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Abstract—In image classification, multi-granularity refers to 

the ability to classify images with different levels of detail or 

resolution. This is a challenging task because the distinction 

between subcategories is often minimal, needing a high level of 

visual detail and precise representation of the features specific to 

each class. In dental informatics, and more specifically tooth 

classification poses many challenges due to overlapping teeth, 

varying sizes, shapes, and illumination levels. To address these 

issues, this paper considers various data granularity levels since a 

deeper level of details can be acquired with increased 

granularity. Three tooth granularity levels are considered in this 

study named Two Classes Granularity Level (2CGL), Four 

Classes Granularity Level (4CGL), and Seven Classes 

Granularity Level (7CGL) to analyze the performance of teeth 

detection and classification at multi-granularity levels in 

Granular Intra-Oral Image (GIOI) dataset. Subsequently, a 

Faster Region-Convolutional Neural Network (FR-CNN) based 

on three ResNet models is proposed for teeth detection and 

classification at multi-granularity levels from the GIOI dataset. 

The FR-CNN-ResNet models exploit the effect of the tooth 

classification granularity technique to empower the models with 

accurate features that lead to improved model performance. The 

results indicate a remarkable detection effect in investigating the 

granularity effect on the FR-CNN-ResNet model's performance. 

The FR-CNN-ResNet-50 model achieved 0.94 mAP for 2CGL, 

0.74 mAP for 4CGL, and 0.69 mAP for 7CGL, respectively. The 

findings demonstrated that multi-granularity enables flexible and 

nuanced analysis of visual data, which can be useful in a wide 

range of applications. 

Keywords—Dental informatics; intra-oral image; deep 

learning; faster region-convolutional neural network; 

classification; granularity level; tooth detection 

I. INTRODUCTION 

As living standards improve and dental health awareness 
increases, a growing number of individuals are pursuing dental 
treatments (such as orthodontics, dental implants, and 
restoration) as a means to maintain a healthy lifestyle [1]. 
According to the WHO Global Oral Health Status Report 
(2022), almost 3.5 billion people worldwide are affected by 
oral illnesses [2]. In underdeveloped nations, the lack of oral 
hygiene knowledge, limited access to dental care facilities, and 
high cost of treatment contribute to untreated dental issues, 

resulting in severe consequences for individuals in these 
regions [3]. 

Extensive research has been conducted to explore Deep 
learning-based object detection methods for dental disease 
diagnosis in various dental models including radiographic 
images, CBCT images, and intra-oral images [4] [5]. 

Radiographs and periodontal images are widely used as 
objective diagnostic tools for tooth disease diagnosing. This 
includes bitewing, periapical, and panoramic images. Despite 
their widespread use these images are known to have 
limitations. For example, they are likely to contain tooth ghost 
images, low resolution and contrast, overlaps, angulation, 
magnification, and other artifactual information which are 
sources of unwanted features and noise [6]. Alternatively, 
CBCT is employed for their high-quality three-dimensional 
volumetric information which addresses the issue of distortion 
and superimposition of bony and dental structures [7]. 
However, automatic segmentation using CBCT poses certain 
difficulties, such as noisy images, unclear edges, presence of a 
human skull [8]. 

Recently, intra-oral dental images are used for tooth disease 
diagnosis. They provide valuable insights into a patient's oral 
health status and help in formulating treatment plans [9]. This 
approach (i) does not necessitate specialized equipment for 
data acquisition, (ii) offer rich features despite small image 
size, and (iii) consequently requires low computational cost for 
image processing and object detection tasks.  However, the 
identification and detection of individual teeth in these images 
present some challenges such as partial occlusion, overlapping, 
and varying Illumination [10] [11]. Another issue is 
unavalaibility of comprehensive intra-oral image datasets. 

Deep learning (DL) has emerged as a powerful approach 
for overcoming the challenges in the dentistry domain, capable 
of autonomously extracting high-level and discriminative 
characteristics from a given dataset [12]. Convolutional neural 
networks (CNNs) have achieved significant appeal among DL 
approaches due to their well-established multilayer structure. 
CNN-based techniques for dental image processing have 
demonstrated outstanding performance in a variety of clinical 
tasks, most notably tooth detection and classification/ 
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numbering across many dental imaging modalities, including 
cone-beam computed tomography (CBCT) [13] and 
radiography images [14]. However, the classification of tooth 
types in intra-oral dental images is a challenging task due to the 
complex and diverse structures found in these images [15]. 
These images have rich geometrical structure which makes it 
difficult to learn the discriminative features among the tooth 
classes. Despite some common morphological characteristics 
for distinguishing tooth type between individuals, there exist 
great variances in surface appearance with the same type of 
tooth [11]. Additionally, teeth classification in intra-oral 
images is demanding due to the inhomogeneous texture or 
color distribution of teeth. For example, even if the images 
represented the same incisor type, there are often strong 
differences in the directionality, granularity, or color tone of 
teeth. These variations make it challenging to classify the teeth 
accurately. Hence analysis of dental images using deep 
learning models has caught the attention of many researchers 
[16]. 

To overcome the aforementioned challenges, we 
hypothesize that the discriminative local detailed information 
of intra-oral images is naturally hidden in various granularity 
patches of the images. Multi-granularity in image classification 
is useful for applications such as object recognition, where 
objects may be present at different scales or levels of 
complexity. By classifying objects at multiple levels of 
granularity, it is possible to accurately identify objects of 
different sizes or shapes, which can be useful for tasks such as 
autonomous navigation or robotic manipulation. Thus, the 
underlying research work examines the effect of granularity in 
tooth detection and classification using intra-oral images. The 
multiple levels of granularity are used to specify the structural 
levels of the tooth. The granularity level changes based on the 
three tooth groups considered in this study. The Granular Intra-
Oral Image (GIOI) dataset consists of three granular levels 
named Two Classes Granularity Level (2CGL) of the upper 
and lower jaw, Four Classes of Granularity Level (4CGL) of 
incisor, canine, premolar, and molar, and Seven Classes 
Granularity Level (7CGL) is used for tooth classification. 

The following are the main contributions of this study: 

 Modeling of faster region-convolutional neural network 
(FRCNN) based on three types of ResNet models for 
multi-granularity levels teeth classification from intra-
oral images. 

 Analysis of teeth detection and classification at multi-
granularity levels via FRCNN. 

The rest of the paper is divided into the following sections. 
Section II summarizes the previous research on tooth detection 
and classification, and granularity level classification. Section 
III offers the proposed methodology. The experimental 
findings are presented and discussed in Section IV. Section V 
analyses the effect of granularity levels on the tooth 
classification task. Section VI provides the conclusion of the 
research work and suggests opportunities for further study. 

II. RELATED WORK 

The core of this research work is to analyze teeth detection 
and classification at multi-granularity levels via FRCNN from 
Granular Intra-Oral Image (GIOI) dataset. Therefore, to get a 
better understanding of the existing research work, this section 
presents a review of related work on the topic of (i) tooth 
classification using deep learning models including Faster R-
CNN, AlexNet, and VGG; and (ii) the effect of multi-
granularity on classification accuracy. 

A. Tooth Classification using Deep Learning Models 

In the context of deep learning, this study used 
Convolutional Neural Network (CNN).  A CNN is a type of 
Artificial Neural Network (ANN) that is commonly used in 
Deep learning for image, text, object recognition, and 
classification. CNNs have been widely used in computer vision 
tasks such as object detection, face recognition, and image 
segmentation [17]. They have also been applied in other 
domains, such as natural language processing and dentistry. 

In an automated diagnostic procedure, classifying teeth is a 
crucial task. Researchers have examined the classification task 
using a small sample of tooth periapical pictures; one such 
study was carried out by Zhang et al. [18] employed a cascade 
network structure for the automated identification of 32 teeth 
positions. Their approach utilized multiple CNNs as the 
fundamental modules and achieved an F1-Score, precision, and 
recall of 80.4, 80.3, and 80.6, respectively. Oktay [19] 
introduced a CNN-based method for tooth detection in dental 
panoramic X-ray images. The approach accurately determines 
the potential positions of three tooth types (incisors, premolars, 
and molars), achieving a remarkable accuracy level of over 
0.92. Similarly to this, Miki et al. [13] used 52 CBCT images 
to categorize teeth into seven types based on their location. 
AlexNet was employed as the CNN structure in this study, and 
it achieved a classification accuracy of 88.8%. In research on 
automated detection and labeling of 2D teeth, Zhang et al. [18] 
and Chen et al. [20] used CNN to identify teeth in periapical 
radiographs, and experimental findings indicated that their 
precision rates were 95% and 90% respectively. These findings 
ensured the importance of deep learning models such as 
AlexNet [13] [19] and VGG [18] in achieving accurate and 
efficient detection for automated dental charting and proper 
surgical and treatment planning. 

Another model based on GoogleNet, a fully convolutional 
network (FCN) was proposed to detect teeth by Muramatsu et 
al. [21]. The classification of teeth by type (i.e., incisors, 
canines, premolars, and molar) and tooth condition was 
performed using a ResNet-50-based pre-trained network. 
Görürgöz et al. [22] applied transfer learning with a pre-trained 
GoogLeNet Inception v3 CNN and developed an algorithm 
consisting of jaw classification, region detection, and final 
classification models. The proposed algorithm achieved an F1 
score, precision, and sensitivity of 0.8720, 0.7812, and 0.9867, 
respectively. These findings demonstrate the potential of CNN 
algorithms for efficient and precise tooth detection and 
numbering in dental imaging, which could lead to more 
reliable diagnoses and treatments. 
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These studies show that CNN models are trained on a large 
dataset of dental images, where each image is labeled with the 
coordinates or bounding boxes representing the location of 
each tooth. CNN learns to recognize patterns and features that 
differentiate teeth from the background and other structures in 
the image [23]. It's important to note that different studies 
proposed specific modifications or variations of CNN 
architectures to optimize tooth detection and classification 
performance such as AlexNet, Faster R-CNN, GoogLeNet, 
RCNN, and ResNet. 

Tooth detection and classification using Faster R-CNN 
(Faster Region-based Convolutional Neural Network) [24] is 
an area of research that focuses on automating the process of 
identifying and categorizing teeth in dental images. The 
effectiveness of Faster R-CNN in tooth numbering and 
identifying dental cavities on oral radiographs was studied by 
Tuzoff et al. [25]. They used the Faster R-CNN architecture for 
teeth detection using 1,352 adult panoramic radiographs. A 
two-stage system was proposed, in which faster R-CNN is used 
to detect the teeth followed by a VGG-16 network to identify 
and number. Nonetheless, the study encountered 
misclassification errors resulting from similarities between 
adjacent teeth. Chen et al. [20] suggested employing Faster R-
CNN for tooth detection and recognition in dental periapical 
films. The test dataset demonstrated precision and recall values 
of over 90%. However, the study faced challenges due to 
complications such as missing teeth and root canal treatments 
in the images from regular clinical work. Mahdi et al. [26] 
presented an automatic teeth recognition model that leverages 
the Faster R-CNN technique based on the residual network. 
This model represents a significant step forward in dental 
image analysis, achieving impressive results with high mean 
Average Precision (mAP) scores of 0.974 and 0.981 for 
ResNet-50 and ResNet-101, respectively. In a similar vein, 
Bilgir et al. [27] developed a Faster R-CNN model that 
automated tooth numbering over a dataset of 2,482 panoramic 
radiographs with a precision of 0.96. Estai et al. [28] proposed 
a three-step method for automatically detecting and counting 
teeth in digital orthopantomography (OPG) pictures. They used 
U-Net, Faster R-CNN, and VGG-16 CNN models. The results 
showed that it had a high recall and precision score of 0.99 for 
tooth detection and 0.98 for tooth numbering, indicating its 
potential importance in general dentistry and forensic medicine 
applications. 

It is concluded that Faster R-CNN is sensitive to objects 
with missing features i.e., broken tooth [20], overlapping [29], 
occlusion [25], blur, and noise [30]. These issues distort the 
fine details of the tooth [26] [31]. This leads to low 
classification accuracy [32] and limits the model‟s 
generalization ability on other imaging modalities or dental 
issues [13]. Despite these issues, there are various advantages 
to using Faster R-CNN for tooth identification and 
classification tasks. It enables exact tooth localization in dental 
pictures while effectively handling size and aspect ratio 
variations [33]. Research has shown that Faster R-CNN 
accurately identifies the position of teeth with a high IOU value 
[20]. The model exhibits significant potential in dental image 
processing tasks, assisting in dental diagnosis, treatment 

planning, and various other applications within the dental field 
[34]. 

B. Effect of Multi-Granularity on Classification Tasks 

The ability to analyze or portray data at numerous levels of 
detail or abstraction is referred to as multi-granularity. Multi-
granularity is important for a range of applications since it 
provides for more nuanced and flexible data processing. It has 
been the focus of recent studies in fields such as scene 
classification [35], land change detection [36], and brain image 
analysis [37]. This section reviews relevant research on the role 
of granularity in various classification problems. 

Several researchers have recently investigated the use of 
multi-granularity in medical image classification, employing a 
range of approaches and techniques. Within these 
investigations, Wu et al. [38] focused their research on lung 
nodule classification. Their study evaluated a novel approach 
using a publicly available lung nodule dataset, and the results 
demonstrated that employing the multi-granularity approach 
resulted in enhanced classification accuracy. In addition, Wang 
et al. [39] provided a unique method for producing generalized 
visual representations for medical images using multi-
granularity cross-modal alignment. To assess the effectiveness 
of their approach, they used a variety of medical imaging 
datasets, including chest X-rays and mammograms. The results 
showed that the proposed model outperformed existing 
methods in a variety of classification and retrieval tasks, 
highlighting the effectiveness of multi-granularity cross-modal 
alignment in acquiring comprehensive visual representations 
for medical images. Wang et al. [36] suggested a multi-
granularity framework for extracting latent ontologies from 
remote sensing datasets, which they tested in six different 
scenarios. The results showed that combining three granularity 
levels produced the best results, with the second level of 
granularity providing the highest accuracy. On the other hand, 
the third level of granularity exhibited comparatively lower 
accuracy. Furthermore, the study highlighted that fine-scale 
cropping increased classification accuracy whereas excessive 
cropping degraded performance. Additionally, Zuo et al. [40] 
presented an innovative method for fine-grained crop disease 
classification that combines multi-granularity feature 
aggregation with self-attention and spatial reasoning to 
improve accuracy. The evaluation outcomes showcase the 
effectiveness of incorporating multi-granularity feature 
aggregation, self-attention, and spatial reasoning in the field of 
fine-grained crop disease classification. 

In the past few years, significant progress has been made in 
deep learning-based image classification and object re-
identification. For instance, Ouyang et al. [41] introduced a 
hybrid methodology that merges a CNN with a modified 
capsule network for remote sensing image classification. Their 
model incorporated spatial-spectral attention and multi-
granularity features, allowing it to effectively capture precise 
spatial and spectral information. Likewise, Tu et al. [42] 
introduced the Multi-granularity Mutual Learning Network 
(MMNet) for object re-identification. The MMNet integrates 
multiple modules to effectively learn distinctive features across 
varying visual granularities. By capturing diverse 
discriminative local features from multiple granularities, the 
MMNet demonstrated superior performance compared to 
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previous approaches. Wu et al. [43] presented a CNN-based 
image classification approach that takes advantage of multi-
granularity features.  The fundamental goal of this research is 
to incorporate the concept of hierarchical structure 
categorization and to investigate the incorporation of 
granularity computing theory in deep learning. The 
experimental findings revealed the enhanced model's 
usefulness, with higher image classification accuracy and 
superior generalization capabilities. Chen et al. [44] 
investigated the impact of label granularity on CNN 
classification performance.  Experiments on several datasets 
revealed that training with fine-grained labels improved the 
accuracy of classifying coarse-grained classes, in contrast to 
training with coarse-grained labels. According to their 
research, while training a CNN for natural images, using fine-
grained labels outperforms using coarse-grained labels from 
the same dataset. The utilization of fine-grained labels enables 
the network to learn more intricate and specific features. Zhu et 
al. [45] introduced a novel methodology for few-shot learning 
that incorporates multi-granularity techniques. The proposed 
approach was tested on many few-shot learning datasets, 
including CIFAR-FS and mini-ImageNet. The outcomes 
substantiated the efficacy of multi-granularity episodic 
contrastive learning in the context of few-shot learning. 

The presented review identifies that granularity level 
classification leads to improvement in computational 
efficiency, adaptation capability (even if shallow models and 
the small dataset is used), and extracting fine-grained feature 
[43]. Additionally, the multi-granularity technique is less prone 
to overfitting when compared to deep networks and offers 
better generalization and increased classification accuracy [46] 
[44] [43]. However, despite these benefits, granular-level 
classification studies in the domain of tooth classification are 
seldom seen and its relevance in this domain needs to be 
explored. 

III. PROPOSED METHODOLOGY 

This section introduces the methodology used to achieve 
the main aim of this study which is to analyze the effect of 
teeth detection and classification at multi-granularity levels 
using FRCNN. The overview of the proposed method to detect 
teeth at multi-granularity levels using FRCNN is presented in 
Fig. 1. The detection pipelines as shown in Fig. 1 perform four 
essential steps: data collection, data pre-processing, modeling 
detection, and finally providing results and discussion. 

The following subsections will provide the details of data 
collection and pre-processing criteria including inclusion and 
exclusion criteria, ground truth marking scheme and 
consequent labeling procedure, and identification and 
implementation of label-preserving data augmentation 
methods. Additionally, the proposed CNN model and model 
evaluation will be introduced: 

A. Dataset Preparation 

A significant challenge in the advancement and practical 

adoption of DL models lies in acquiring adequately large, 

curated, and representative training data, along with expert 

annotations. In this section, the fundamental steps for 

preparing a dental imaging dataset for addressing the issue of 

tooth classification in Intra-Oral imaging using deep learning 

models are described. 

1) Data acquisition: With the absence of a publicly 

available dataset, this study proposes the GIOI dataset that 

offers three teeth classification granularity levels as shown in 

Fig. 2, i.e., Two Classes of Granularity Level (2CGL) of 

maxilla and mandible; Four Classes of Granularity Level 

(4CGL) of incisor, canine, premolar, and molar; and Seven 

Classes Granularity Level (7CGL) of teeth numbering In the 

proposed GIOI dataset development phase, the Advanced 

Medical and Dental Institute at University Sains Malaysia 

(USM) and University Technology PETRONAS (UTP) have 

collaborated to develop the GIOI dataset. These images 

represent subjects from different age groups and genders. The 

images are also captured at different distances and 

illumination levels to present rich feature diversity. 

2) Data Pre-Processing: The first stage in pre-processing 

was to filter the dataset by setting the inclusion and exclusion 

criteria. The images were visually analyzed, and the images 

containing gum or cavity diseases are extracted. Additionally, 

images having missing teeth or wisdom teeth are also 

excluded. Table I and Table II display the inclusion and 

exclusion criteria that were used for the data pre-processing. 

 

Fig. 1. Overview of the proposed tooth detection model. 

 

Fig. 2. Teeth classification granularity levels in the GIOI. 

TABLE I.  INCLUSION CRITERIA 

Inclusion Criteria 

Adults between 18-50 ages were included. 
Both male and female. 

Stained teeth. 

Different orientations (left, right, upper, lower). 
The gap between teeth. 
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TABLE II.  EXCLUSION CRITERIA 

Exclusion Criteria 

Crowded tooth. 
Wisdom tooth. 

Missing and broken tooth. 

Tongue. 
The tooth has braces. 

Teeth have gum or cavity diseases. 

The GIOI dataset contained 550 images and seven-tooth 
classes (Central Incisor, Lateral Incisor, Canine, 1st Premolar, 
2nd Premolar, 1st molar, 2nd molar). The current study used 
the ISO standard tooth numbering system to identify each tooth 
with a unique label [7]. The VGG Image Annotator (VIA) [47] 
web application has been used for annotating and labeling the 
training set samples. VIA is an open-source software that 
allows human annotators to define and describe regions in an 
image. 

3) Data augmentation: the data set contained unequal 

samples, that is, the number of different types of samples was 

different. To enhance the dataset, data augmentation was used 

as an option [48]. Data augmentation effectively expands the 

dataset size and quality. The effectiveness of data 

augmentation for dental image augmentation was assessed by 

including image mixing, geometric transformation, 

transforms, and kernel filters [49]. As a result, 2,260 

augmented images were acquired for training. Table III 

contains the specifics of this assessment. 

TABLE III.  DATA AUGMENTATION METHODS FOR DENTAL IMAGES 

Type of 

Augmentation 

Post Augmentation 

Observation 

Label 

Preservation 

Selection 

Status 

Vertical flip Tooth visual attributes 
do not remain intact. 

No Rejected 

Horizontal flip Tooth visual attributes 

remain intact. 

Yes Selected 

ChannelShuffle Resulting in an image 
that is not a true 

representative of a real-

world scenario. 

No Rejected 

Brightness and 
contrast 

Introduces a wide range 
of illuminations. 

Yes Selected 

Noise injection Improves the model‟s 

generalization ability 

Yes Selected 

Cropping This may result in the 

loss of distinguishable 

tooth features 

No Rejected 

Motion blur Simulates the possible 
sudden motion of the 

optical sensor/subject in 

a real-world scenario. 

Yes Selected 

RandomGridShuffle Tooth visual attributes 

do not remain intact. 

No Rejected 

Histogram 

equalization 

Improves the image‟s 

contrast level. 

Yes Selected 

image compression This keeps the 

resolution of an image 

Yes Selected 

B. Model Architecture 

In this paper, the Faster R-CNN architecture is supported 
by three types of ResNet [50] network: ResNet-50, ResNet-
101, and ResNet-152 as backbone models. Fig. 3 shows the 
FR-CNN-ResNet model. The first phase of the model includes 

the backbone models that generate the feature map. The second 
phase is the region proposal network (RPN), for identifying 
areas of an input image that most likely contain a region of 
interest. The last phase includes the detection network. The 
RPN generates region proposals (bounding boxes) for potential 
objects in an image, while the detection network classifies the 
proposals and refines their bounding boxes. The RPN is a fully 
convolutional network that is trained to predict abjectness 
scores and bounding box offsets at each position in an image. It 
uses a sliding window approach to generate region proposals, 
which are then passed to the detection network. When the RPN 
generates a set of candidate regions, each region is represented 
by a fixed-size feature map, which can be of different sizes 
depending on the size of the input image and the region 
proposal. However, the detection network that processes these 
regions requires a fixed-size input to apply convolutional 
layers. 

ROI (Region of Interest) pooling addresses this discrepancy 
by dividing the fixed-size feature map for each region proposal 
into a fixed number of equally sized sub-windows and then 
applying a max pooling operation to each sub-window to 
produce a fixed-size output. The output of the ROI pooling 
operation is a feature map of fixed size that can be fed into the 
detection network. The detection network in Faster R-CNN is 
based on the Fast R-CNN [51] architecture, which consists of 
two main components: a convolutional feature extractor and a 
set of fully connected layers for object classification and 
bounding box regression. It takes the region proposals 
generated by the region proposal network (RPN) as input and 
produces the final object detection results. 

 
Fig. 3. FR-CNN-ResNet model. 

The main activities of the FR-CNN-ResNet algorithm are 
presented in the following nine steps: 

Step 1: The system fed the images to the backbone 
ResNet50, ResNet101, or ResNet101 models. 
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Step 2: The backbone models extract the features from the 
images. 

Step 3: The RPN takes the feature maps as input and 
generates a set of object proposals, which are regions in the 
image that are likely to contain objects. 

Step 4: The proposed regions generated by the RPN in Step 
3 are passed through ROI pooling, which divides the fixed-size 
feature map for each region proposal into a fixed number of 
equally sized sub-windows. 

Step 5: The detection network takes the fixed-size feature 
maps generated in Step 4 by the ROI pooling layer as input and 
produces the final object detection results. 

Step 6: The final output is obtained by applying non-
maximum suppression to remove duplicate predictions and 
keep only the most confident detections. 

C. Model Evaluation and Performance Measures 

Average Precision (AP) [50] is a popular evaluation metric 
for object detection tasks that measures the accuracy of the 
predicted object bounding boxes. AP is calculated based on a 
precision-recall curve that summarizes the trade-off between 
precision and recalls for different object detection thresholds. 
The average precision value is computed for recall values 
ranging from 0 to 1. 

Precision [51] is a performance metric used in object 
detection to measure the proportion of correct positive 
detections out of all the positive detections made by the 
network. Precision measures how accurate the algorithm is in 
detecting objects. The given equation was used to calculate 
precision: 

          
             

                            
 (1) 

Recall [50] is a performance metric used in object detection 
to measure the proportion of actual positive detections out of 
all the positive instances present in the dataset. In other words, 
recall measures how well the algorithm can detect all the 
objects present in the image. The following equation used for 
recall calculation: 

       
             

                            
 (2) 

The F1 score is a performance metric used in object 
detection that combines precision and recalls into a single 
score. The F1 score provides a balanced view of the network's 
accuracy by considering both the number of correct detections 
and the number of missed detections. It is defined by the 
following equation: 

         
                        

                     
 (3) 

IV. RESULTS AND DISCUSSION 

The presented study evaluates the effect of granularity on 
tooth detection and classification using FR-CNN-ResNet 
models. The GIOI dataset, consisting of three teeth 
classification granularity levels, is considered in testing the 
proposed FR-CNN-ResNet model.  The total number of epochs 
was set as 100 for all different backbone ResNet models. The 

batch size for all Faster R-CNN backbone models was set as 2. 
In addition, two learning rate values were used, i.e., 0.001 and 
0.0001. This section presents the experimental results for all 
three classification granularity levels separately. 

A. Case 1: Two Classes Granularity Level (2CGL) 

1) The two classes' granularity level (2CGL) consists of 

two tooth classes i.e.: upper and lower. A total of 2,260 

images containing 2078 upper and 1956 lower were used to 

train the models in seven different experiments. A total of 107 

images are used to test the models. It has been identified that 

the lower learning rate during training of Faster RCNN 

variants resulted in lower mean average precision during the 

testing of all such models. This indicates the unsuitability of a 

smaller learning rate for 2CGL tooth classification. For all F-

RCNN variants, the optimal accuracy was achieved using a 

constant learning rate of 0.001. 

As depicted in Fig. 4, the highest average precision of 0.95 
and 0.93 for the upper and lower tooth, respectively, is 
achieved by the FR-CNN-ResNet-50. With FR-CNN-ResNet-
101, the average precision for upper and lower teeth is 
observed to be the lowest among all types of FR-CNN models. 
With a deeper backbone, i.e., ResNet-152, no significant 
improvement is observed by the FR-CNN-ResNet-152 model 
in the average precision of target classes. This performance 
indicates that at 2CGL, the FR-CNN-ResNet-50 model is the 
best choice. Similarly, the highest mAP of 0.94 was achieved 
by FR-CNN-ResNet-50.  The lowest mAP of 0.742 is yielded 
by the FR-CNN-ResNet-101 model trained on a lower learning 
rate. This confirms that a lower learning rate and deeper 
backbones are not optimal for optimal classification at the 
2CGL level. 

The model exhibited FR-CNN-ResNet-50 achieves a 
competitive and high mAP of 0.94. As presented in Table IV, 
the model also exhibited perfect or near-to-perfect recalls for 
upper and lower teeth classification results. Additionally, the 
best F1 scores for upper and lower teeth classification are equal 
to 0.96 and 0.94 for the FR-CNN-ResNet-50 model. This 
performance indicates that this model for 2CGL is ideal as it is 
trained quickly and generates very competitive results 
compared to other models. 

 
Fig. 4. 2CGL average precision comparison of the models. 
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TABLE IV.  2CGL AVERAGE PRECISION, RECALL, AND F1 SCORES FOR 

EACH MODEL 

 AP Recall F1-Score 
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Upper 0.95 0.89 0.90 0.97 0.92 0.93 0.96 0.90 0.92 

Lower 0.93 0.81 0.81 0.96 0.85 0.86 0.94 0.83 0.83 

Overall, the average precision of upper teeth remains higher 
as compared to lower teeth. This can be attributed to labeling 
precision as naturally lower teeth are occluded by upper teeth. 
For this reason, the bounded boxes for upper teeth are more 
precise as compared to lower teeth as it contains some part of 
upper teeth. FR-CNN-ResNet is generally good at detecting 
large objects because it uses region proposals to identify 
potential object locations and then applies a classifier to each 
region proposal to determine the presence and location of an 
object. The RPN in FR-CNN-ResNet generates region 
proposals by sliding a small network over the convolutional 
feature map output by the backbone network. The size of the 
sliding window is fixed, and the stride can be adjusted to 
control the region proposal density. Because of this 
mechanism, FR-CNN-ResNet can effectively detect large 
objects but may struggle with detecting small objects due to the 
limitations of the region proposal mechanism. 

B. Case 2: Four Classes Granularity Level (4CGL) 

1) This section presents the results of the granular level 

two (4CGL) classification, which consists of four classes, i.e., 

Incisor, Canine, Premolar, and Molar. A total of 2,260 images 

containing 4091 incisors, 8138 canines, 7940 premolars, and 

6564 molars were used to train the models in seven different 

experiments and 107 images were used for testing.  Within 

FR-CNN-ResNet models, the learning rate again played an 

important role. With a lower learning rate, i.e., 0.0001, mAP 

remained low, as compared to the mAP of the model trained 

with a higher learning rate of 0.001. 

As presented in Fig. 5, the highest average precision (AP) 
of 0.849 is produced by the FR-CNN-ResNet-50 model for the 
incisor tooth class, followed by the Canine, Premolar, and 
Molar tooth class which achieved an AP of 0.82, 0.73 and 0.58 
respectively. The following factors contribute to higher average 
precision for incisor class, (i) no occlusion, (ii) large size, and 
(iii) high illumination. As discussed in Table V, the FR-CNN-
ResNet-50 model also has the highest recall and F1 values for 
all classes. This result also concludes that FR-CNN-ResNet-50 
is less sensitive to occlusion, object size, and low illumination. 

As shown in Table V, the highest mAP of 0.74 was 
observed by FR-CNN-ResNet-50. The other models are 
significantly behind where FR-CNN-ResNet-101 and FR-
CNN-ResNet-152 achieved mAP of 0.71 and 0.63, 
respectively. This result indicates that for 4CGL, FR-CNN-
ResNet-50 is the best model among the three for teeth 
classification and detection. 

 
Fig. 5. 4CGL average precision comparison of the models. 

TABLE V.  4CGL AVERAGE PRECISION, RECALL, AND F1 SCORES FOR 

EACH MODEL 

 AP Recall F1 
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These results conclude that by using a pre-trained ResNet-
50 as the backbone network, the Faster R-CNN model can 
leverage the high-level features learned by ResNet-50 to 
accurately classify medical images. Moreover, the ResNet-50 
architecture has a deep network structure that allows it to learn 
complex features in medical images, including subtle 
differences between images that may be indicative of different 
conditions or diseases. This makes it particularly effective in 
medical image classification tasks where subtle differences can 
be critical in diagnosing a disease. However, the choice of 
backbone architecture depends on the specific task and dataset, 
and other backbones such as ResNet-101 or ResNet-152 may 
perform better in some scenarios. 

C. Case 3: Seven Classes Granularity Level (7CGL) 

This section presents the results of the Seven Classes 
Granularity Level (7CGL) classification, which consists of 
seven classes, i.e., Central Incisor, Lateral Incisor, Canine, 1st 
Premolar, 2nd Premolar,1st molar, and 2nd molar. This level of 
granularity creates three major issues, (i) objects with low 
illumination conditions, (ii) large variation in object size, and 
(iii) class imbalance. A total of 2,260 images were used to train 
the models in seven different experiments, and 107 images 
were used for testing. Within FR-CNN models, the learning 
rate again played an important role. With a lower learning rate, 
i.e., 0.0001, mAP remained low, compared to the mAP of the 
model trained on a higher learning rate of 0.001. 
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Fig. 6. 7CGL average precision comparison of the models. 

A comparative performance analysis is presented in Fig. 6 
which highlights that the performance of all models decreases 
as the target tooth is further away from the central position. 
However, in all performance measures, FR-CNN-ResNet-50 
remains the best-performing model. 

As presented in Table VI, the average precision for all 
models gradually decreased as tooth location moved from front 
to behind. Overall, FR-CNN-ResNet-101 yielded the lowest 
average precision score, while FR-CNN-ResNet-50 again 
emerged as the top-performing model. FR-CNN-ResNet-50 
recall values also remained high for the central incisor and 
lateral incisor. The model produced a perfect recall value. 
Considering the F1 scores of all three models, it is again 
evident that at the 7CGL level, FR-CNN-ResNet-50 has the 

highest F1 scores for all seven classes. However, the model's 
performance significantly decreased for smaller and occluded 
teeth such as 2nd Premolar, 1st Molar, and 2nd Molar. 

Overall mAP of FR-CNN-ResNet-50 remained highest at 
0.69, followed by FR-CNN ResNet-101 and FR-CNN ResNet-
50 with mAP of 0.55 and 0.62, respectively. One possible 
reason for the low mAP of FRCNN can be attributed to its 
limitation with detecting small objects, especially if large 
objects surround them, as the region proposal network may 
overlook. 

FR-CNN-ResNet, like many object detection models, can 
struggle to detect small objects as the size of the RPN anchors, 
which are the pre-defined boxes used to search for objects in an 
image, may be too large relative to the size of the small objects 
being searched for. This means that the RPN may fail to 
generate proposals that accurately localize small objects. In the 
case of occluded objects, the RPN may still generate proposals 
that partially or completely overlap with the occluded object, 
allowing the CNN to classify and localize the object within the 
proposal. However, the accuracy of object detection for 
occluded objects may still be affected by the extent of 
occlusion and the quality of the proposals generated by the 
RPN. In the case of objects with low illumination, the features 
extracted from the image may be less informative due to 
reduced contrast and detail in the image. This can make it more 
difficult for the model to distinguish the object from the 
background or other objects in the scene. 

TABLE VI.  7CGL AVERAGE PRECISION, RECALL, AND F1 SCORES FOR EACH MODEL 

 AP Recall F1-Score 

7CGL Classes 
FR-CNN-

ResNet-50 

FR-CNN-

ResNet-101 

FR-CNN-

ResNet-152 

FR-CNN-

ResNet-50 

FR-CNN-

ResNet-101 

FR-CNN-

ResNet-152 

FR-CNN-

ResNet-50 

FR-CNN-

ResNet-101 

FR-CNN-

ResNet-152 

Central Incisor 0.84 0.77 0.82 0.87 0.83 0.85 0.85 0.80 0.84 

Lateral Incisor 0.81 0.73 0.76 0.86 0.81 0.82 0.84 0.77 0.79 

Canine 0.80 0.72 0.76 0.85 0.79 0.81 0.82 0.75 0.78 

1st Premolar 0.72 0.59 0.65 0.79 0.69 0.73 0.75 0.63 0.69 

2nd Premolar 0.64 0.39 0.51 0.73 0.54 0.62 0.68 0.45 0.56 

1st Molar 0.57 0.36 0.45 0.69 0.47 0.57 0.63 0.41 0.50 

2nd Molar 0.49 0.30 0.38 0.61 0.42 0.50 0.54 0.35 0.43 

V. ANALYSIS OF THE EFFECT OF GRANULARITY LEVELS ON 

TOOTH CLASSIFICATION TASK 

In this study, three different models of FR-CNN ResNet 
were implemented for three granularity level cases named 
2CGL, 4CGL, and 7CGL to demonstrate the influence of using 
different granularities in tooth classification. For all FR-CNN 
variants, the optimal performance is achieved using a constant 
learning rate of 0.001. Within the FR-CNN-ResNet models, the 
learning rate played an important role in which, with a lower 
learning rate, i.e., 0.0001, mAP remained low, as compared to 
the mAP of models trained on a higher learning rate of 0.001. 
This result confirms that a lower learning rate and deeper 
backbones are not optimal for classification at 2CGL, 4CGL, 
and 7CGL cases. 

For an individual granularity level, the first granularity 
level achieves the best classification accuracy while the third is 

the least accurate. The best improvement can be observed in 
the 2CGL with the FR-CNN-ResNet-50 model, where the 
mAP result is 0.94 better than FR-CNN-ResNet-101, which 
achieved the lowest mAP of 0.85. And FR-CNN-ResNet-50 
model remained significantly higher than other models in 
4CGL, which achieved an mAP of 0.74. For 7CGL, the 
performance of all models decreases as the target tooth is 
further away from the central position. Overall, FR-CNN-
ResNet-101 yielded the lowest average precision score, while 
FR-CNN-ResNet-50 again emerged as the top-performing 
model by achieving an mAP of 0.69. 

These results indicate that with the largest granularity level 
as shown in 2CGL and 4CGL, the tooth structure and the tooth 
features are clear. Therefore, FR-CNN-ResNet has the strong 
ability to exploit features such as shape and texture features. 
The following factors contribute to higher average precision 
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for 2CGL and 4CGL, (i) no occlusion, (ii) large size, and (iii) 
high illumination. As the level of drowsiness becomes more 
detailed in 7CGL, it becomes increasingly difficult to achieve a 
high level of precision in detecting and classifying teeth due to 
the intricate structure of teeth [52] [53]. Furthermore, it is 
difficult for FR-CNN-ResNet to identify objects from low-
resolution images as the features extracted from the image may 
be less informative due to reduced contrast and detail in the 
image [53]. This can make it more difficult for the model to 
distinguish the object from the background or other objects in 
the scene [21]. FR-CNN-ResNet can learn and recognize 
features of objects even when they are partially occluded, due 
to the use of shared convolutional layers that extract features 
from different parts of the image [54] [55]. However, the 
accuracy of object detection for occluded objects may still be 
affected by the extent of occlusion and the quality of the 
proposals generated by the RPN [54]. 

VI. CONCLUSION 

The automatic detection and classification of teeth in intra-
oral dental images are crucial for medical treatment and 
forensic identification. However, due to the complexity of the 
problem and limitations in the size of available data, this task 
remains challenging. To overcome such challenges, this paper 
investigates the intriguing problem that how granularity 
impacts the performance of CNN-based object detection and 
classification models. A Faster Region-Convolutional Neural 
Network based on ResNet models is proposed for teeth 
detection and classification at multi-granularity levels from the 
GIOI dataset. Three different ResNet backbones, i.e., ResNet-
50, Res-Net101, and ResNet-152 were evaluated. The 
evaluation results showed that the proposed FR-CNN-ResNet 
model is appropriate for teeth classification at three granular 
levels named, 2CGL, 4CGL, and 7CGL. Additionally, it was 
revealed that the FR-CNN-ResNet-50 performed better than 
the FR-CNN-ResNet-101 and FR-CNN-ResNet-152 at each of 
the three granular levels, where the FR-CNN-ResNet-50 
achieved mAP of 0.94, 0.74 and 0.69 at 2CGL, 4CGL, and 
7CGL respectively. Overall, it is concluded that multi-granular 
approaches in intra-oral dental image analysis have the 
potential to capture significant details and improve the 
accuracy of automated detection and classification tasks, which 
can aid in medical treatment and forensic identification. 

As a practical implementation, the integration of Faster R-
CNN with additional networks will extend its capabilities 
beyond tooth detection and numbering. It will enable 
predictions regarding the presence of various dental conditions, 
including orthodontic issues, tooth fillings, and the overall 
assessment of dental health to facilitate the patient and dentist. 

This study has two known limitations which will be 
addressed in future work. Firstly, for deep learning methods, 
large-curated datasets will be used to further improve the 
performance parameters. Secondly, only a few cases of the 3rd 
molar tooth class were identified during the dataset generation 
procedure, thus resulting in removing the 3rd molar class. 
Further in the future, a yolo-based model will be proposed to 
preserve topological information and the precise spatial 
location of pixels for each tooth. 
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