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Abstract—Now-a-days, failure detection and prediction have 

become a significant research focus on enhancing the reliability 

and availability of IT infrastructure components. Log analysis is 

an emerging domain aimed at diminishing downtime caused by 

IT infrastructure components' failure. However, it can be 

challenging due to poor log quality and large data sizes. The 

proposed system automatically classifies logs based on log level 

and semantic analysis, allowing for a precise understanding of 

the meaning of log entries. Using the BERT pre-trained model, 

semantic vectors are generated for various IT infrastructures, 

such as Server Applications, Cloud Systems, Operating Systems, 

Supercomputers, and Mobile Systems. These vectors are then 

used to train machine learning (ML) classifiers for log 

categorization. The trained models are competent in classifying 

logs by comprehending the context of different types of logs. 

Additionally, semantic analysis outperforms sentiment analysis 

when dealing with unobserved log records. The proposed system 

significantly reduces engineers' day-to-day error-handling work 

by automating the log analysis process. 

Keywords—System log; log analysis; BERT; classification; 

failure prediction; failure detection 

I. INTRODUCTION 

IT infrastructures, consisting of complex and 
interconnected systems, are vulnerable to various failures, 
such as hardware failures, software glitches, network outages, 
security breaches, and other unforeseen events that can disrupt 
critical business operations. With rapid development in size 
and functionality, IT infrastructures have become increasingly 
complex and agile. Enriched accessibility to IT infrastructure 
is vital as the usage of computer systems has penetrated all 
aspects of society. Moreover, a small failure in any of the 
infrastructure components gives rise to catastrophic failures 
accompanied by downtime [1]. Research [2] shows that these 
failures can lead to financial losses, reputational damage, and 
customer dissatisfaction. Thus, developing a system that can 
perform accurate and timely failure detection is paramount. 
Such a system will be helpful for organizations to proactively 
detect and resolve potential problems, minimize downtime, 
and improve the overall reliability and efficiency of IT 
operations. 

System logs are one of the most worthwhile records that 
register important events, various services, and the state of 
operations. By analyzing system logs, IT teams can monitor 
for signs of anomalies or irregularities that may indicate 
potential failures. Accordingly, system logs have been widely 
used to understand the behavior of computer systems and 

monitor their health. Each computer system generates system 
logs on the execution of the event; thus, an ample amount of 
records are available. Even so, log analysis is troublesome due 
to the size of the data. As stated in a systematic literature 
review [3], many researchers have used logs in log analysis, 
anomaly and failure detection, troubleshooting, and prediction 
research. 

The failure detection using log data framework comprises 
six steps, such as i) Log collection: Logs are obtainable in raw 
and unstructured formats. Different systems generate various 
types of logs; therefore, different types of logs ought to be 
collected for investigation. ii) Log parsing: In this step, 
unstructured logs are refined to be converted into a structured 
format. The primary objective of log parsing is to excerpt log 
templates from raw system logs. Log parsing substitutes the 
variable part of the log with special characters and preserves 
only the constant part. iii) Structured logs: Results acquired 
from the parsing are stored in the .csv file format; this data is 
used for further processing. iv) Feature extraction: Log 
templates and the contents produced in the course of log 
parsing are preferred as features for encoding. v) Vector 
representation: Log templates and contents are converted into 
vector representation in order to furnish them as input to 
machine learning models. vi) Anomaly / Failure Detection: 
Eventually, excavated vectors are served to the machine 
learning or deep learning models to classify logs in 
accordance with the allocated log level. Logs are classified 
into different categories, which include "fail," "Fatal," "error," 
etc. levels. These categories demand attention as they indicate 
the abnormal behavior of the system. The stated log levels are 
allocated to the logging statements on executing any exception 
in the system. Thus, the administrator gets anomalous data to 
emphasize and can take remedial action accordingly. 

As per the literature, machine learning [4] and deep 
learning [5] have popular techniques effectively applied to 
classify logs. This classification can save time on log analysis 
and assist system administrators in concentrating on doubtful 
log entries. System logs are a combination of text, numbers, 
and special symbols. The data is available in natural language 
format and cannot be directly used to build ML (Machine 
Learning) and DL (Deep Learning) models. Many researchers 
utilized various NLP techniques for embedding purposes in 
the existing literature. But considering the nature of the log 
data and challenges in handling system logs such as 
voluminous data, commonly used words, the occurrence of the 
same word with different meanings, etc., direct vector 
conversion is not significant. Thus, vectors are required to 
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generate based on the word's context. Therefore, it is 
necessary to follow the process of text data conversion to 
numerical vectors based on semantics. 

Proposed feature extraction with semantic analysis 
conquers the challenges related to variation in log format and 
imbalanced data. The proposed systems comprehend the 
semantic analysis of log templates by practicing the BERT 
pre-trained model. The system employs the BERT to procreate 
sentence vectors, bearing in mind the log templates and 
contents acquired against log parsing. At last, machine 
learning techniques are employed to classify log entries 
contingent on earmarked levels. 

The Contributions in this paper are summarized as follows. 

1) The proposed system for classifying logs is based on 

analyzing the meaning of logs with the BERT model that has 

already been trained. 

2) Different Infrastructures such as Apache, OpenStack, 

Windows, BGL, and Android logs are collected and parsed 

using the "Drain" parser to derive log templates. 

3) Sentence embedding is done on the derived log 

templates to determine each entry's meaning. 

4) Extracted features are provided to machine learning 

classifiers to analyze logs pertaining to levels. The main goal 

of the classification is to test the efficiency of the semantic 

analysis done by different NLP techniques. 

The proposed system will significantly diminish manual 
errors by enabling automated and accurate solutions to failure 
prediction. 

The paper has eight sections, including details: Section II 
discusses related work. Section III has the descriptive analysis 
of the datasets, including log data collection and 
preprocessing. Section IV includes NLP-based feature 
extraction techniques. Section V investigates the models and 
technical definitions of the methodology used to perform 
experimentations. Sections VI and VII emphasize the 
experimental setup, followed by derived results. Finally, the 
conclusion and future directions are stated in Section VIII. 

II. RELATED WORK 

Failure prediction is a crucial aspect of IT infrastructure 
monitoring as it enables organizations to proactively detect 
and mitigate potential issues before they result in costly 
downtime or performance degradation. The system can 
identify patterns or anomalies that may indicate impending 
failures and take preventive measures to avoid or minimize the 
impact of such failures. System logs, which are records of 
events and activities generated by various components of an 
IT system, can be invaluable in failure detection and 
prediction in IT infrastructures. System logs capture essential 
real-time information about IT resources' behavior, 
performance, and status, such as servers, networks, 
applications, and databases. One of the primary uses of system 
logs in failure detection is to provide visibility into the 
operational state of IT systems. By monitoring system logs, IT 
teams can detect such anomalies early and take preventive 
actions to mitigate potential failures. System logs can also be 

used in failure prediction by leveraging machine learning and 
statistical techniques. 

Wang et al. [6] propose that system downtime can be 
reduced by identifying the reason for failure, making anomaly 
and failure detection, prediction, and root cause analysis. 
Despite being an emerging domain, automated log analysis is 
complicated due to the manual evaluation of system logs by 
administrators, who track simple words like "kill," 
"exception," "dead," "fail," etc., to investigate defects [3]. In 
order to address the challenges of unavailability, reliability, 
and performance in IT infrastructure, it is vital to study 
machines as they are, understanding what they do instead of 
what is expected [7]. Various rule-based and classification-
based approaches [8][9], including machine learning [10][11] 
and deep learning [12][13] techniques, have been proposed for 
automated system log analysis. Moreover, supervised [14] and 
unsupervised [15] learning techniques applied to massive, 
unstructured system logs have gained significant attention in 
recent years, with a substantial research corpus of similar 
work. 

Recently, NLP-based analysis has been introduced to 
understand the meaning of logs for log analysis in complex IT 
infrastructures [16]. Word2Vec has been applied by authors 
[17] to perform word embedding of log contents, followed by 
finding log sequences using TF-IDF. Unsupervised learning 
has been utilized for the extracted features, resulting in a 
67.25% improved F1 score compared to LogCluster [18]. 
Researchers [19] have calculated polarity scores to identify 
abnormal behaviors in HPC systems with a 96% F-score. In 
the recent past, many researchers have been concentrating on 
the use of BERT [20] re-BERT [21] pre-trained model as an 
embedding technique and LSTM [22][23], Bi-LSTM [24][25] 
attention base mechanism for classification purpose. 

III. ILLUSTRATIVE ANALYSIS OF THE DATASET 

A. Dataset Collection 

System logs are intended to be the primary source of 
information about the system; thus, the availability of a log 
dataset for research is a demanding obligation. Log data 
records every operational detail of each component of the IT 
infrastructure at run-time. The mishandling of such sensitive 
data may cause several issues. Therefore, system logs are not 
easily obtainable for research and experimentation. He, Zhu, 
He, & Lyu, in 2020 [26], collected sample logs and made 
them available on "loghub" [27] for study. An extra set of logs 
are produced in the labs and released for research 
determination. In the systematic literature review [3], we 
discussed details about availability of more datasets that are 
accessible for research purpose. 

B. Dataset Preprocessing with Log Parser 

Systems logs are the "print" statements scripted by 
engineers under software development and documented in the 
course of the carrying out of affiliated operations. The logs are 
composed of a constant log header (id, state, timestamp, level, 
etc.) and a dynamic part (updates on operation execution). The 
primary purpose of log parsing is to transform unstructured 
logs toward structured data by extracting the constant part 
from logs called log templates. The sample log parsing 
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technique is shown in Fig. 1. Log message or content is 
"Component State Change: Component \042SCSI-
WWWID:01000010:6005-08b4-0001-00c6-0006-3000-003d-
0000\042 is in the unavailable state (HWID=1973)" from 
which log template is extracted as "Component State Change: 
Component <*> is in the unavailable state (HWID=<*>)." 

 
Fig. 1. Components of example HPC log. 

Various researchers have discussed miscellaneous log 
parsers such as POP [28], Spell [29], SLCT [30], etc. Drain 
[31] parser has been adapted in this research work to parse log 
datasets. Drain elected for experimentation by examining 
execution time, availability, accuracy, and flexibility 
parameters. The drain parser employed the fixed-depth tree 
structure to perform and retrieve log templates. Table I 
presents the summary of findings on the performance of Drain 
on various types of logs. For the parsing, datasets are selected 
from multiple infrastructures, such as Apache as a server 
application, OpenStack as a cloud system, Windows as an 
operating system, BGL as a supercomputer, and Android as a 
mobile system. Table I contains the column number of log 
messages utilized for the parsing, the derived unique number 
of templates, and the maximum template length. Thus 
"Drain's" is a better parser for this research due to its parsing 
accuracy. 

C. Feature Extraction 

System logs are a combination of text, numbers, and 
special symbols. Natural language data cannot be used directly 
to build ML (Machine Learning) and DL (Deep Learning) 
models. For this reason, it is imperative to follow the action of 
text data conversion to numerical vectors, known as 
vectorization or word embedding. The mined vectors can be 
employed to train different Machine learning and Deep 
learning models for classification, detection, and prediction 
purposes; in this way, word embedding is imitated for feature 
extraction. 

At present, different Natural Language Processing (NLP) 
models are available for feature extraction in view of 
sentiment and semantic analysis. TF-IDF, polarity score, 
word2vec, and doc2vec work based on word frequency or 
position occurrence in the given text and analyze word-related 
sentiments. Whereas BERT, GPT2, and XL [16] function 
contingent on the semantics of words regarding the position 
and meaning of words accompanying them. The BERT model 
is pre-trained on massive datasets like Wikipedia and 
proposed by Google to be fine-tuned on a particular dataset. 
Pre-trained word embedding models are applied for vector 
representation of log templates and to strengthen the 
prediction of unobserved log entries. Moreover, BERT 
supports domain-specific semantic information and can 
address out-of-vocabulary (OOV) words in novel kinds of logs 
during run-time [32]. 

This experimentation focuses on doc2vec and BERT 
sentence embedding techniques to get vectors of log 
templates. Whereas TF-IDF is unsuitable in log datasets as the 
TF-IDF work on the weighting methods, and weights are 
assigned considering the frequency of occurrence of words. In 
the case of system logs, common words represent the different 
meanings of the log messages, and frequently occurring words 
are unnecessary. Thus, TF-IDF is unsuitable, even if it 
archives good classification accuracy. Fig. 2 renders the 
process of feature extraction. First, the unstructured log is 
processed toward a structured format; then, log templates are 
excavated with the Drain parser. Then the log template is 
preprocessed to expel special symbols and stop words; further 
steaming is performed. This cleaned data will be available for 
tokenization, followed by vectorization. 

IV. FEATURE EXTRACTION TECHNIQUES 

A. Doc2Vec 

Doc2vec is a Natural Language Processing (NLP) 
technique for converting documents into vectors. Doc2vec's 
work is based on the conception of Word2vec. The direct 
encouragement for the development of doc2vec is to induce a 
vector illustration of a group of words collected together to be 
presented as a single unit, irrespective of the length of the 
document. The pivotal variance in the word and sentence 
representation is that words carry logical structure, but 
documents don't. Mikilov and Le [23] introduced an additional 
vector, Paragraph ID, along with the word2vec model to solve 
this issue. Thus, at the time of word vectors training, the 
document vector also gets trained, and eventually, the 
document is converted to numerical form. This model is the 
Distributed Memory version of the Paragraph Vector (PV-
DM). 

TABLE I. EXPERIMENTAL RESULTS OF DRAIN PARSER ON VARIOUS DATASETS 

Dataset Source Type Size of Data 
Number of log 

Messages 

Number of Unique 

Template 

Template Max 

Length 
Parsing Accuracy 

Apache Server Application 4.90 MB 56,481 44 42 1 

OpenStack OpenStack infrastructure log 5.4 MB 207,820 7,221 104 0.73 

Windows Windows event log 267.465 MB 611,103 176 173 0.99 

BGL Supercomputer 708.76 MB 4,747,963 619 376 0.99 

Android Android framework log 25.7 MB 1,555,005 14,899 124 0.91 
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Fig. 2. Process of feature extraction. 

To utilize the doc2vec model, the following steps need to 
be pursued. First, furnish the dataset, which is to be turned 
into vectors. A word vector is created for an individual word, 
and combining related word vectors creates a document vector 
for each document [33]. The softmax hidden layer is used to 
train the weights, and then all weights are set to find the 
sentence vector. 

B. Bidirectional Encoder Representations from Transformers 

(BERT) 

BERT models are the most acceptable preference for 
obtaining superior-quality language features from the offered 
text dataset. Furthermore, the model can be fine-tuned for 
specific tasks such as semantic analysis or question answering, 
relying on input datasets. BERT is a pre-trained language 
model that is directionally trained [34]. Devlin et al. 
demonstrated that a directionally trained language model 
could possess a more profound sense of language context and 
flow than single-direction language models [35]. 

The BERT pre-trained model outperforms word2vec as 
this approach assigns dynamic numerical vectors to each 
token, considering the context within which the word appears 
whereas in word2vec, each word has a fixed numerical vector 
allocated. Experimentation uses BERT to pull out features by 
generating word and sentence embedding vectors from log 
templates and contents. This research focuses on the feature 
extraction part of the BERT; thus, the remaining part is not 
considered for an explanation. Here, log templates and 
contents are elicited from the Drain parser and presented to the 
BERT model to extract the features. BERT is a pre-trained 
model taking input data in a specific format. BERT mainly 
adds an [SEP] as the split between consecutive sentences and 

an [CLS] at the start of the sentence. The BERT model offers 
intrinsic tokenizing. The supplied input is spitted into multiple 
tokens considering the corpus records. Following that, the 
embedding layer creates an embedding vector for each token, 
which includes [CLS] and [SEP]. Log template data desires to 
be converted into torch tensors and called the BERT model to 
evoke embedding. The BERT PyTorch interface demands that 
the data be in torch tensors rather than Python lists. The bert-
base-uncased model contains 13 layers (1 for input embedding 
and +12 for output embedding) of the transformer encoder and 
768-hidden units of all transformers. 

Every token has 13 independent vectors, each of length 
768 but necessary to get separate vectors for every token or 
single vector presentation of the entire sentence. Individual 
vectors are calculated by adding the last four layers together. 
Furthermore, a 768-length vector is calculated for each 
sentence by taking the average of the second to the final 
hidden layer. 

Table II presents a comparative analysis of Doc2Vec and 
BERT embedding techniques. This summarized view is 
bestowed in reference to the critical points observed during 
the study of Doc2Vec and BERT techniques. These 
techniques are compared using a type of embedding suitable 
for which kind of data and the pros-cons of the method. 
Doc2Vec works on static sentence embedding, whereas BERT 
considers the context of the words for embedding. 

Thus, Doc2Vec is the appropriate choice in a problem 
where semantic relations between the words are essential. To 
extract contextual ties between words, BERT works very 
efficiently. 

TABLE II. COMPARATIVE ANALYSIS OF WORD EMBEDDING TECHNIQUES / MODELS 

Technique/Model Embedding Type Suitable for Pros Cons 

Doc2Vec 
Static Sentence 
Embedding 

Semantic 

Relation 

Between Word 

Generate a vector representation of a group 
of words collected to present as a single unit. 

The co-occurrence matrix of sentences occupies 
plenty of memory for storage. 

BERT 
Contextualized 

Word Embedding 

Contextual 
Relation 

Between Word 

Capable of gaining context-sensitive bi-

directional feature representation. 

Fine-tuning and pre-training are inconsistent. 
Long training time due to the immense size of 

model files 
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V. CLASSIFICATION MODEL 

A. Model Definition 

Machine learning classifiers are essential tools for a wide 
range of applications. They have the potential to revolutionize 
many industries by automating tasks, improving accuracy, and 
providing new insights into complex systems. These 
classifiers work by learning patterns and relationships within a 
given dataset and then using that knowledge to classify new 
data into pre-defined categories or classes. In recent research, 
the authors explored using multiple classifiers to group logs 
based on log level. The working of machine learning 
classifiers can vary depending on the algorithm used. This 
study experimented on five different infrastructure logs using 
k-Nearest Neighbors, Linear Regression, Support Vector 
Machines, Naïve Bayes, Gradient Boosting Decision Trees, 
and Random Forest machine learning classifiers. 

1) K-Nearest Neighbors (KNN): IT is a machine learning 

classifier that can be used for regression and classification 

tasks. A non-parametric algorithm finds the K closest training 

examples (i.e., neighbors) to a new data point and uses their 

class labels to make a prediction [36]. 

2) Linear regression: Linear regression is a type of 

regression analysis that models the relationship between a 

dependent variable and one or more independent variables 

[37]. It is commonly used for predicting continuous values, 

such as sales revenue or stock prices. 

3) Support Vector Machines (SVMs): SVMs are 

supervised learning algorithms that can be used for 

classification or regression tasks [38]. SVMs try to find the 

optimal hyperplane that separates the different classes in the 

dataset. 

4) Naïve bayes:  Naïve Bayes is a probabilistic algorithm 

that can be used for classification tasks [39]. It is based on 

Bayes' theorem and assumes that the features in the data are 

independent of each other. 

5) Gradient boosting decision trees: Gradient boosting is 

an ensemble learning technique that combines multiple 

decision trees to improve prediction accuracy. It involves 

training a series of decision trees in sequence, with each 

subsequent tree trying to correct the errors of the previous one 

[40]. 

6) Random forests: Random forests are also an ensemble 

learning technique that uses multiple decision trees to improve 

prediction accuracy [41]. However, unlike gradient boosting, 

random forests train each decision tree independently and then 

aggregate their predictions to make the final prediction. 

B. Evaluation Metrics 

Classification of logs is based on the level earmarked for 
the log entry. In the different IT infrastructures, log entries 
hold numerous types of levels. Thus, a multi-class 
classification technique is favored to accomplish the 
classification. Generally, a multi-class classifier's performance 
is appraised by the Micro-F1 score and Macro-F1 Score [42]. 
Therefore, TP (True Positives), TN (True Negative), FP (False 

Positives), and FN (False Negatives) values were collected 
from each category of level and further utilized to calculate 
micro precision, macro precision, micro recall, macro recall, 
and macro-F1. 

For a provided log category i, outcomes are labeled as TPi, 
TNi, FPi, and FNi. Where TPi represents the number of true 
positives in logs belonging to the i category. TNi represents 
the true negative in logs belonging to the i category. FPi 
represents false positives, and FNi means false negatives in 
logs belonging to the i category. 

Considering values of TPi, TNi, FPi, and FNi, precisioni, 
and recalli are evaluated as: 

Precisioni can be calculated as the percentage of positively 
labeled predictions made out of all predictions under the i 
category of the level [43]. 

            
   

       
  (1) 

The Recalli can be calculated as the number of correct 
predicted results divided by applicable instances. Recall 
provides the number of accurately predicted results divided by 
all relevant samples [43]. 

         
   

       
   (2) 

Macro-F1: Employed to compute the F1- score in the 
instance of multi-class settings. Macro-F1 is known as the 
macro-averaged F1 score and is calculated as simple 
arithmetic means of the F1 scores of each class [44]. 

                        
∑              
   

 
   (3) 

                     
∑           
   

 
    (4) 

               

  (
                                        

                                               
)   (5) 

Specificity is calculated on the negatives that are detected 
accurately. Specificity is also known as True Negative Rate 
(TNR), which denotes the classifier's ability to enter negative 
entries in the actual class [45]. In the case of logs, the system 
administrator can select a log level with correct specificity to 
proctor the anomalies or failures. 

              
   

       
  (6) 

The metrics used to measure model performance are 
training and testing splits accuracy. Accuracy is the rate of the 
absolutely classified data to all the data [46].  

         
     

           
  (7) 

VI. IMPLEMENTATION DETAILS 

All models are implemented in Python and executed on the 
Symbiosis Institute of Technology (Pune, India) server. 
Various datasets such as Apache, OpenStack, Windows, BGL, 
and Android were utilized to conduct the experimentation. 
These datasets carry a vast number of log messages ranging 
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from around fifty-six thousand to 11 million (refer to Table III 
for dataset details). Because of the excellent server 
configuration made executing the BERT feature extraction 
technique and ML classifiers on a massive data size possible. 

TABLE III. DATASET DESCRIPTION 

Dataset Description Source Type Period 
Number of 

logs 

Apache 

Apache 

webserver error 
log 

Server 

Application 

263.9 

days 
56,481 

OpenStack 
OpenStack 

infrastructure log 
Cloud System NA. 207,820 

Windows 
Windows event 
log 

Operating 
System 

NA. 611,103 

BGL 

Blue Gene/L 

supercomputer 
log 

Supercomputer 
214.7 

days 
4,747,963 

Android 
Android 

framework log 
Mobile System NA. 1,555,005 

The "Drain" parser is employed to parse the log messages 
into log templates. An environment was created to run the 
Drain parser by installing dependencies such as Python 2.7, 
Scipy, NumPy, sci-kit-learn, and pandas. The unstructured 
logs were converted into the structured format and preserved 
in the .csv file. The results of parsing using Drain are 
presented in Table I. 

For feature extraction, we construct Doc2Vec and BERT 
sentence embedding models. Doc2Vec model was developed 
considering vector size 10, windows as 2, minimum count of 
records one, and assigned workers as 4. At the same time, the 
Bert-base-uncased model was employed to obtain sentence 
vectors of log templates and contents. Considering the time 
required for embedding and model training, optimizing the 
performance of the BERT pre-trained model was 
indispensable. According to [47] BERT model works 
effectively when max_seq_len is 25, pooling_layer is set as 
12, priority batch size is 16, and prefetch_size is set as 10. The 
exact configuration was followed to improve the speed of the 
embedding process. 

The classification models were trained over random 
training and testing data selection from the provided datasets. 
Records are selected using different seeds, as 70% and 80% of 
log entries as training data, and 30% and 20% remain as 
testing data. All classifiers were experimentally evaluated 
based on precision, recall, F1-score, specificity, and accuracy 
for each log level within our labeled dataset. 

VII. RESULTS 

Table IV demonstrates the accuracy of classification 
models where BERT is utilized as an embedding technique to 
apprehend the meaning of log templates and contents. The K-

nearest neighbor model indicates lower accuracy among the 
seven implemented classifiers, whereas Random Forest offers 
higher classification accuracy for all datasets. As per the 
observation from Table IV, although the training and testing 
ratio changes yet there is an insignificant difference in the 
accuracy values. 

Minimum accuracy was recorded as 81.47% for the BGL 
dataset using KNN, whereas 90.22% accuracy for the Apache 
dataset using the SVM model. The accuracy score greater than 
90% is highlighted in Table IV. Higher accuracy was derived 
on an 80% training ratio for the Apache dataset using Linear 
Regression, SVM, and Random Forest and for the OpenStack 
dataset using Random Forest. Table IV observations show the 
KNN model returns lower accuracy, and the Random Forest 
model returns higher accuracy for almost all datasets. The 
difference between the minimum and maximum accuracy is 
8.75%; thus, we can conclude that all implemented 
classification models have roughly comparable accuracy on 
Apache, OpenStack, Windows, BGL, and Android datasets. 
Based on this discussion, it is stated that semantic analysis 
using BERT helps classify various types of log records 
efficaciously. In addition, it is claimed that OpenStack and 
Android datasets are more suitable for the evaluation of the 
robustness of the classification model in the case of unseen log 
records. A more significant number of log templates are 
recorded for OpenStack and Android datasets in the parsing 
process (stated in Table I). 

A. Results on Apache Dataset 

Fig. 3 presents a metaphorical evaluation of seven 
classifiers over the Apache webserver error log dataset, 
considering a 30% and 20% testing data ratio. Prior to the 
classification, features were extracted with the help of the 
BERT model. Random Forest achieves the highest precision 
(96.08%) among the seven techniques and carries an F1 score 
of 92.71% in both cases, considering the 30% and 20% testing 
data ratio. This demonstrates that Random Forest provides the 
best classification results on semantic analysis of log 
templates and contents of log records. KNN, LinearRegression 
Support Vector Machines, Gradient Boosting Decision Trees, 
and Random Forests obtain consistent precision values on the 
Apache dataset, although the training-to-testing data ratio 
varies. Gradient Boosting Decision Trees and Random Forests 
show high precision but a low recall rate compared to other 
models. It is ascertained that all implemented models achieve 
consistent results on the Apache dataset, which implies that 
the semantics of the Apache log template and contents are 
derived correctly; thus, models can understand and perform 
classification operations. Also, unique templates (44) are 
derived during parsing 56,481 log records (refer to Table I) 
with 100% accuracy. The observation revealed the importance 
of log parsing in the log-based failure detection process. 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

711 | P a g e  

www.ijacsa.thesai.org 

TABLE IV. CLASSIFICATION ACCURACY IN PERCENTAGE ON VARIOUS DATASETS CONSIDERING 30% AND 20% TESTING DATA USING BERT EMBEDDING 

TECHNIQUE 

IT 

Infra-structure 
Training Ratio 

k-Nearest 

Neighbors 

Linear 

Regression 

Support Vector 

Machines 
Naïve Bayes 

Gradient Boosting 

Decision Trees 

Random 

Forest 

Apache 
70% 86.36 88.04 88.54 87.88 88.69 89.69 

80% 86.95 90.01 90.22 89.46 89.13 89.65 

OpenStack 
70% 84.17 86.11 86.34 85.27 86.07 88.17 

80% 85.17 88.02 88.14 87.94 87.81 89.34 

Windows 
70% 82.11 84.36 84.36 83.99 84.39 84.45 

80% 83.35 86.77 86.77 85.23 85.73 85.39 

BGL 
70% 81.47 83.39 83.39 83.79 83.09 85.21 

80% 82.98 85.79 85.70 85.74 85.01 86.89 

Android 
70% 81.89 83.89 83.89 81.87 82.46 85.72 

80% 83.67 85.79 85.79 84.72 84.72 87.56 

 

Fig. 3. Precision, recall, f1-score, and specificity in percentage on Apache 

datasets considering 70% and 80% of training data using BERT embedding 

technique. 

B. Results on OpenStack Dataset 

Fig. 4 presents a metaphorical evaluation of seven 
classifiers over the OpenStack infrastructure log dataset, 
considering a 70% and 80% training data ratio, respectively. 
Before the classification, features were extracted with the help 
of the BERT model. KNN, Linear Regression, Support Vector 
Machines, Naïve Bayes, Gradient Boosting Decision Trees, 
and Random Forests achieved more than 90% precision when 
experiments were conducted on 30% of testing records and 
20% of testing records, respectively. The precision, recall, F1-
Score, and specificity improved by increasing the training-to-
testing ratio. Among the seven implemented classifiers, 
Random Forest has the highest precision (95.13%), recall 
(89.31%), and F1 Score (92.13%) over 80% of the training 
data. The OpenStack dataset is preferred to check the 
classification efficiency for unobserved log records as it 
records a higher number (7,221) of log templates in 207,820 
total log entries (refer to Table I), 3.47% of the whole dataset. 
In contrast, other datasets retrieve less than 1% of log 
templates. More variations in the log template promote 
checking the capability of semantic analysis to extract 
rigorous meaning that imparts to accurate classification. 

C. Results on Windows Dataset 

Fig. 5 presents a metaphorical evaluation of seven 
classifiers over the Windows event log dataset, considering a 
70% and 80% training data ratio. Before the classification, 
features were extracted with the help of the BERT model. K-
Nearest Neighbors records minimum precision as 85.67% and 
maximum precision by Random Forest as 87.99%, which 

means the difference in precision is significantly less for seven 
classification models. Although the precision, recall, and F1-
Score values are less than 90%, they are consistent for all 
implemented classifiers. The Windows dataset results are 
decreasing compared to Apache and OpenStack datasets due 
to the size of the data and the number of unique templates. In 
the Windows dataset, 176 unique templates were extracted 
from 611,103 (refer to Table I) event records, which is only 
0.02%. Here, unique templates are fewer, but the contents of 
the individual events fluctuate in compliance with the 
recorded message. 

 
Fig. 4. Precision, recall, f1-score, and specificity in percentage on Openstack 

datasets considering 70% and 80% of training data using the BERT 

embedding technique. 

 
Fig. 5. Precision, recall, f1-score, and specificity in percentage on Windows 

datasets considering 70% and 80% of training data using BERT embedding 
technique. 

D. Results on BGL Dataset 

Fig. 6 presents an illustrative evaluation of seven 
classifiers over the Blue Gene/L supercomputer log dataset, 
considering a 70% and 80% training data ratio. Before the 
classification, features were extracted with the help of the 
BERT model. KNN records minimum precision as 82.89% 
and maximum by Random Forest as 86.77%, which means the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

712 | P a g e  

www.ijacsa.thesai.org 

difference in precision is significantly less for seven 
classification models. Although the precision, recall, and F1-
Score values are less than 90%, they are consistent for all 
implemented classifiers. The BGL dataset results are 
decreasing compared to Apache and OpenStack due to the size 
of the data and the number of unique templates. In the 
Windows dataset, 619 unique templates were extracted from 
4,747,963 (refer to Table I) log records, which is only 0.01%. 
Here unique templates are lesser, but the contents in the 
individual log fluctuate in compliance with the recorded 
message. According to observation, 1-2 % change in the 
precision, recall, and F1-Score values on different testing 
ratios, such as lower results recorded on the 30% testing ratio, 
whereas improved results by 1-2% recorded on 20% testing 
data. 

 
Fig. 6. Precision, recall, f1-score, and specificity in percentage on BGL 

datasets considering 70% and 80% of training data using the BERT 
embedding technique. 

E. Results on Android Dataset 

Fig. 7 presents a metaphorical evaluation of seven 
classifiers over the Android framework log dataset, 
considering a 70% and 80% training data ratio. Before the 
classification, features were extracted with the help of the 
BERT model. KNN records the minimum precision as 
78.34%. The difference in precision is significantly less for 
the seven classification models. The Android dataset results 
are decreasing compared to Apache and OpenStack due to the 
size of the data and the number of unique templates. In the 
Android dataset, 14,899 unique templates were extracted from 
1,555,005 (refer to Table I) log records, which is only 0.09% 
of the whole dataset. Thus, the Android dataset is preferred to 
check the classification efficiency for unseen log records. 
More variations in the template help check the capability of 
semantic analysis to extract exact meaning that contributes to 
accurate classification. As a bottom line, it is stated that the 
greater the number of log records and the greater the number 
of unique templates, the more they help to train the model 
effectively.  

 
Fig. 7. Precision, recall, f1-score, and specificity in percentage on Android 

datasets considering 70% and 80% of training data using the BERT 

embedding technique. 

VIII. CONCLUSION AND FUTURE WORK 

This paper describes an automatic and accurate 
classification of logs to facilitate system administrators during 
cause analysis of failures using system logs generated by 
various massive-scale IT infrastructures. The implemented 
models are able to understand the meaning of records and then 
classify them based on their level for log entries from multiple 
infrastructures such as Apache, OpenStack, Windows, BGL, 
and Android. The system admin can pay more attention to 
bizarre records and adopt remedial measures on the 
Anomalous records pointed out in the classification results, 

The proposed system works efficiently on different types 
of log entries irrespective of changes in the format and 
imbalanced data. Thus, this work indicates how semantic 
analysis using BERT and classification using Linear 
Regression, Support Vector Machines, Naïve Bayes, Gradient 
Boosting Decision Trees, and Random Forests models furnish 
robust classification of new log entries. Considering the 
results and discussion points, K-Nearest Neighbors does not 
work well due to the imbalanced nature of log records. It is 
observed that, as compared with Doc2Vec, the semantic 
analysis achieved by the BERT pre-trained model is better 
while working with different classifiers. In addition, BERT 
influences the classification of any log record type with all 
classifiers and precisely processes the unseen or new log 
entries. 

Experimentation using BERT as an embedding technique 
and machine learning models as classifiers derived precision, 
recall, F1 scores, and specificity in the range of 80% to 90%. 
In the extension to this work, we will try to improve the 
results to reduce false alerts with the help of applying deep 
learning techniques such as LSTM. Future work put forward 
the enforcement of LSTM models and propounding modified 
LSTM models to secure better results. Also, the system 
implemented with feature extraction and classification is semi-
automated. In the future, the proposed system will be 
enhanced to implement a fully automated classification system 
to reduce human intervention. 
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