and patterns under wind tunnel test,” J. Arid Land Res. Environ., vol. 33, 
pp. 189-195, September 2019. 

[23] L. Q. Yang, “Real-time prediction of rock mass classification based on 
TBM operation big data and stacking technique of ensemble learning,” J. 
Rock Mech. Geotech. Eng., vol. 14, pp. 123-143, February 2022. 

[24] B. Ramosaj and M. Pauly, “Consistent estimation of residual variance 
with random forest out-of-bag errors,” Stat. Probab. Lett., vol. 151, pp. 
49-57, August 2019. 

[25] J. Yang, S. Yagiz, Y. J. Liu, and F. Laouafa, “Comprehensive evaluation 
of machine learning algorithms applied to TBM performance prediction,” 
Undergr. Space, vol. 7, pp. 37-49, February 2022. 

[26] C. Zhang, W. Z. Wang, C. Zhang, B. Fan, J. Wang, F. Gu, and X. Yu, 
“Extraction of local and global features by a convolutional neural 
network–long short-term memory network for diagnosing bearing faults,” 
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, pp. 1877-
1887, April 2022. 

[27] M. S. Tamber, K. A. Scott, and L. T. Pedersen, “Accounting for label 
errors when training a convolutional neural network to estimate sea ice 

https://xueshu.baidu.com/s?wd=author:(Ravindra.Dhuli)%20SENSE,%20VIT-AP%20University,%20Andhra%20Pradesh,%20India.&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(J%20Mi)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(J%20Zhang)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(Feng,%20Yingchao)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(Sun,%20Xian)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(Fu,%20Kun)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(ZT%20Wang)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(ZQ%20Zhong)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(Q%20Wang)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(H%20Yu)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(FU%20Guiquan)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(P%20Zhao)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(A%20Ding)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(F%20Laouafa)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

697 | P a g e  

www.ijacsa.thesai.org 

concentration using operational ice charts,” IEEE J. Sel. Top. Appl. 
Earth Observations Remote Sens., vol. 15, pp. 1502-1513, January 2022. 

[28] Z. Zhao, J. Gui, A. Yao, N. Le, and M. Chua, “Improved prediction 
model of protein and peptide toxicity by integrating channel attention 
into a convolutional neural network and gated recurrent units,” ACS 
Omega, vol. 7, pp. 40569-40577, October 2022. 

[29] F. Masood, J. Masood, H. Zahir, K. Driss, N. Mehmood, H. Farooq, 
“Novel approach to evaluate classification algorithms and feature 
selection filter algorithms using medical data,” J. Comput. Cogn. Eng., 
vol. 2, pp. 57-67, May 2023. 

[30] S. Wang and Y. Shen, “Multi-modal image fusion based on saliency 
guided in NSCT domain,” IET Image Process., vol. 14, pp. 3188-3201, 
November 2020. 

 


