
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

705 | P a g e

www.ijacsa.thesai.org

Robust Analysis of IT Infrastructure's Log Data with

BERT Language Model

Deepali Arun Bhanage
1
, Ambika Vishal Pawar

2

Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India
1, 2

Dept. of Computer Engineering-Pimpri Chinchwad Education Trust's, Pimpri Chinchwad College of Engineering, Pune, India
1

Abstract—Now-a-days, failure detection and prediction have

become a significant research focus on enhancing the reliability

and availability of IT infrastructure components. Log analysis is

an emerging domain aimed at diminishing downtime caused by

IT infrastructure components' failure. However, it can be

challenging due to poor log quality and large data sizes. The

proposed system automatically classifies logs based on log level

and semantic analysis, allowing for a precise understanding of

the meaning of log entries. Using the BERT pre-trained model,

semantic vectors are generated for various IT infrastructures,

such as Server Applications, Cloud Systems, Operating Systems,

Supercomputers, and Mobile Systems. These vectors are then

used to train machine learning (ML) classifiers for log

categorization. The trained models are competent in classifying

logs by comprehending the context of different types of logs.

Additionally, semantic analysis outperforms sentiment analysis

when dealing with unobserved log records. The proposed system

significantly reduces engineers' day-to-day error-handling work

by automating the log analysis process.

Keywords—System log; log analysis; BERT; classification;

failure prediction; failure detection

I. INTRODUCTION

IT infrastructures, consisting of complex and
interconnected systems, are vulnerable to various failures,
such as hardware failures, software glitches, network outages,
security breaches, and other unforeseen events that can disrupt
critical business operations. With rapid development in size
and functionality, IT infrastructures have become increasingly
complex and agile. Enriched accessibility to IT infrastructure
is vital as the usage of computer systems has penetrated all
aspects of society. Moreover, a small failure in any of the
infrastructure components gives rise to catastrophic failures
accompanied by downtime [1]. Research [2] shows that these
failures can lead to financial losses, reputational damage, and
customer dissatisfaction. Thus, developing a system that can
perform accurate and timely failure detection is paramount.
Such a system will be helpful for organizations to proactively
detect and resolve potential problems, minimize downtime,
and improve the overall reliability and efficiency of IT
operations.

System logs are one of the most worthwhile records that
register important events, various services, and the state of
operations. By analyzing system logs, IT teams can monitor
for signs of anomalies or irregularities that may indicate
potential failures. Accordingly, system logs have been widely
used to understand the behavior of computer systems and

monitor their health. Each computer system generates system
logs on the execution of the event; thus, an ample amount of
records are available. Even so, log analysis is troublesome due
to the size of the data. As stated in a systematic literature
review [3], many researchers have used logs in log analysis,
anomaly and failure detection, troubleshooting, and prediction
research.

The failure detection using log data framework comprises
six steps, such as i) Log collection: Logs are obtainable in raw
and unstructured formats. Different systems generate various
types of logs; therefore, different types of logs ought to be
collected for investigation. ii) Log parsing: In this step,
unstructured logs are refined to be converted into a structured
format. The primary objective of log parsing is to excerpt log
templates from raw system logs. Log parsing substitutes the
variable part of the log with special characters and preserves
only the constant part. iii) Structured logs: Results acquired
from the parsing are stored in the .csv file format; this data is
used for further processing. iv) Feature extraction: Log
templates and the contents produced in the course of log
parsing are preferred as features for encoding. v) Vector
representation: Log templates and contents are converted into
vector representation in order to furnish them as input to
machine learning models. vi) Anomaly / Failure Detection:
Eventually, excavated vectors are served to the machine
learning or deep learning models to classify logs in
accordance with the allocated log level. Logs are classified
into different categories, which include "fail," "Fatal," "error,"
etc. levels. These categories demand attention as they indicate
the abnormal behavior of the system. The stated log levels are
allocated to the logging statements on executing any exception
in the system. Thus, the administrator gets anomalous data to
emphasize and can take remedial action accordingly.

As per the literature, machine learning [4] and deep
learning [5] have popular techniques effectively applied to
classify logs. This classification can save time on log analysis
and assist system administrators in concentrating on doubtful
log entries. System logs are a combination of text, numbers,
and special symbols. The data is available in natural language
format and cannot be directly used to build ML (Machine
Learning) and DL (Deep Learning) models. Many researchers
utilized various NLP techniques for embedding purposes in
the existing literature. But considering the nature of the log
data and challenges in handling system logs such as
voluminous data, commonly used words, the occurrence of the
same word with different meanings, etc., direct vector
conversion is not significant. Thus, vectors are required to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

706 | P a g e

www.ijacsa.thesai.org

generate based on the word's context. Therefore, it is
necessary to follow the process of text data conversion to
numerical vectors based on semantics.

Proposed feature extraction with semantic analysis
conquers the challenges related to variation in log format and
imbalanced data. The proposed systems comprehend the
semantic analysis of log templates by practicing the BERT
pre-trained model. The system employs the BERT to procreate
sentence vectors, bearing in mind the log templates and
contents acquired against log parsing. At last, machine
learning techniques are employed to classify log entries
contingent on earmarked levels.

The Contributions in this paper are summarized as follows.

1) The proposed system for classifying logs is based on

analyzing the meaning of logs with the BERT model that has

already been trained.

2) Different Infrastructures such as Apache, OpenStack,

Windows, BGL, and Android logs are collected and parsed

using the "Drain" parser to derive log templates.

3) Sentence embedding is done on the derived log

templates to determine each entry's meaning.

4) Extracted features are provided to machine learning

classifiers to analyze logs pertaining to levels. The main goal

of the classification is to test the efficiency of the semantic

analysis done by different NLP techniques.

The proposed system will significantly diminish manual
errors by enabling automated and accurate solutions to failure
prediction.

The paper has eight sections, including details: Section II
discusses related work. Section III has the descriptive analysis
of the datasets, including log data collection and
preprocessing. Section IV includes NLP-based feature
extraction techniques. Section V investigates the models and
technical definitions of the methodology used to perform
experimentations. Sections VI and VII emphasize the
experimental setup, followed by derived results. Finally, the
conclusion and future directions are stated in Section VIII.

II. RELATED WORK

Failure prediction is a crucial aspect of IT infrastructure
monitoring as it enables organizations to proactively detect
and mitigate potential issues before they result in costly
downtime or performance degradation. The system can
identify patterns or anomalies that may indicate impending
failures and take preventive measures to avoid or minimize the
impact of such failures. System logs, which are records of
events and activities generated by various components of an
IT system, can be invaluable in failure detection and
prediction in IT infrastructures. System logs capture essential
real-time information about IT resources' behavior,
performance, and status, such as servers, networks,
applications, and databases. One of the primary uses of system
logs in failure detection is to provide visibility into the
operational state of IT systems. By monitoring system logs, IT
teams can detect such anomalies early and take preventive
actions to mitigate potential failures. System logs can also be

used in failure prediction by leveraging machine learning and
statistical techniques.

Wang et al. [6] propose that system downtime can be
reduced by identifying the reason for failure, making anomaly
and failure detection, prediction, and root cause analysis.
Despite being an emerging domain, automated log analysis is
complicated due to the manual evaluation of system logs by
administrators, who track simple words like "kill,"
"exception," "dead," "fail," etc., to investigate defects [3]. In
order to address the challenges of unavailability, reliability,
and performance in IT infrastructure, it is vital to study
machines as they are, understanding what they do instead of
what is expected [7]. Various rule-based and classification-
based approaches [8][9], including machine learning [10][11]
and deep learning [12][13] techniques, have been proposed for
automated system log analysis. Moreover, supervised [14] and
unsupervised [15] learning techniques applied to massive,
unstructured system logs have gained significant attention in
recent years, with a substantial research corpus of similar
work.

Recently, NLP-based analysis has been introduced to
understand the meaning of logs for log analysis in complex IT
infrastructures [16]. Word2Vec has been applied by authors
[17] to perform word embedding of log contents, followed by
finding log sequences using TF-IDF. Unsupervised learning
has been utilized for the extracted features, resulting in a
67.25% improved F1 score compared to LogCluster [18].
Researchers [19] have calculated polarity scores to identify
abnormal behaviors in HPC systems with a 96% F-score. In
the recent past, many researchers have been concentrating on
the use of BERT [20] re-BERT [21] pre-trained model as an
embedding technique and LSTM [22][23], Bi-LSTM [24][25]
attention base mechanism for classification purpose.

III. ILLUSTRATIVE ANALYSIS OF THE DATASET

A. Dataset Collection

System logs are intended to be the primary source of
information about the system; thus, the availability of a log
dataset for research is a demanding obligation. Log data
records every operational detail of each component of the IT
infrastructure at run-time. The mishandling of such sensitive
data may cause several issues. Therefore, system logs are not
easily obtainable for research and experimentation. He, Zhu,
He, & Lyu, in 2020 [26], collected sample logs and made
them available on "loghub" [27] for study. An extra set of logs
are produced in the labs and released for research
determination. In the systematic literature review [3], we
discussed details about availability of more datasets that are
accessible for research purpose.

B. Dataset Preprocessing with Log Parser

Systems logs are the "print" statements scripted by
engineers under software development and documented in the
course of the carrying out of affiliated operations. The logs are
composed of a constant log header (id, state, timestamp, level,
etc.) and a dynamic part (updates on operation execution). The
primary purpose of log parsing is to transform unstructured
logs toward structured data by extracting the constant part
from logs called log templates. The sample log parsing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

707 | P a g e

www.ijacsa.thesai.org

technique is shown in Fig. 1. Log message or content is
"Component State Change: Component \042SCSI-
WWWID:01000010:6005-08b4-0001-00c6-0006-3000-003d-
0000\042 is in the unavailable state (HWID=1973)" from
which log template is extracted as "Component State Change:
Component <*> is in the unavailable state (HWID=<*>)."

Fig. 1. Components of example HPC log.

Various researchers have discussed miscellaneous log
parsers such as POP [28], Spell [29], SLCT [30], etc. Drain
[31] parser has been adapted in this research work to parse log
datasets. Drain elected for experimentation by examining
execution time, availability, accuracy, and flexibility
parameters. The drain parser employed the fixed-depth tree
structure to perform and retrieve log templates. Table I
presents the summary of findings on the performance of Drain
on various types of logs. For the parsing, datasets are selected
from multiple infrastructures, such as Apache as a server
application, OpenStack as a cloud system, Windows as an
operating system, BGL as a supercomputer, and Android as a
mobile system. Table I contains the column number of log
messages utilized for the parsing, the derived unique number
of templates, and the maximum template length. Thus
"Drain's" is a better parser for this research due to its parsing
accuracy.

C. Feature Extraction

System logs are a combination of text, numbers, and
special symbols. Natural language data cannot be used directly
to build ML (Machine Learning) and DL (Deep Learning)
models. For this reason, it is imperative to follow the action of
text data conversion to numerical vectors, known as
vectorization or word embedding. The mined vectors can be
employed to train different Machine learning and Deep
learning models for classification, detection, and prediction
purposes; in this way, word embedding is imitated for feature
extraction.

At present, different Natural Language Processing (NLP)
models are available for feature extraction in view of
sentiment and semantic analysis. TF-IDF, polarity score,
word2vec, and doc2vec work based on word frequency or
position occurrence in the given text and analyze word-related
sentiments. Whereas BERT, GPT2, and XL [16] function
contingent on the semantics of words regarding the position
and meaning of words accompanying them. The BERT model
is pre-trained on massive datasets like Wikipedia and
proposed by Google to be fine-tuned on a particular dataset.
Pre-trained word embedding models are applied for vector
representation of log templates and to strengthen the
prediction of unobserved log entries. Moreover, BERT
supports domain-specific semantic information and can
address out-of-vocabulary (OOV) words in novel kinds of logs
during run-time [32].

This experimentation focuses on doc2vec and BERT
sentence embedding techniques to get vectors of log
templates. Whereas TF-IDF is unsuitable in log datasets as the
TF-IDF work on the weighting methods, and weights are
assigned considering the frequency of occurrence of words. In
the case of system logs, common words represent the different
meanings of the log messages, and frequently occurring words
are unnecessary. Thus, TF-IDF is unsuitable, even if it
archives good classification accuracy. Fig. 2 renders the
process of feature extraction. First, the unstructured log is
processed toward a structured format; then, log templates are
excavated with the Drain parser. Then the log template is
preprocessed to expel special symbols and stop words; further
steaming is performed. This cleaned data will be available for
tokenization, followed by vectorization.

IV. FEATURE EXTRACTION TECHNIQUES

A. Doc2Vec

Doc2vec is a Natural Language Processing (NLP)
technique for converting documents into vectors. Doc2vec's
work is based on the conception of Word2vec. The direct
encouragement for the development of doc2vec is to induce a
vector illustration of a group of words collected together to be
presented as a single unit, irrespective of the length of the
document. The pivotal variance in the word and sentence
representation is that words carry logical structure, but
documents don't. Mikilov and Le [23] introduced an additional
vector, Paragraph ID, along with the word2vec model to solve
this issue. Thus, at the time of word vectors training, the
document vector also gets trained, and eventually, the
document is converted to numerical form. This model is the
Distributed Memory version of the Paragraph Vector (PV-
DM).

TABLE I. EXPERIMENTAL RESULTS OF DRAIN PARSER ON VARIOUS DATASETS

Dataset Source Type Size of Data
Number of log

Messages

Number of Unique

Template

Template Max

Length
Parsing Accuracy

Apache Server Application 4.90 MB 56,481 44 42 1

OpenStack OpenStack infrastructure log 5.4 MB 207,820 7,221 104 0.73

Windows Windows event log 267.465 MB 611,103 176 173 0.99

BGL Supercomputer 708.76 MB 4,747,963 619 376 0.99

Android Android framework log 25.7 MB 1,555,005 14,899 124 0.91

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

708 | P a g e

www.ijacsa.thesai.org

Fig. 2. Process of feature extraction.

To utilize the doc2vec model, the following steps need to
be pursued. First, furnish the dataset, which is to be turned
into vectors. A word vector is created for an individual word,
and combining related word vectors creates a document vector
for each document [33]. The softmax hidden layer is used to
train the weights, and then all weights are set to find the
sentence vector.

B. Bidirectional Encoder Representations from Transformers

(BERT)

BERT models are the most acceptable preference for
obtaining superior-quality language features from the offered
text dataset. Furthermore, the model can be fine-tuned for
specific tasks such as semantic analysis or question answering,
relying on input datasets. BERT is a pre-trained language
model that is directionally trained [34]. Devlin et al.
demonstrated that a directionally trained language model
could possess a more profound sense of language context and
flow than single-direction language models [35].

The BERT pre-trained model outperforms word2vec as
this approach assigns dynamic numerical vectors to each
token, considering the context within which the word appears
whereas in word2vec, each word has a fixed numerical vector
allocated. Experimentation uses BERT to pull out features by
generating word and sentence embedding vectors from log
templates and contents. This research focuses on the feature
extraction part of the BERT; thus, the remaining part is not
considered for an explanation. Here, log templates and
contents are elicited from the Drain parser and presented to the
BERT model to extract the features. BERT is a pre-trained
model taking input data in a specific format. BERT mainly
adds an [SEP] as the split between consecutive sentences and

an [CLS] at the start of the sentence. The BERT model offers
intrinsic tokenizing. The supplied input is spitted into multiple
tokens considering the corpus records. Following that, the
embedding layer creates an embedding vector for each token,
which includes [CLS] and [SEP]. Log template data desires to
be converted into torch tensors and called the BERT model to
evoke embedding. The BERT PyTorch interface demands that
the data be in torch tensors rather than Python lists. The bert-
base-uncased model contains 13 layers (1 for input embedding
and +12 for output embedding) of the transformer encoder and
768-hidden units of all transformers.

Every token has 13 independent vectors, each of length
768 but necessary to get separate vectors for every token or
single vector presentation of the entire sentence. Individual
vectors are calculated by adding the last four layers together.
Furthermore, a 768-length vector is calculated for each
sentence by taking the average of the second to the final
hidden layer.

Table II presents a comparative analysis of Doc2Vec and
BERT embedding techniques. This summarized view is
bestowed in reference to the critical points observed during
the study of Doc2Vec and BERT techniques. These
techniques are compared using a type of embedding suitable
for which kind of data and the pros-cons of the method.
Doc2Vec works on static sentence embedding, whereas BERT
considers the context of the words for embedding.

Thus, Doc2Vec is the appropriate choice in a problem
where semantic relations between the words are essential. To
extract contextual ties between words, BERT works very
efficiently.

TABLE II. COMPARATIVE ANALYSIS OF WORD EMBEDDING TECHNIQUES / MODELS

Technique/Model Embedding Type Suitable for Pros Cons

Doc2Vec
Static Sentence
Embedding

Semantic

Relation

Between Word

Generate a vector representation of a group
of words collected to present as a single unit.

The co-occurrence matrix of sentences occupies
plenty of memory for storage.

BERT
Contextualized

Word Embedding

Contextual
Relation

Between Word

Capable of gaining context-sensitive bi-

directional feature representation.

Fine-tuning and pre-training are inconsistent.
Long training time due to the immense size of

model files

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

709 | P a g e

www.ijacsa.thesai.org

V. CLASSIFICATION MODEL

A. Model Definition

Machine learning classifiers are essential tools for a wide
range of applications. They have the potential to revolutionize
many industries by automating tasks, improving accuracy, and
providing new insights into complex systems. These
classifiers work by learning patterns and relationships within a
given dataset and then using that knowledge to classify new
data into pre-defined categories or classes. In recent research,
the authors explored using multiple classifiers to group logs
based on log level. The working of machine learning
classifiers can vary depending on the algorithm used. This
study experimented on five different infrastructure logs using
k-Nearest Neighbors, Linear Regression, Support Vector
Machines, Naïve Bayes, Gradient Boosting Decision Trees,
and Random Forest machine learning classifiers.

1) K-Nearest Neighbors (KNN): IT is a machine learning

classifier that can be used for regression and classification

tasks. A non-parametric algorithm finds the K closest training

examples (i.e., neighbors) to a new data point and uses their

class labels to make a prediction [36].

2) Linear regression: Linear regression is a type of

regression analysis that models the relationship between a

dependent variable and one or more independent variables

[37]. It is commonly used for predicting continuous values,

such as sales revenue or stock prices.

3) Support Vector Machines (SVMs): SVMs are

supervised learning algorithms that can be used for

classification or regression tasks [38]. SVMs try to find the

optimal hyperplane that separates the different classes in the

dataset.

4) Naïve bayes: Naïve Bayes is a probabilistic algorithm

that can be used for classification tasks [39]. It is based on

Bayes' theorem and assumes that the features in the data are

independent of each other.

5) Gradient boosting decision trees: Gradient boosting is

an ensemble learning technique that combines multiple

decision trees to improve prediction accuracy. It involves

training a series of decision trees in sequence, with each

subsequent tree trying to correct the errors of the previous one

[40].

6) Random forests: Random forests are also an ensemble

learning technique that uses multiple decision trees to improve

prediction accuracy [41]. However, unlike gradient boosting,

random forests train each decision tree independently and then

aggregate their predictions to make the final prediction.

B. Evaluation Metrics

Classification of logs is based on the level earmarked for
the log entry. In the different IT infrastructures, log entries
hold numerous types of levels. Thus, a multi-class
classification technique is favored to accomplish the
classification. Generally, a multi-class classifier's performance
is appraised by the Micro-F1 score and Macro-F1 Score [42].
Therefore, TP (True Positives), TN (True Negative), FP (False

Positives), and FN (False Negatives) values were collected
from each category of level and further utilized to calculate
micro precision, macro precision, micro recall, macro recall,
and macro-F1.

For a provided log category i, outcomes are labeled as TPi,
TNi, FPi, and FNi. Where TPi represents the number of true
positives in logs belonging to the i category. TNi represents
the true negative in logs belonging to the i category. FPi
represents false positives, and FNi means false negatives in
logs belonging to the i category.

Considering values of TPi, TNi, FPi, and FNi, precisioni,
and recalli are evaluated as:

Precisioni can be calculated as the percentage of positively
labeled predictions made out of all predictions under the i
category of the level [43].

 (1)

The Recalli can be calculated as the number of correct
predicted results divided by applicable instances. Recall
provides the number of accurately predicted results divided by
all relevant samples [43].

 (2)

Macro-F1: Employed to compute the F1- score in the
instance of multi-class settings. Macro-F1 is known as the
macro-averaged F1 score and is calculated as simple
arithmetic means of the F1 scores of each class [44].

∑

 (3)

∑

 (4)

 (

) (5)

Specificity is calculated on the negatives that are detected
accurately. Specificity is also known as True Negative Rate
(TNR), which denotes the classifier's ability to enter negative
entries in the actual class [45]. In the case of logs, the system
administrator can select a log level with correct specificity to
proctor the anomalies or failures.

 (6)

The metrics used to measure model performance are
training and testing splits accuracy. Accuracy is the rate of the
absolutely classified data to all the data [46].

 (7)

VI. IMPLEMENTATION DETAILS

All models are implemented in Python and executed on the
Symbiosis Institute of Technology (Pune, India) server.
Various datasets such as Apache, OpenStack, Windows, BGL,
and Android were utilized to conduct the experimentation.
These datasets carry a vast number of log messages ranging

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

710 | P a g e

www.ijacsa.thesai.org

from around fifty-six thousand to 11 million (refer to Table III
for dataset details). Because of the excellent server
configuration made executing the BERT feature extraction
technique and ML classifiers on a massive data size possible.

TABLE III. DATASET DESCRIPTION

Dataset Description Source Type Period
Number of

logs

Apache

Apache

webserver error
log

Server

Application

263.9

days
56,481

OpenStack
OpenStack

infrastructure log
Cloud System NA. 207,820

Windows
Windows event
log

Operating
System

NA. 611,103

BGL

Blue Gene/L

supercomputer
log

Supercomputer
214.7

days
4,747,963

Android
Android

framework log
Mobile System NA. 1,555,005

The "Drain" parser is employed to parse the log messages
into log templates. An environment was created to run the
Drain parser by installing dependencies such as Python 2.7,
Scipy, NumPy, sci-kit-learn, and pandas. The unstructured
logs were converted into the structured format and preserved
in the .csv file. The results of parsing using Drain are
presented in Table I.

For feature extraction, we construct Doc2Vec and BERT
sentence embedding models. Doc2Vec model was developed
considering vector size 10, windows as 2, minimum count of
records one, and assigned workers as 4. At the same time, the
Bert-base-uncased model was employed to obtain sentence
vectors of log templates and contents. Considering the time
required for embedding and model training, optimizing the
performance of the BERT pre-trained model was
indispensable. According to [47] BERT model works
effectively when max_seq_len is 25, pooling_layer is set as
12, priority batch size is 16, and prefetch_size is set as 10. The
exact configuration was followed to improve the speed of the
embedding process.

The classification models were trained over random
training and testing data selection from the provided datasets.
Records are selected using different seeds, as 70% and 80% of
log entries as training data, and 30% and 20% remain as
testing data. All classifiers were experimentally evaluated
based on precision, recall, F1-score, specificity, and accuracy
for each log level within our labeled dataset.

VII. RESULTS

Table IV demonstrates the accuracy of classification
models where BERT is utilized as an embedding technique to
apprehend the meaning of log templates and contents. The K-

nearest neighbor model indicates lower accuracy among the
seven implemented classifiers, whereas Random Forest offers
higher classification accuracy for all datasets. As per the
observation from Table IV, although the training and testing
ratio changes yet there is an insignificant difference in the
accuracy values.

Minimum accuracy was recorded as 81.47% for the BGL
dataset using KNN, whereas 90.22% accuracy for the Apache
dataset using the SVM model. The accuracy score greater than
90% is highlighted in Table IV. Higher accuracy was derived
on an 80% training ratio for the Apache dataset using Linear
Regression, SVM, and Random Forest and for the OpenStack
dataset using Random Forest. Table IV observations show the
KNN model returns lower accuracy, and the Random Forest
model returns higher accuracy for almost all datasets. The
difference between the minimum and maximum accuracy is
8.75%; thus, we can conclude that all implemented
classification models have roughly comparable accuracy on
Apache, OpenStack, Windows, BGL, and Android datasets.
Based on this discussion, it is stated that semantic analysis
using BERT helps classify various types of log records
efficaciously. In addition, it is claimed that OpenStack and
Android datasets are more suitable for the evaluation of the
robustness of the classification model in the case of unseen log
records. A more significant number of log templates are
recorded for OpenStack and Android datasets in the parsing
process (stated in Table I).

A. Results on Apache Dataset

Fig. 3 presents a metaphorical evaluation of seven
classifiers over the Apache webserver error log dataset,
considering a 30% and 20% testing data ratio. Prior to the
classification, features were extracted with the help of the
BERT model. Random Forest achieves the highest precision
(96.08%) among the seven techniques and carries an F1 score
of 92.71% in both cases, considering the 30% and 20% testing
data ratio. This demonstrates that Random Forest provides the
best classification results on semantic analysis of log
templates and contents of log records. KNN, LinearRegression
Support Vector Machines, Gradient Boosting Decision Trees,
and Random Forests obtain consistent precision values on the
Apache dataset, although the training-to-testing data ratio
varies. Gradient Boosting Decision Trees and Random Forests
show high precision but a low recall rate compared to other
models. It is ascertained that all implemented models achieve
consistent results on the Apache dataset, which implies that
the semantics of the Apache log template and contents are
derived correctly; thus, models can understand and perform
classification operations. Also, unique templates (44) are
derived during parsing 56,481 log records (refer to Table I)
with 100% accuracy. The observation revealed the importance
of log parsing in the log-based failure detection process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

711 | P a g e

www.ijacsa.thesai.org

TABLE IV. CLASSIFICATION ACCURACY IN PERCENTAGE ON VARIOUS DATASETS CONSIDERING 30% AND 20% TESTING DATA USING BERT EMBEDDING

TECHNIQUE

IT

Infra-structure
Training Ratio

k-Nearest

Neighbors

Linear

Regression

Support Vector

Machines
Naïve Bayes

Gradient Boosting

Decision Trees

Random

Forest

Apache
70% 86.36 88.04 88.54 87.88 88.69 89.69

80% 86.95 90.01 90.22 89.46 89.13 89.65

OpenStack
70% 84.17 86.11 86.34 85.27 86.07 88.17

80% 85.17 88.02 88.14 87.94 87.81 89.34

Windows
70% 82.11 84.36 84.36 83.99 84.39 84.45

80% 83.35 86.77 86.77 85.23 85.73 85.39

BGL
70% 81.47 83.39 83.39 83.79 83.09 85.21

80% 82.98 85.79 85.70 85.74 85.01 86.89

Android
70% 81.89 83.89 83.89 81.87 82.46 85.72

80% 83.67 85.79 85.79 84.72 84.72 87.56

Fig. 3. Precision, recall, f1-score, and specificity in percentage on Apache

datasets considering 70% and 80% of training data using BERT embedding

technique.

B. Results on OpenStack Dataset

Fig. 4 presents a metaphorical evaluation of seven
classifiers over the OpenStack infrastructure log dataset,
considering a 70% and 80% training data ratio, respectively.
Before the classification, features were extracted with the help
of the BERT model. KNN, Linear Regression, Support Vector
Machines, Naïve Bayes, Gradient Boosting Decision Trees,
and Random Forests achieved more than 90% precision when
experiments were conducted on 30% of testing records and
20% of testing records, respectively. The precision, recall, F1-
Score, and specificity improved by increasing the training-to-
testing ratio. Among the seven implemented classifiers,
Random Forest has the highest precision (95.13%), recall
(89.31%), and F1 Score (92.13%) over 80% of the training
data. The OpenStack dataset is preferred to check the
classification efficiency for unobserved log records as it
records a higher number (7,221) of log templates in 207,820
total log entries (refer to Table I), 3.47% of the whole dataset.
In contrast, other datasets retrieve less than 1% of log
templates. More variations in the log template promote
checking the capability of semantic analysis to extract
rigorous meaning that imparts to accurate classification.

C. Results on Windows Dataset

Fig. 5 presents a metaphorical evaluation of seven
classifiers over the Windows event log dataset, considering a
70% and 80% training data ratio. Before the classification,
features were extracted with the help of the BERT model. K-
Nearest Neighbors records minimum precision as 85.67% and
maximum precision by Random Forest as 87.99%, which

means the difference in precision is significantly less for seven
classification models. Although the precision, recall, and F1-
Score values are less than 90%, they are consistent for all
implemented classifiers. The Windows dataset results are
decreasing compared to Apache and OpenStack datasets due
to the size of the data and the number of unique templates. In
the Windows dataset, 176 unique templates were extracted
from 611,103 (refer to Table I) event records, which is only
0.02%. Here, unique templates are fewer, but the contents of
the individual events fluctuate in compliance with the
recorded message.

Fig. 4. Precision, recall, f1-score, and specificity in percentage on Openstack

datasets considering 70% and 80% of training data using the BERT

embedding technique.

Fig. 5. Precision, recall, f1-score, and specificity in percentage on Windows

datasets considering 70% and 80% of training data using BERT embedding
technique.

D. Results on BGL Dataset

Fig. 6 presents an illustrative evaluation of seven
classifiers over the Blue Gene/L supercomputer log dataset,
considering a 70% and 80% training data ratio. Before the
classification, features were extracted with the help of the
BERT model. KNN records minimum precision as 82.89%
and maximum by Random Forest as 86.77%, which means the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

712 | P a g e

www.ijacsa.thesai.org

difference in precision is significantly less for seven
classification models. Although the precision, recall, and F1-
Score values are less than 90%, they are consistent for all
implemented classifiers. The BGL dataset results are
decreasing compared to Apache and OpenStack due to the size
of the data and the number of unique templates. In the
Windows dataset, 619 unique templates were extracted from
4,747,963 (refer to Table I) log records, which is only 0.01%.
Here unique templates are lesser, but the contents in the
individual log fluctuate in compliance with the recorded
message. According to observation, 1-2 % change in the
precision, recall, and F1-Score values on different testing
ratios, such as lower results recorded on the 30% testing ratio,
whereas improved results by 1-2% recorded on 20% testing
data.

Fig. 6. Precision, recall, f1-score, and specificity in percentage on BGL

datasets considering 70% and 80% of training data using the BERT
embedding technique.

E. Results on Android Dataset

Fig. 7 presents a metaphorical evaluation of seven
classifiers over the Android framework log dataset,
considering a 70% and 80% training data ratio. Before the
classification, features were extracted with the help of the
BERT model. KNN records the minimum precision as
78.34%. The difference in precision is significantly less for
the seven classification models. The Android dataset results
are decreasing compared to Apache and OpenStack due to the
size of the data and the number of unique templates. In the
Android dataset, 14,899 unique templates were extracted from
1,555,005 (refer to Table I) log records, which is only 0.09%
of the whole dataset. Thus, the Android dataset is preferred to
check the classification efficiency for unseen log records.
More variations in the template help check the capability of
semantic analysis to extract exact meaning that contributes to
accurate classification. As a bottom line, it is stated that the
greater the number of log records and the greater the number
of unique templates, the more they help to train the model
effectively.

Fig. 7. Precision, recall, f1-score, and specificity in percentage on Android

datasets considering 70% and 80% of training data using the BERT

embedding technique.

VIII. CONCLUSION AND FUTURE WORK

This paper describes an automatic and accurate
classification of logs to facilitate system administrators during
cause analysis of failures using system logs generated by
various massive-scale IT infrastructures. The implemented
models are able to understand the meaning of records and then
classify them based on their level for log entries from multiple
infrastructures such as Apache, OpenStack, Windows, BGL,
and Android. The system admin can pay more attention to
bizarre records and adopt remedial measures on the
Anomalous records pointed out in the classification results,

The proposed system works efficiently on different types
of log entries irrespective of changes in the format and
imbalanced data. Thus, this work indicates how semantic
analysis using BERT and classification using Linear
Regression, Support Vector Machines, Naïve Bayes, Gradient
Boosting Decision Trees, and Random Forests models furnish
robust classification of new log entries. Considering the
results and discussion points, K-Nearest Neighbors does not
work well due to the imbalanced nature of log records. It is
observed that, as compared with Doc2Vec, the semantic
analysis achieved by the BERT pre-trained model is better
while working with different classifiers. In addition, BERT
influences the classification of any log record type with all
classifiers and precisely processes the unseen or new log
entries.

Experimentation using BERT as an embedding technique
and machine learning models as classifiers derived precision,
recall, F1 scores, and specificity in the range of 80% to 90%.
In the extension to this work, we will try to improve the
results to reduce false alerts with the help of applying deep
learning techniques such as LSTM. Future work put forward
the enforcement of LSTM models and propounding modified
LSTM models to secure better results. Also, the system
implemented with feature extraction and classification is semi-
automated. In the future, the proposed system will be
enhanced to implement a fully automated classification system
to reduce human intervention.

REFERENCES

[1] D. A. Bhanage, "DigitalCommons @ University of Nebraska - Lincoln
Review and Analysis of Failure Detection and Prevention Techniques in
IT Infrastructure Monitoring," 2021.

[2] D. A. Bhanage and A. V. Pawar, "Bibliometric survey of IT
Infrastructure Management to Avoid Failure Conditions," Inf. Discov.
Deliv., vol. 49, no. 1, pp. 45–56, Nov. 2020, doi: 10.1108/IDD-06-2020-
0060.

[3] D. A. Bhanage, A. V. Pawar, and K. Kotecha, "IT Infrastructure
Anomaly Detection and Failure Handling: A Systematic Literature
Review Focusing on Datasets, Log Preprocessing, Machine & Deep
Learning Approaches and Automated Tool," IEEE Access, vol. 9, pp.
156392–156421, 2021, doi: 10.1109/access.2021.3128283.

[4] N. Aussel, Y. Petetin, and S. Chabridon, "Improving performances of
log mining for anomaly prediction through nlp-based log parsing," Proc.
- 26th IEEE Int. Symp. Model. Anal. Simul. Comput. Telecommun. Syst.
MASCOTS 2018, pp. 237–243, 2018, doi:
10.1109/MASCOTS.2018.00031.

[5] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, "DeepAnT: A
Deep Learning Approach for Unsupervised Anomaly Detection in Time
Series," IEEE Access, vol. 7, no. December 2018, pp. 1991–2005, 2019,
doi: 10.1109/ACCESS.2018.2886457.

[6] J. Wang, C. Zhao, S. He, Y. Gu, O. Alfarraj, and A. Abugabah,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

713 | P a g e

www.ijacsa.thesai.org

"LogUAD: Log unsupervised anomaly detection based on word2Vec,"
Comput. Syst. Sci. Eng., vol. 41, no. 3, pp. 1207–1222, 2022, doi:
10.32604/csse.2022.022365.

[7] A. Oliner and J. Stearley, "What supercomputers say: A study of five
system logs," Proc. Int. Conf. Dependable Syst. Networks, pp. 575–584,
2007, doi: 10.1109/DSN.2007.103.

[8] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, "Self-
attentive classification-based anomaly detection in unstructured logs,"
Proc. - IEEE Int. Conf. Data Mining, ICDM, vol. 2020-Novem, pp.
1196–1201, 2020, doi: 10.1109/ICDM50108.2020.00148.

[9] J. Wang, C. Li, S. Han, S. Sarkar, and X. Zhou, "Predictive maintenance
based on event-log analysis: A case study," IBM J. Res. Dev., vol. 61,
no. 1, pp. 121–132, 2017, doi: 10.1147/JRD.2017.2648298.

[10] X. Liu et al., "Smart Server Crash Prediction in Cloud Service Data
Center," Intersoc. Conf. Therm. Thermomechanical Phenom. Electron.
Syst. ITHERM, vol. 2020-July, pp. 1350–1355, 2020, doi:
10.1109/ITherm45881.2020.9190321.

[11] S. Huang et al., "HitAnomaly: Hierarchical Transformers for Anomaly
Detection in System Log," IEEE Trans. Netw. Serv. Manag., vol. 17, no.
4, pp. 2064–2076, 2020, doi: 10.1109/TNSM.2020.3034647.

[12] M. A. Elsayed and M. Zulkernine, "PredictDeep: Security Analytics as a
Service for Anomaly Detection and Prediction," IEEE Access, vol. 8, pp.
45184–45197, 2020, doi: 10.1109/ACCESS.2020.2977325.

[13] X. Zhang et al., "Robust log-based anomaly detection on unstable log
data," ESEC/FSE 2019 - Proc. 2019 27th ACM Jt. Meet. Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., pp. 807–817, 2019, doi:
10.1145/3338906.3338931.

[14] T. Kimura, A. Watanabe, T. Toyono, and K. Ishibashi, "Proactive failure
detection learning generation patterns of large-scale network logs,"
IEICE Trans. Commun., no. 2, pp. 306–316, 2019, doi:
10.1587/transcom.2018EBP3103.

[15] M. Pettinato, J. P. Gil, P. Galeas, and B. Russo, "Log mining to re-
construct system behavior: An exploratory study on a large telescope
system," Inf. Softw. Technol., vol. 114, no. June, pp. 121–136, 2019, doi:
10.1016/j.infsof.2019.06.011.

[16] H. Ott, J. Bogatinovski, A. Acker, S. Nedelkoski, and O. Kao, "Robust
and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models," 2021, [Online]. Available:
http://arxiv.org/abs/2102.11570.

[17] J. Wang et al., "LogEvent2vec: LogEvent-to-vector based anomaly
detection for large-scale logs in internet of things," Sensors
(Switzerland), vol. 20, no. 9, pp. 1–19, 2020, doi: 10.3390/s20092451.

[18] R. Vaarandi and M. Pihelgas, "LogCluster - A data clustering and
pattern mining algorithm for event logs," Proc. 11th Int. Conf. Netw.
Serv. Manag. CNSM 2015, pp. 1–7, 2015, doi:
10.1109/CNSM.2015.7367331.

[19] K. A. Alharthi, A. Jhumka, S. Di, F. Cappello, and E. Chuah, "Sentiment
Analysis based Error Detection for Large-Scale Systems," Proc. - 51st
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Networks, DSN 2021, no.
i, pp. 237–249, 2021, doi: 10.1109/DSN48987.2021.00037.

[20] H. Guo, S. Yuan, and X. Wu, "LogBERT: Log Anomaly Detection via
BERT," Proc. Int. Jt. Conf. Neural Networks, vol. 2021-July, 2021, doi:
10.1109/IJCNN52387.2021.9534113.

[21] H. Yang, X. Zhao, D. Sun, Y. Wang, and W. Huang, Sprelog: Log-
Based Anomaly Detection with Self-matching Networks and Pre-trained
Models, vol. 2. Springer International Publishing, 2021. doi:
10.1007/978-3-030-91431-8_50.

[22] E. Elbasani and J. D. Kim, "LLAD: Life-Log Anomaly Detection Based
on Recurrent Neural Network LSTM," J. Healthc. Eng., vol. 2021, 2021,
doi: 10.1155/2021/8829403.

[23] X. Duan, S. Ying, H. Cheng, W. Yuan, and X. Yin, "OILog: An online
incremental log keyword extraction approach based on MDP-LSTM
neural network," Inf. Syst., vol. 95, p. 101618, 2021, doi:
10.1016/j.is.2020.101618.

[24] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, "Swisslog: Robust and unified
deep learning based log anomaly detection for diverse faults," Proc. -
Int. Symp. Softw. Reliab. Eng. ISSRE, vol. 2020-Octob, pp. 92–103,
2020, doi: 10.1109/ISSRE5003.2020.00018.

[25] Y. Xie, K. Yang, and P. Luo, "LogM: Log Analysis for Multiple
Components of Hadoop Platform," IEEE Access, vol. 9, pp. 73522–
73532, 2021, doi: 10.1109/ACCESS.2021.3076897.

[26] S. He, J. Zhu, P. He, and M. R. Lyu, "Loghub: A large collection of
system log datasets towards automated log analytics," arXiv. arXiv,
Aug. 14, 2020.

[27] "GitHub - logpai/loghub: A large collection of system log datasets for
AI-powered log analytics." https://github.com/logpai/loghub (accessed
Jun. 27, 2021).

[28] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, "Towards Automated Log
Parsing for Large-Scale Log Data Analysis," IEEE Trans. Dependable
Secur. Comput., vol. 15, no. 6, pp. 931–944, 2018, doi:
10.1109/TDSC.2017.2762673.

[29] M. Du and F. Li, "Spell: Streaming parsing of system event logs," Proc.
- IEEE Int. Conf. Data Mining, ICDM, pp. 859–864, 2017, doi:
10.1109/ICDM.2016.160.

[30] R. Vaarandi, "A data clustering algorithm for mining patterns from event
logs," Proc. 3rd IEEE Work. IP Oper. Manag. IPOM 2003, pp. 119–
126, 2003, doi: 10.1109/IPOM.2003.1251233.

[31] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, "Drain: An Online Log Parsing
Approach with Fixed Depth Tree," Proc. - 2017 IEEE 24th Int. Conf.
Web Serv. ICWS 2017, pp. 33–40, 2017, doi: 10.1109/ICWS.2017.13.

[32] W. Meng et al., "A Semantic-aware Representation Framework for
Online Log Analysis," Proc. - Int. Conf. Comput. Commun. Networks,
ICCCN, vol. 2020-Augus, pp. 1–7, 2020, doi:
10.1109/ICCCN49398.2020.9209707.

[33] "A gentle introduction to Doc2Vec. TL;DR | by Gidi Shperber | Wisio |
Medium.” https://medium.com/wisio/a-gentle-introduction-to-doc2vec-
db3e8c0cce5e (accessed Jan. 31, 2022).

[34] "BERT Explained: A Complete Guide with Theory and Tutorial –
Towards Machine Learning." https://towardsml.com/2019/09/17/bert-
explained-a-complete-guide-with-theory-and-tutorial/ (accessed Jul. 21,
2021).

[35] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training
of deep bidirectional transformers for language understanding," NAACL
HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist.
Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186,
2019.

[36] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, "KNN model-based
approach in classification," Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2888, no.
November 2012, pp. 986–996, 2003, doi: 10.1007/978-3-540-39964-
3_62.

[37] C. Y. J. Peng, K. L. Lee, and G. M. Ingersoll, "An introduction to
logistic regression analysis and reporting," J. Educ. Res., vol. 96, no. 1,
pp. 3–14, 2002, doi: 10.1080/00220670209598786.

[38] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez,
"A comprehensive survey on support vector machine classification:
Applications, challenges and trends," Neurocomputing, vol. 408, pp.
189–215, 2020, doi: 10.1016/j.neucom.2019.10.118.

[39] H. Chen, S. Hu, R. Hua, and X. Zhao, "Improved naive Bayes
classification algorithm for traffic risk management," EURASIP J. Adv.
Signal Process., vol. 2021, no. 1, 2021, doi: 10.1186/s13634-021-00742-
6.

[40] H. Seto et al., "Gradient boosting decision tree becomes more reliable
than logistic regression in predicting probability for diabetes with big
data," Sci. Rep., vol. 12, no. 1, pp. 1–10, 2022, doi: 10.1038/s41598-
022-20149-z.

[41] L. E. O. Breiman, "Random Forests," pp. 5–32, 2001.

[42] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, "RCV1: A new benchmark
collection for text categorization research," J. Mach. Learn. Res., vol. 5,
pp. 361–397, 2004.

[43] H. M and S. MN, "A Review on Evaluation Metrics for Data
Classification Evaluations," Int. J. Data Min. Knowl. Manag. Process,
vol. 5, no. 2, pp. 01–11, 2015, doi: 10.5121/ijdkp.2015.5201.

[44] M. Grandini, E. Bagli, and G. Visani, "Metrics for Multi-Class
Classification: an Overview," pp. 1–17, 2020, [Online]. Available:
http://arxiv.org/abs/2008.05756.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

714 | P a g e

www.ijacsa.thesai.org

[45] R. Trevethan, "Sensitivity, Specificity, and Predictive Values:
Foundations, Pliabilities, and Pitfalls in Research and Practice," Front.
Public Heal., vol. 5, no. November, pp. 1–7, 2017, doi:
10.3389/fpubh.2017.00307.

[46] "Different metrics to evaluate the performance of a Machine Learning
model | by Swapnil Vishwakarma | Analytics Vidhya | Medium."

https://medium.com/analytics-vidhya/different-metrics-to-evaluate-the-
performance-of-a-machine-learning-model-90acec9e8726 (accessed Jul.
09, 2021).

[47] "Benchmark — bert-as-service 1.6.1 documentation." https://bert-as-
service.readthedocs.io/en/latest/section/benchmark.html#speed-wrt-max-
batch-size (accessed Jun. 22, 2022).

