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Abstract—In graph analytics, the identification of influential 

nodes in real-world networks plays a crucial role in 

understanding network dynamics and enabling various 

applications. However, traditional centrality metrics often fall 

short in capturing the interplay between local and global 

network information. To address this limitation, the Global 

Structure Model (GSM) and its improved version (IGSM) have 

been proposed. Nonetheless, these models still lack an adequate 

representation of path length. This research aims to enhance 

existing approaches by developing a hybrid model called H-

GSM. The H-GSM algorithm integrates the GSM framework 

with local and global centrality measurements, specifically 

Degree Centrality (DC) and K-Shell Centrality (KS). By 

incorporating these additional measures, the H-GSM model 

strives to improve the accuracy of identifying influential nodes in 

complex networks. To evaluate the effectiveness of the H-GSM 

model, real-world datasets are employed, and comparative 

analyses are conducted against existing techniques. The results 

demonstrate that the H-GSM model outperforms these 

techniques, showcasing its enhanced performance in identifying 

influential nodes. As future research directions, it is proposed to 

explore different combinations of index styles and centrality 

measures within the H-GSM framework. 

Keywords—Centrality indices; combination; hybrid; global 

structure model; influential nodes 

I. INTRODUCTION 

In the captivating world of graph analytics, identifying 
significant nodes is critical, providing invaluable insights into 
the structure and behavior of many real-world networks. 
Networks with considerable sways, such as social networks, 
biological networks, and information networks, are 
characterized by nodes that operate as hubs or influencers, 
shaping the behavior of the entire network. Understanding and 
locating these significant nodes improves our understanding of 
network dynamics and offers possibilities for applications such 
as targeted marketing, recommendation systems, and 
vulnerability analyses [1], [2]. 

Centrality measurements are the preferred metric in 
network analysis for evaluating the relevance and influence of 
individual nodes or edges. DC [3], betweenness centrality 
(BC)[4], closeness centrality (CC)[5], and PageRank (PR) [6] 
are metrics that have been created to identify nodes that play 
essential roles depending on a variety of parameters. These 
traditional metrics primarily focus on local or global network 
information [7], [8], frequently failing to capture the delicate 

interplay between the two. Local influence measurements, such 
as DC and CC, focus on a node's close connections and 
proximity to other nodes, elucidating its impact on information 
or resource flow within a narrow network section[9]–[11]. 
Global impact metrics, on the other hand, such as BC and PR, 
take into account the more extensive network structure and the 
importance of nodes to which a specific node is connected. 
These metrics excel at identifying nodes that serve as bridges 
between distinct network groups or enhance network 
connectivity across the board. These global measures are 
limited since they are computationally expensive and do not 
function well in the absence of a complete network structure 
[9], [12]–[14]. Evaluating local and global influence is critical 
to have a complete sense of node relevance. Nodes strongly 
influenced at both scales will likely hold critical positions 
within the network's complicated structure. They could impact 
immediate network behavior while altering its overall structure 
and dynamics. 

Ullah's[15] Global Structure Model (GSM) provides a 
framework for ranking nodes in a network based on their local 
and global significance. This model uses the K-shell value to 
assess individual influence while considering neighboring node 
K-shell values and including path length to determine the 
global effect. It is worth noting, however, that the GSM falls 
short of adequately capturing the impact of path length, 
allowing the opportunity for further improvement. To remedy 
this issue, an improvement of GSM (IGSM) [16]  has been 
made, which uses DC as its primary parameter rather than KS. 
Despite these advancements, precisely assessing the value of 
individual nodes within complex networks remains a 
substantial problem, emphasizing the need for ongoing study 
and developing novel ways to acquire more profound insights 
into network topologies. 

This study continues our prior efforts in [17] and [18]. We 
successfully identified indices based on their similarity, 
demonstrating the improved performance obtained by 
combining indices from different network topologies, 
particularly when incorporating local and global centrality 
metrics. Next, we enhanced our findings by integrating the 
GSM with local and global centrality measurements by 
proposing a new hybrid model (H-GSM). Based on these 
findings, the current study intends to improve the algorithm 
using DC and KS framework. 
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The primary contribution of this study lies in the creation 
and evaluation of the H-GSM framework. The H-GSM 
framework combines the GSM with the comprehensive 
analysis provided by DC and KS, resulting in an improved 
ability to identify influential nodes. Notably, this integration 
enables the capturing of the intricate relationship between local 
and global network information, which is often overlooked by 
conventional centrality metrics. The findings of this study offer 
valuable insights for further exploration of different 
combinations of index styles and centrality measures, thereby 
advancing the understanding and application of network 
analysis methodologies. 

II. PRELIMINARIES 

GSM and IGSM consider the node’s self-influence and 
global influence, except that GSM believes in KS-
decomposition, while IGSM is the improvement that applied 
DC. The formula is expressed as follows: 
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where KS(i) refers to the K-shell decomposition value of 
node i, DC(i) refers to the degree value of a node, and dij refers 
to the path length between node i and node j. 

These methods have grown in popularity because they are 
straightforward and enable researchers to quickly collect node 
values and use them in massive networks, broadening the 
scope of their potential applications. However, determining 
each node's significance within a network accurately presents a 
significant barrier for both the K-shell decomposition and the 
DC techniques. There need to be more levels in the K-shell 
decomposition method, which causes many nodes to be 
assigned to the same level[12], [19]. While DC only considers 
edge information, it ignores other essential elements like the 
structure of the entire network [20]. As a result, it might be 
challenging to accurately distinguish each node's relevance in 
large-scale networks where many nodes may have identical DC 
values. DC needs to recognize the significance of position data 
within the network. Due to their distinct placements or 
responsibilities in tying together various network regions, 
nodes with the same DC value may have differing degrees of 
influence. Alternative approaches that consider additional 
network properties and the impact of location information are 
needed to get over these constraints and develop a more 
thorough knowledge of node influence. 

In this study, a hybrid approach of global structural model 
is proposed. It is suggested that the overall structure of the 
network is influenced by each node's capacity to impact itself. 
Because of this, the self-influence participant is essential to 
global influence. The following is how our suggested method 
is expressed: 
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Fig. 1 is a sample network of 7 nodes and 10 edges, 
showing each node’s classification from the KS-
Decomposition. Using node 3 as an example, the overall steps 
for calculating H-GSM is shown. 

 

Fig. 1. Sample network. 

Step 1: Determine KS and DC values. 
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Step 2: Calculate hybrid self-influence (hSI).   
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Step 3: Calculate hybrid global influence (iGI). 
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Step 4: Calculate node influence of H-GSM. 

H-GSM(3) hSI(3) hGI(3)

3.1357 10.9777

34.4228

 

 

  

Table I presents the rankings of centrality indices of 
different methods. Notably, the H-GSM metric consistently 
assigns rankings to nodes, distinguishing it from other 
centrality indices. The methodology is expanded through 
experimentation to conduct a comprehensive analysis of a 
more complex network. 
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TABLE II. RANKING OF NODES OF THE SAMPLE NETWORK 

Rank DC BC CC PR GSM IGSM H-GSM 

1 3 3 3 3 3 3 3 

2 1, 2 1 1, 2 0 1, 2 2 2  

3 0 2 0 2 0 1  0  

4 5 
0, 4, 

5, 6 
5 1 5 0 1 

5 4, 6  6 5 6 5 5 

6   4 4 4 6 6 

7    6  4 4 

III. METHODOLOGY 

A. Datasets 

This investigation utilized nine distinct real-world datasets, 
each featuring varying network sizes and unweighted 
attributes, to conduct further analyses. Table II presents 
information regarding the intricacies and classification of the 
network. The networks are available for download from 
KONECT (http://konect.cc/networks/) and NETWORK 
(http://networkrepository.com/). The variables n, m, k, and Kmax 
are utilized to describe the characteristics of a network. 
Specifically, n represents the number of nodes, m represents 
the number of edges, k represents the average degree of the 
network, and Kmax represents the highest degree present in the 
network. 

TABLE III. DETAILS ON EXPERIMENTED NETWORK 

Network Type n m <k> Kmax 

Karate Social 34 78 4.588 17 

Netscience1 Co-authorship 379 914 4.82 34 

Router Networking 2113 6632 6.128 38 

B. Experimental Environment 

The experiment setup is performed on a system with 
configuration on Windows 11 platform 64-bit system; the 
machine hardware configuration is an Intel® Core i7-8550U 
CPU @ 2.4 Hz processor, 24 GB of RAM; and Python-Visual 
Studio Code 1.56.2 is used for programming. 

Regarding the proposed model analysis, the model is 
subjected to testing and validation procedures to ensure its 
capacity to represent each node's relative significance 
accurately. The proposed model is assessed through the 
implementation of the following procedures: 

C. SIR Model 

The Susceptible-Infected-Recovered (SIR) model is well-
known for investigating each node's spreading dynamics. We 
will employ this section to quantify the performance of H-
GSM and other benchmark centralities. All seed nodes are 
vulnerable for the first time. The seed node is likely to infect its 
nearest and next-nearest neighbor nodes (in the susceptible 
state) at each time step, and each node (the infected node) has a 
chance of recovering. This procedure was continued until no 
further infected nodes were discovered. Finally, all nodes 
gathered are used to simulate the actual node impact. S(t), I(t), 
and R(t) represent the number of nodes in the susceptible, 
infected, and recovered states, respectively. Each loop 
represents a time step, t, and F(t) returns the total number of 
infected and recovered nodes at time t, which can be used to 
assess the influence of the original infected node. The infected 

nodes will recover at step t with a probability of. When no 
infected nodes remain, the propagation process is complete. 
Identical operations are performed for each node in each 
network using 100 distinct SIR model iterations. 

D. Comprehensive Cumulative Distribution Function 

The comprehensive cumulative distribution function 
(CCDF) is a commonly utilized tool in network analysis to 
compare and analyze centrality measures. The CCDF 
facilitates examining the distribution of centrality values across 
network nodes. By comparing the CCDFs of various centrality 
measures, scholars can evaluate how these measures capture 
distinct facets of node significance and how they order nodes 
based on centrality. This comparative analysis offers valuable 
insights into the network’s attributes and actions. The value of 
the CCDF at a given rank, r in a ranking list is obtained by 
summing the probabilities of all the ranks greater than r. The 
mathematical expression for the CCDF can be represented as: 
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where n is the total number of network nodes and 
1

r
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n

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refers to the number of numerical rankings less than or equal to 
r in the ranking list. 

Through the graphical representation of the CCDF, it is 
possible to visually inspect the extreme values of the 
distribution, which correspond to nodes exhibiting elevated 
levels of centrality. This data can aid in identifying the most 
critical nodes within the network. A more pronounced slope of 
the centrality line in a CCDF plot indicates a higher degree of 
concentration of nodes with high centrality. In contrast, a less 
steep line suggests a more equitable distribution of centrality 
values among the nodes within the network. 

E. Kendall’s   Correlation Coefficients 

Kendall's  -correlation coefficient is used to evaluate the 

consistency between two rankings or order of things, making it 
a valuable tool for comparing centrality indexes. Each 
centrality indices rank nodes based on their importance or 
centrality in a network. We may measure how well the ranks 
provided by different indices agree by comparing them using 
Kendall. Using Kendall, we may assess the degree of 
agreement or concordance between the levels of nodes 
obtained by various centrality measures. Suppose two 
centrality indices give similar rankings (i.e., nodes ranked 
highly by one index are also ranked highly by the other). The 
Kendall coefficient will be high, suggesting a strong positive 
association. If the ranks differ significantly, the Kendall tau 
coefficient will be low, indicating a weak connection or 
disagreement between the indices. We may use Kendall to 
statistically analyze the consistency or divergence of multiple 
centrality measures and acquire insights into how well they 
capture similar or dissimilar characteristics of node importance 
in a network. The formula is as follows: 
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where C and D are the numbers of concordant pairs 
discordant pairs, respectively. 

IV. RESULTS AND DISCUSSIONS 

Fig. 2 shows how the distribution of nodes on those three 
networks over time, changed for various centrality indices for 
the top-10 node rank. A distinct line represents each centrality 
index. The analysis of centrality indices reveals that H-GSM 
exhibits consistently higher F(t) values than other metrics. This 
implies they exhibit a higher degree of efficacy in 
disseminating the pathogen. They show unique modes of 
distribution. The H-GSM protocol demonstrates a 
comparatively gradual rise in its initial phase, a diminished 
apex, and a protracted duration of sustained levels. GSM-based 
approaches exhibit higher F(t) values than conventional 
centrality metrics like DC, BC, CC, and PR. According to the 
Karate dataset, the disease is less likely to spread effectively. 
Incorporating iterative and incremental elements within H-
GSM enhances its capacity to propagate the pandemic. This 
illustrates the importance of integrating multiple components 
and iterative procedures in models of epidemic propagation. 

The utilization of standard deviation (SD) values furnishes 
insights into the degree of variability exhibited by the 
performance of individual centrality measures. Successive 
display of the standard deviation values for DC, BC, CC, PR, 
GSM, IGSM, and H-GSM is observed. Smaller standard 
deviation values suggest more significant levels of consistency 
and stability in behavior, while larger standard deviation values 
indicate increased levels of unpredictability. Upon examination 
of the graph, it is evident that H-GSM networks exhibiting a 
greater quantity of nodes demonstrate a decreased standard 
deviation compared to networks with fewer nodes. 

The CCDF plot in Fig. 3 compares various centrality 
indices when network nodes are eliminated. The findings 
indicate that the metrics above exhibit varied characteristics 
and levels of susceptibility toward removing nodes. By 
examining the diminishing patterns of the curves, one can gain 
insight into the unique features of each method. A linear curve 
devoid of inflection points implies that each node is 
categorized with a distinct value. At the same time, a more 
pronounced descent indicates a more significant number of 
nodes being allocated to the same rank. The swift reductions 
observed in DC and BC highlight their noteworthy 
susceptibility and impact on the broader network connectivity 
and dissemination of information. The data suggest that CC 
experiences a gradual decrease, implying a comparatively less 
significant influence on the overall structure of the network. 
The decline in PR is relatively slower, indicating a less severe 
impact on the network's connectivity. The slower declination of 
GSM, IGSM, and H-GSM results in moderate sensitivities 
when nodes are removed. The comparative analysis of the 
three approaches across the three networks reveals that H-GSM 
effectively discerns the impact of individual nodes. 

 

 

 

Fig. 2. Propagation influence of top-10 ranking effect. 
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Fig. 3. CCDF diagram of ranking results of each method. 

Kendall's model with SIR was employed to assess the 
impact of nodes in various networks and verify the H-GSM's 
suitability and efficacy. Fig. 4 displays Kendall’s values of the 
H-GSM algorithm and others under consideration. As 
evidenced by the data, H-GSM outperforms other methods 
regarding Kendall values. This indicates that H-GSM exhibits 
superior performance across diverse networks featuring 
varying node sizes. 

 

 

 

Fig. 4. Kendall coefficients between different propagation probabilities with 

the SIR model. 

To conduct a more comprehensive examination of the 
propagation phenomenon of H-GSM, we analyzed the 
dissemination influence of nodes ranked in the SIR model. 
Value of 0.1  was chosen, while   was varied between 0.01 

and 0.1. This decision was made due to the potential for 
propagation across the entire network when larger alpha values 
are utilized. Tables III, IV, and V display the nodes ranked in 
the top ten for the Karate, Netscience1, and Router networks. It 
was observed that a significant proportion of the nodes that 
ranked within the top 10 of H-GSM were also present in other 
algorithms. Thus, the validity of the proposed H-GSM has been 
confirmed. 

This study aimed to compare the efficacy of the proposed 
H-GSM with that of GSM in terms of node spreading. 
Consequently, in H-GSM and GSM, solely different nodes are 
considered seed nodes to analyze the propagation effect. A 
mean value of 100 rotations is calculated. In the illustrated 
instance presented in Fig. 5, it was observed that the impact of 
node 26, which is present in H-GSM, surpasses that of node 7 
in GSM. The results indicate that our proposed H-GSM model 
exhibits a superior infection effect than the original GSM 
model. The findings are consistent across other networks, as 
depicted in Fig. 6 and 7. 
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TABLE IV. TOP-10 RANKING NODES OF THE KARATE NETWORK 

Rank DC BC CC PR GSM IGSM H-GSM 

1 0 0 33 33 33 33 33 

2 0 33 2 0 0 0 0 

3 27 27 33 27 2 27 27 

4 2 2 26 2 27 2 2 

5 1 26 27 1 1 1 1 

6 26 8 8 26 8 26 3 

7 3 1 13 3 13 8 8 

8 13 13 16 18 3 13 13 

9 18 16 1 8 25 3 26 

10 8 5 3 13 7 16 25 

 

Fig. 5. Node propagation effect of Karate network. 

TABLE V. TOP-10 RANKING NODES OF THE NETSCIENCE1 

Rank DC BC CC PR GSM IGSM H-GSM 

1 3 58 58 58 4 58 3 

2 4 106 119 3 3 4 4 

3 58 189 106 4 5 3 58 

4 5 119 44 119 13 106 5 

5 72 72 187 72 14 119 119 

6 219 4 107 5 28 44 13 

7 119 44 4 106 29 107 44 

8 13 187 6 142 16 5 106 

9 142 6 130 219 15 187 107 

10 106 178 135 53 119 189 219 

 

Fig. 6. Node propagation effect of Netscience1 network. 

TABLE VI. TOP-10 RANKING NODES OF THE ROUTER NETWORK 

Rank DC BC CC PR GSM IGSM H-GSM 

1 100 2 2 100 89 100 100 

2 139 0 100 139 384 139 139 

3 350 100 89 62 350 2 350 

4 62 139 139 0 356 89 89 

5 48 159 0 99 369 0 384 

6 242 508 242 159 279 242 0 

7 113 99 384 350 381 99 135 

8 135 350 426 2 185 62 48 

9 0 62 99 242 367 384 2 

10 89 179 216 310 100 350 356 

 

Fig. 7. Node propagation effect of Router network. 

V. CONCLUSIONS 

In conclusion, this study addresses the challenge of 
identifying influential nodes in complex networks. Despite the 
existing methodologies, node identification remains a 
significant concern for researchers. To overcome this 
challenge, a new algorithm called H-GSM is proposed, which 
integrates degree and k-shell centrality measures. By 
incorporating both local and global centrality metrics, the H-
GSM model improves upon the existing GSM model, 
effectively capturing the network's intricate influences. To 
evaluate the effectiveness of the H-GSM model, experiments 
are conducted on three different complex networks with 
varying sizes. The model's performance is assessed by 
examining its spreading ability using the SIR model and 
comparing various centrality metrics using Kendall's tau 
correlation coefficient. The experimental results demonstrate 
that the H-GSM algorithm outperforms established 
benchmarks in accurately identifying influential nodes. In 
future research, further enhancements of the algorithm's 
performance outcomes are planned by exploring different 
combinations of index styles and centrality measures. These 
investigations will contribute to advancing the understanding 
and application of network analysis techniques. Overall, the H-
GSM algorithm presented in this study offers a promising 
approach for unraveling influential nodes in complex networks 
and holds potential for future advancements in the field. 
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