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Abstract—Usually, identifying dynamic parameters for robots 

involves utilizing the Inverse Dynamic Model (IDM) which is 

linear in relation to the parameters being identified, alongside 

Linear Least Squares (LLS) methods. To implement this 

approach, precise measurements of both torque and position 

must be obtained at a high frequency. Additionally, velocities and 

accelerations must be estimated by implementing a band-pass 

filtering technique on the position data. Given the presence of 

noise in the observation matrix and the closed-loop nature of the 

identification process, we have modified the Instrumental 

Variable (IV) method to address the issue of noisy observations. 

A novel identification technique, named (Direct and Inverse 

Dynamic Identification Model) DIDIM, which requires only 

torque measurements as input variables, has recently been 

successfully applied to a 6-degree-of-freedom industrial robot. 

DIDIM employs a closed-loop output error approach that utilizes 

closed-loop simulations of the robot. The experimental results 

reveal that the IV and DIDIM methods exhibit numerical 

equivalence. In this paper, we conduct a comparison of these two 

methods using a double step least squares (2SLS) analysis. We 

experimentally validate this study using a 2-degree-of-freedom 

planar robot. 

Keywords—Identification; double least squares; instrumental 

variable; DIDIM method; robotics dynamics 

I. INTRODUCTION 

The identification process for robots usually relies on the 
use of the inverse dynamic model and linear least squares 
methods. To create an overdetermined system, the IDM is 
sampled during the robot's motion with exciting trajectories. 
This technique has proven successful in identifying many 
robots and prototypes [1], [2], [3]. However, it requires precise 
measurements of joint positions and torques at a high sampling 
frequency (above 100Hz). Moreover, the identification is done 
in closed-loop due to the unstable nature of the double 
integrator, resulting in a noisy observation matrix. 
Consequently, in theory, the LLS estimator can present a bias 
[4]. 

To tackle this problem, we have adjusted the instrumental 
variable (IV) technique [5], taking inspiration from Hugues 
Garnier's team's research [6], [7], [8]. Recently, a new 
identification method was introduced and validated on a 2-
degree-of-freedom robot [9]. This approach only requires joint 
torques as input parameters. The robot is simulated in closed 
loop, assuming the same control structure and exciting 
trajectories. The best-fit parameters minimize the squared 
difference between the simulated and measured torques. 
Experimental findings indicate that the results from the IV 

method match numerically with those from the DIDIM 
method, indicating a strong connection between the two 
approaches. 

The objective of this paper is to compare the methods using 
the double least squares technique and to experience the 
method of DIDIM with IV if it is perfect to our robot or not. 
The paper is organized as follows: Section II covers the 
modeling and identification of robots, Section III presents the 
identified prototype, Section IV explains the IV and DIDIM 
methods, Section V discusses the double least squares method, 
and finally, Section VI analyzes the results of the experiments. 

II. MODELING AND IDENTIFICATION OF ROBOTS 

A. Modelisation 

The expression for the inverse dynamic model of a robot 
with n degrees of freedom is given as [10]: 

idm
τ =M(θ)θ+N(θ,θ)

                 (1) 

Where θ represents the (n x 1) vector of joint positions,  ̇ 

and  ̈  are its temporal derivatives, τidm denotes the (n x 1) 
vector of joint torques, M(θ) stands for the (n x n) symmetric 

inertia matrix, and N(θ,  ̇) ɺ represents the (n x 1) vector that 
combines centrifugal, Coriolis, gravitational, and friction 
forces. By employing the modified Denavit and Hartenberg 
geometric description (DHM), we can derive a linear inverse 
dynamic model in terms of standard dynamic parameters [10]: 

idm STD STD
τ =IDM (θ,θ,θ)χ                     (2) 

IDMSTD(θ, ̇, ̈) represents the standard linear regressor of 
size (n x c), where χSTD is the c x 1 column vector of standard 
dynamic parameters. These parameters include the inertia 

tensor coefficients XXj, XYj, XZj, YYj, YZj, ZZj of body 
j

jJ , 

its mass denoted mj, the first moment vector around the origin 

of body j denoted 
j

jM , = [MXj MYj MZj], the Coulomb and 

viscous friction parameters denoted respectively as Fsj and Fvj, 
and the actuator inertia Iaj. 

One crucial stage in the identification process is to identify 
the basic parameters. This is because some standard parameters 
combine in the inverse dynamic model's expression, and only 
their combination or grouping can be identified. The search for 
basic parameters involves determining the rank of IDMSTD and 
identifying linear combinations among its columns. Two 
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primary methods can be used to calculate the minimum inertial 
parameters: a literal method that involves energy calculations 
[10] and a numerical method based on QR decomposition [11]. 

The general relation for the minimal system is as follows: 

( , , )
idm

IDM                       (3) 

IDM (θ, ̇, ̈) is the minimal linear regressor of dimension n 
x b, where χ is the column vector of base parameters of 
dimension (b x 1). However, due to noise and model errors, the 
actual torque τ deviates from τidm and can be expressed as: 

( , ,e
idm

IDM e       )        (4) 

B. Identification 

The inverse dynamic model is sampled while the robot is 
being actuated to obtain an overdetermined system, which can 
be expressed as [12]: 

Y(τ)=W(θ,θ,θ)χ+ρ                   (5) 

Or: 
   ...

T
T T 

  

1 n
Y (τ) Y (τ)Y(τ) =

, ... ( )(1)
T

j j ne  
  

j
Y (τ) =  

 
 
 
 
  

1

n

W

...

W

W(θ,θ,θ) =

, 

1 2 3( , , )

( , , )ne ne ne

  

  

 
 
 
 
  

j

j

j

IDM

...

IDM

W =

 

Y(τ) is the measurement vector with a dimension of (r x 1), 
and W is the observation matrix with a dimension of (r x b), 
where r= nexn, and ne is the number of recovered samples. 

The estimation theory provides a broad range of methods. 
Classical methods can be employed to solve overdetermined 
systems, as long as the elements of W are handled 
appropriately to obtain good results. 

2

ˆ
ˆ min


                              (6) 

Since we are considering both base parameters and exciting 
trajectories, W has a maximum rank, leading to an explicit and 

unique solution for  . 

 
-1

T T
χ̂= W W W Y=W+Y
 
 
 

           (7) 

In practice, the identified values are estimated with their 
standard deviation by assuming that W is deterministic and that 
ρ is a centered random vector with independent components, 
standard deviation σρ, and covariance matrix Cρ given by: 

  2

r

T
IEC                        (8) 

where, Ir is the r-dimensional identity matrix. Assuming 
that the error vector is centered and has independent 
components with equal variances, the standard deviation σρ can 
be calculated using the following unbiased estimator: 

22
ˆ /( )Y W r b                       (9) 

The expression for the covariance matrix of the estimation 
error is: 

2 1

ˆ ( )TC W W 


                           (10) 

We deduce the standard deviation: 


χ

j

= C (j, j)
χ

                             (11) 

The relative standard deviation is estimated by: 

jχ̂ j
jr%

σ =
χ

ˆ100σ / χ                         (12) 

While [13] has used this interpretation, it should be 
approached with caution in our case as the assumption of a 
deterministic W is not satisfied. The proposed model is not 
perfect, and the measurements are noisy, requiring 
preprocessing. 

Although this criterion can be used to evaluate the quality 
of identification, the fact that W is not deterministic, and the 
experimental data is noisy poses a challenge. To overcome this, 
[13] suggests filtering both Y and the columns of W. 

C. Conclusion 

The LLS approach is particularly advantageous because it 
avoids the need to integrate a differential system and eliminates 
issues with initial conditions. However, calculating velocities 
and accelerations via bandpass filtering of position is required. 
Lastly, the direct dynamic model (DDM) provided below must 
be validated through post-simulation. 

M(θ)θ=τ-N(θ,θ)                        (13) 

Given that M(q) is a positive definite square matrix, the 
accelerations can be expressed as: 

-1
θ=M (θ)(τ-N(θ,θ))                 (14) 

III. METHOD IV AND DIDIM 

A. Method IV 

The statistical assumptions necessary for the LLS estimator 
to work efficiently are not met in practical applications. 
Equation (5) involves constructing the observation matrix W 
using joint positions θ, as well as numerically computed 

derivatives  ̇  and  ̈ , making W noisy. Additionally, the 
identification process is performed in a closed loop, further 
violating the assumptions. As a result, the LLS estimator may 
be inconsistent. 

The IV method addresses this issue [5]. By constructing an 
instrumental matrix V, the IV method proposes a consistent 
estimator that satisfies: 

T T T T ˆV V V Viv ivY W W               (15) 

The solution in the sense of the instrumental variable is: 

T 1 Tˆ =(V ) Viv W Y                         (16) 
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Later on, V is computed as a function of   k
 (since only 

the IV method is discussed in this subsection, we use   k
 

instead of   iv
k
 as there is no ambiguity). This defines an 

iterative procedure as follows: 

1 T 1 T

k k
ˆ =(V ) Vk W Y                        (17) 

where, 

ˆ( )k

kV V                                   (18) 

Given that Vk
T
 W matrix is invertible, the following 

assumptions are made: 

lim( / )T

k
m

V W m


                               (19) 

lim( / ) ( )T T

k iv k iv
m

V m E V 


                  (20) 

Each value of  k
 converges to  with m, where m 

denotes the number of repetitions of W and ρiv. 

One of the primary challenges is to determine an 
instrumental matrix V. One possible solution involves 
constructing an observation matrix using simulated data rather 
than measured data. These simulated data, known as 
instruments, are the outputs of an auxiliary system that 
approximates the noise-free model of the system to be 
identified [6][8]. In robotics, this auxiliary model is the robot's 
DDM, given by equation (13) [14]. The IV method adapted for 
identifying a robot's dynamics can be outlined by the following 
algorithm, as illustrated in Fig. 1: 

 
Fig. 1. Instrumental variable procedure. 

*During each iteration, θS,  ̇ S, and  ̈ S are calculated by 
simulating and integrating the robot's DDM with the 
parameters identified in the previous iteration. The same 
control structure and exciting trajectories used for the real 

robot are applied. WS is obtained by sampling IDM (θS,  ̇S, ̈S), 
and the instrumental matrix is selected as follows: 

 ˆ ˆ ˆ ˆ( ) ( ), ( ), ( )k k k k

s s s sV W      
         (21) 

*Y(τ) and W(θ, ̇, ̈) they are constructed as in (5). 

*  k+1
 is given by (17). The algorithm stops when the 

relative errors become negligible: 

 1

1/k k k

iv iv iv tol                   (22) 

 1

2
1,...,

ˆ ˆ ˆmax /k k k

b
tol               (23) 

Where tol1 is an ideally small value set by the user. 
Typically, there is a trade-off between accuracy and 
convergence speed. 

It has been demonstrated in [15][16] that applying a filter 
F(s) to the columns of V is not mandatory. However, to reduce 
the sizes of Y, W, and V, we use a sub-sampling filter and 
isolate the frequency range of interest. Typically, the cutoff 
frequency of this filter is set to 10 times the closed-loop 
system's bandwidth value to achieve a balance between 
precision and convergence speed. 

B. DIDIM Method 

DIDIM is a closed-loop output error (CLOE) identification 
method that does not require position measurement [9]. The 
output y = τ is the actual torque τ. The simulated output ys=τddm 
is the simulated torque of the DDM given by (13). 

The signal θddm(t,  ) is the result of integrating the DDM. 

The optimal solution   minimizes the quadratic criterion J( 
) = ||Ys–Y||². The vectors Y(τ) and YS=Y(τddm) are obtained by 
sampling the vectors τ and τddm respectively. 

The solution to this nonlinear problem is obtained through 
the application of Gauss-Newton regression. This approach 
relies on a Taylor series expansion of ys around the current 

estimate of parameters at time k, represented by  k
 (given 

that this subsection only pertains to the DIDIM method, we use 

the notation  k
 instead of  k

didim for clarity): 

   1 1

ˆ
ˆ( ) ( ) ( ( )) /

k k k k
ks s sy y y o


     

 
     

      (24) 

Where  
ˆ

( ( )) / ksy


    is the Jacobian matrix of 

dimension (nxb). The MDD input torque τddm can be calculated 
analytically with the MDI expression (3) such that: 

 

 ( ), ( ), ( )

( ) ( )s ddm idm

ddm ddm ddmIDM

y

      

      
              (25) 

In this case, the Jacobian matrix is given by: 

  

ˆ ˆ ˆ

( ) ( ) ( )

ˆ ˆ ˆ ˆ( ), ( ), ( )

k k k

s ddm idm

k k k k

ddm ddm ddm

y

IDM

  

 

  

      


        
      

       



      (26) 

As we use the same control for both the simulation and the 
real robot, the simulated states (positions, velocities, and 

accelerations) are minimally dependent on  . At each  k
 

value, the Jacobian matrix (26) can be approximated as: 
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 
ˆ

( )
ˆ ˆ ˆ( ), ( ), ( )

k

k k ks
ddm ddm ddm

y
IDM



     


  
 

      (27) 

Taking into account (27), the Taylor expansion becomes: 

  1
ˆ ˆ ˆ( ), ( ), ( ) ( )

k k k k

ddm ddm ddmy IDM o e       


   
       (28) 

The MDI (3) estimates the states (θ,  ̇ ,  ̈ ) using (θddm, 

 ̇ddm, ̈ddm) obtained by simulating and integrating (13). At each 
iteration k, we sample (28) to obtain an over-determined linear 
system given by: 

  1

didim
ˆ( ), ( ), ( )ˆ ˆk k k k

ddm ddm ddm ddm
Y W       

 
   (29) 

The MCLs are then applied to obtain the estimate at k+1 

denoted  k+1
. 

1 1 T

ddm
ˆ =( )k T

ddm ddm
W W W Y               (30) 

This algorithm is iterated until: 

 1

dim dim dim 1/k k k

di di di tol    
          (31) 

 1

2
1,...,

ˆ ˆ ˆmax /k k k

b
tol                  (32) 

Where tol1 is an ideally small value set by the user. 
Generally, a compromise is made between accuracy and speed 
of convergence. 

 
Fig. 2. Procedure of the DIDIM method. 

The DIDIM method is named after its use of both direct 
and inverse dynamic models. As shown in Fig. 2, this approach 
combines these models to achieve dynamic identification. 

C. MDD Simulation and Integration 

According to [8], the instrumental matrix must be close to 
the Wnf matrix defined by: 

nf nf nf nf
W =W(θ ,θ ,θ )                      (33) 

where, θnf, ̇nf, ̈nf are the noiseless values of θ, ̇, ̈. 

Assuming model errors are negligible, it is necessary to 

have a well-tuned control loop that keeps θnf,  ̇nf and  ̈nf close 

to the reference states θr,  ̇ r and  ̈ r. According to (33), the 

simulated states θs,  ̇s and  ̈s must remain close to θr,  ̇r and  ̈r 
at every iteration of the algorithm. To achieve this, we use the 
same control structure for simulation as we do for the robot and 
adjust the control gains at each iteration to maintain the closed-
loop bandwidth. This ensures that the bandwidth remains 

constant, regardless of the estimate  k
. Therefore, we obtain: 

k

nf nf nf s s s r r r iv
ˆ(θ ,θ ,θ )=(θ ,θ ,θ )=(θ ,θ ,θ )           (34) 

Adapting the control gains at each iteration in the simulator 
allows us to ensure the approximation (27). Thus, (34) 
becomes: 

k

nf nf nf ddm ddm ddm r r r didim
ˆ(θ ,θ ,θ )=(θ ,θ ,θ )=(θ ,θ ,θ ) 

       (35) 

This relation allows us to write that we have: 

k k

ddm ddm ddm s s s iv didim
ˆ ˆ(θ ,θ ,θ )=(θ ,θ ,θ ) and  

         (36) 

We arrive at the following results: the matrix Wddm is 
precisely our instrumental matrix V, and (30) can be expressed 
in this way as well: 

1 T

dim k
ˆ =( )k T

di k k
V V V Y 

                   (37) 

The article does not provide an explanation of gain 
modulation at each iteration as it is beyond the scope of the 
paper. A brief overview can be found in [15],[16]. 

D. Initialization of Algorithms 

There are multiple methods to initialize the algorithm, such 
as using the CAD values or the identified LS values. However, 
since we ensure (34) and (35) in simulation, the easiest 

approach is to set ˆZZ j/0 and the other parameters to 0, which is 
called regular initialization [9]. This method results in an 
invertible initial mass matrix. 

IV. PROTOTYPE TO IDENTIFY AND RESULTS 

We employ the IV and DIDIM methods on a two-degree-
of-freedom planar robot depicted in Fig. 3, utilizing the 
modified Denavit-Hartenberg notation for geometric 
representation. The robot operates without a reducer (direct 
drive) and is actuated using DC motors. The inverse dynamic 
model is dependent on 8 minimal parameters χ = [ZZ1R fv1 fs1 
ZZ2 MX2 MY2 fv2 fs2]

T
. Position control of the robot is 

achieved through a PD controller, with a closed-loop 
bandwidth of 2Hz, and an acquisition frequency of 200Hz. The 
torque is obtained from the current reference vir, with the 
current loop having a broad bandwidth (1KHz): 

j j irj
gt v                                  (38) 

gtj being the j-axis actuation gain. 
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Fig. 3. Prototype 2 DDL plan to identify. 

Experimental application of the IV and DIDIM methods is 
carried out on the 2-degree-of-freedom planar prototype. In the 
IV method, the current command image and the position of 
each motor are measured, while only the current command 
image of each motor is measured in the DIDIM method. 

In both methods, the columns of V are filtered using an 
under-sampling filter with a cutoff frequency of 20Hz, as the 
closed-loop bandwidth is 2Hz. All information regarding the 
rigid model is preserved, and the MATLAB decimate 
command is utilized for filter implementation. 

Both methods use identical exciting trajectories and control 
structures as those used on the actual robot for simulation. The 
control gains are adjusted for every iteration. 

In the case of the IV method, a fourth-order bidirectional 
Butterworth filter is used to filter the position, with a cutoff 
frequency of 20Hz. The velocity and acceleration are obtained 
through a centered difference calculation, ensuring that there is 
no phase distortion. Lastly, each column of W is filtered using 
the same under sampling filter as that used for filtering the 
columns of V. 

Both methods are initialized with regular initialization. The 
simulation and MDD integration are carried out on the same 
MATLAB-SIMULINK platform for both methods. The 
platform is run on a laptop equipped with an INTEL Pentium 4 
single-core processor operating on WINDOWS XP. Each 
iteration, which includes MDD integration and optimal 
solution calculation, takes approximately thirty seconds. 

The experimental results are reported in Table I for the IV 
method and in Table II for the DIDIM method. Table III shows 
the convergence of the parameters, with both algorithms 
converging in just three iterations. 

The key finding is that the IV method provides the same 
numerical estimation as the DIDIM method. The only 
difference is in the values of the parameters Fv1 and Fv2, 
which have minimal impact on the robot's dynamics. As these 
parameters have a high relative standard deviation, their 
removal from the model results in little variation in the 
identified values of the other parameters and the residual norm. 

From these experimental results, we can conclude that 

numerically  IV =  DIDIM. This can be explained by the 

following intuitive reasoning: the instruments are constructed 
from a simulation and integration of the MDD. Therefore, if 
the instruments are representative of the model to be identified, 

then we can assume that W = V + w where w is a noise matrix 
of dimension (rxb). Furthermore, if each column of w denoted 
by wk is orthogonal to the space spanned by the columns of V, 
then we have V

T
w = zeros(b,b). With these conditions, we do 

indeed obtain  IV =  DIDIM. 

The next section will present the method of least squares, 
which we will use to prove this statement. 

TABLE I. IDENTIFICATION WITH IV 

Parameters  0  3 
2   %   

ZZ1R 1.0 3.45 0.036 0.52 

Fv1 0.0 0.04 0.032 40.0 

Fc1 0.0 0.82 0.05 3.0 

ZZ2 1.0 0.061 0.0006 0.49 

LMX2 0.0 0.124 0.0013 0.52 

LMY2 0.0 0.0065 0.0005 3.5 

Fv2 0.0 0.013 0.0084 30.0 

Fc2 0.0 0.137 0.008 3.0 

TABLE II. IDENTIFICATION WITH DIDIM 

Parameters  0  3 
2   %   

ZZ1R 1.0 3.45 0.036 0.52 

Fv1 0.0 0.03 0.030 40.0 

Fc1 0.0 0.82 0.05 3.0 

ZZ2 1.0 0.061 0.0006 0.49 

LMX2 0.0 0.124 0.0013 0.52 

LMY2 0.0 0.0067 0.0005 3.5 

Fv2 0.0 0.015 0.0084 30.0 

Fc2 0.0 0.137 0.008 3.0 

TABLE III. CONVERGENCE OF VALUES FOR THE TWO METHODS 

Parameters  0  1  2  3 

ZZ1R 1.0 3.46 3.45 3.45 

Fv1 0.0 0.04 0.02 0.03 

Fc1 0.0 0.82 0.85 0.82 

ZZ2 1.0 0.06 0.061 0.061 

LMX2 0.0 0.122 0.124 0.124 

LMY2 0.0 0.05 0.068 0.067 

Fv2 0.0 0.005 0.014 0.015 

Fc2 0.0 0.135 0.137 0.137 

V. DOUBLE LEAST SQUARES METHOD 

A. General Idea 

As stated in [4], Theil introduced the method of two-stage 
least squares in 1953, and independently, Basmann also 
introduced it in 1957 for simultaneous equation modeling. The 
Two-Stage Least Squares (2SLS) approach involves estimation 
in two stages: 

 During the first stage, we carry out a regression of each 
column of W, denoted by W:,k, on V, to separate the 
part of W:,k that is correlated with ρ from the part that 
is correlated with the model. This leads to an 

estimation of W:,k, denoted b 
:,kŴ . By concatenating 

the estimated columns 
:,kŴ , we obtain an estimate of 

the matrix W, denoted by Ŵ . 
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 To perform the second stage, we regress Y on Ŵ . 

Thus, we obtain the following general solution: 

T -1 T

2SLS
ˆ ˆ ˆχ̂ =(W W) W Y                           (39) 

This is the 2SLS solution. 

B. Implementation 

Typically, when using 2SLS, the first regression stage for 
each column of W is defined as follows: 

:,k k k
W =V w                               (40) 

Where Пk is a coefficient vector of dimension (bx1) and 
where wk is a noise vector of dimension (rx1). We obtain the 
estimate of each column W:,k as: 

:,k k
Ŵ = ˆV                                      (41) 

After performing this regression for each column of W and 
concatenating the estimated columns, we obtain a matrix 
equation in the form: 

Ŵ= ˆV                                          (42) 

Where
1

ˆ ˆ ˆ ˆ... ...
k b

       is a matrix of constant 

coefficients of dimension (bxb). This relationship also 
involves: 

ˆW=W+w= +wˆV                            (43) 

The second step is the regression of Y on Ŵ . We have: 

T -1 TˆŴ=V =V(V V) V W                 (44) 

By incorporating this relation into (39) and assuming that 
relation (19) holds, we obtain: 

T -1 T

2SLS
χ̂ =(V W) V Y                         (45) 

2SLS IV
ˆ ˆχ =χ                                          (46) 

Therefore, the 2SLS solution is equivalent to the 
instrumental variable solution. 

C. Using 2SLS to Compare IV and DIDIM 

Using the 2SLS algorithm to identify the dynamic 
parameters of robots is feasible, given our knowledge on 
constructing the instrumental matrix V. However, our objective 
is to establish a link between the IV method and the DIDIM 
method. 

By utilizing 2SLS, we can examine the projection of each 
column W:,k of W (and thus, W as a whole) onto the space 
formed by the columns of V. Equation (44) denotes the 
orthogonal projection of each column W:,k onto the space 
generated by the columns of V. To conduct the first regression 
of each column W:,k on V, we express it as follows: 

 :,k k k
W = ones(r,1) V +w          (47) 

Where 

:,1 :,b
V= V ...V                                 (48) 

T

k 0,k 1,k b,k
= π π ...π     

An offset term denoted as π0,k is deliberately introduced to 
estimate the average value of the residual wk. The estimated 

value of this term, denoted as
0,k
π̂ , is expected to be zero in 

theory. 

Once we have obtained the estimates, we can interpret the 
results as follows: 

j,k
ˆ 1     pour j=k                           (49) 

j,k
ˆ 0   pour j≠k                            (50) 

In terms of physicality, this indicates that the instruments 
are reliable (i.e., adequately reflecting the model to be 
identified) and that we have effectively separated the portion of 
W:,k that correlates with ρ and the portion that corresponds to 
the model. Through concatenation, we achieve: 

ˆ ˆW= ones(r,1) V 
                          (51) 

With: 

b,b

zeros(1,b)
ˆ

I

 
   

 

                           (52) 

Ib,b represents the identity matrix with dimensions (bxb). 
Now, let's delve into the details of this relationship: 

b,bŴ=zeros(r,b)+VI V                  (53) 

So, with (39) we get: 

T -1 T

2SLS didim
ˆ ˆχ =(V V) V Y=χ                    (54) 

Or, according to (46): 

2SLS iv didim
ˆ ˆ ˆχ =χ =χ                         (55) 

Another way to arrive at this result is by expressing that we 
have, using equations (43) and (53): 

W=V+w                                  (56) 

Alternatively, using geometric construction, we can 
establish that every residual wk is perpendicular to the 
subspace formed by the columns of V (normal equation). 
Consequently, this leads to the following implication: 

TV w=zeros(b,b)                          (57) 

So by incorporating (56), (57) into (16), we get: 

T -1 T

iv
χ̂ =(V V) V Y                      (58) 

And we find well (55). 
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D. Conclusion 

Through the utilization of 2SLS, we have established that 
the solution yielded by the IV method is equivalent to the 
solution obtained through DIDIM, given that relations (49) and 
(50) are upheld. These two relationships hold great significance 
as they imply the following physical interpretations: 

 The instruments demonstrate high quality, effectively 
capturing the essence of the physical model under 
consideration. This has allowed us to successfully 
separate the component of W that correlates with the 
model from the component that correlates with ρ. 

 Moreover, the model error remains significantly 
minimal in comparison to other sources of noise. 

During the experimental phase, we conduct the dual 
regression at every iteration of the IV method. Furthermore, we 
specify the necessary conditions to ensure the continuous 
validation of both relationships (49) and (50). 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

The experimental trials are carried out using identical 
conditions as outlined in Section IV. The dual regression is 
executed for every iteration and each column of W. The 

resulting estimated vectors 
k

̂  are stored in an array for 

subsequent analysis of the estimations. 

The determined coefficient values for each 
k

̂  at every 

iteration are consolidated in Table IV. To improve clarity, the 
results for each column are presented individually, Tables IV 
to XI. 

TABLE IV. ESTIMATES OF ПJ, J = 1 

Parameter 
0

1
̂

 

1

1
̂

 

2

1
̂

 

3

1
̂

 
π0,1 0.0 0.0 0.0 0.0 

π1,1 1.0 1.0 1.0 1.0 

π2,1 0.001 0.0 -0.001 0.001 

π3,1 0.0 0.0 0.0 0.0 

π4,1 0.0 0.0 0.0 0.0 

π5,1 0.0 0.0 0.0 0.0 

π6,1 0.002 0.001 0.002 -0.001 

π7,1 -0.001 0.001 0.002 0.001 

π8,1 0.0 0.0 0.0 0.0 

TABLE V. ESTIMATES OF ПJ, J = 2 

Parameter 
0

2
̂

 

1

2
̂

 

2

2
̂

 

3

2
̂

 
π0,2 0.001 0.0 -0.001 0.001 

π1,2 0.002 0.002 -0.001 -0.001 

π2,2 1.001 1.002 1.001 1.001 

π3,2 0.001 0.002 0.001 -0.002 

π4,2 -0.002 -0.002 0.002 0.002 

π5,2 -0.002 -0.001 0.0 -0.001 

π6,2 0.001 0.001 0.002 -0.001 

π7,2 0.001 0.001 0.002 0.001 

π8,2 -0.002 -0.002 -0.002 -0.002 

TABLE VI. ESTIMATES OF ПJ, J = 3 

Parameter 
0

3
̂

 

1

3
̂

 

2

3
̂

 

3

3
̂

 
π0,3 0.0 0.0 0.0 0.0 

π1,3 0.0 0.0 0.0 0.0 

π2,3 -0.001 0.0 -0.001 -0.001 

π3,3 1.0 1.0 1.0 1.0 

π4,3 0.0 0.0 0.0 0.0 

π5,3 0.0 0.0 0.0 0.0 

π6,3 0.001 
0.00

1 
0.002 -0.001 

π7,3 0.001 
0.00

1 
-0.002 0.001 

π8,3 0.0 0.0 0.0 0.0 

TABLE VII. ESTIMATES OF ПJ, J = 4 

Parameter 
0

4
̂

 

1

4
̂

 

2

4
̂

 

3

4
̂

 

π0,4 0.0 0.0 0.0 0.0 

π1,4 0.0 0.0 0.0 0.0 

π2,4 0.0 0.0 -0.001 -0.001 

π3,4 0.0 0.0 0.0 0.0 

π4,4 1.0 1.0 1.0 1.0 

π5,4 0.0 0.0 0.0 0.0 

π6,4 0.002 0.0 0.002 -0.001 

π7,4 0.0 0.001 -0.002 -0.002 

π8,4 0.0 0.0 0.0 0.0 

TABLE VIII. ESTIMATES OF ПJ, J = 5 

Parameter 
0

5
̂

 

1

5
̂

 

2

5
̂

 

3

5
̂

 
π0,5 0.0 0.0 0.0 0.0 

π1,5 0.0 0.0 0.0 0.0 

π2,5 0.001 0.001 -0.001 -0.001 

π3,5 0.0 0.0 0.0 0.0 

π4,5 0.0 0.0 0.0 0.0 

π5,5 1.0 1.0 1.0 1.0 

π6,5 0.0 0.0 0.001 -0.001 

π7,5 0.0 0.001 0.0 0.001 

π8,5 0.0 0.0 0.0 0.0 

TABLE IX. ESTIMATES OF ПJ, J = 6 

Parameter 
0

6
̂

 

1

6
̂

 

2

6
̂

 

3

6
̂

 

π0,6 0.002 0.001 0.002 0.001 

π1,6 -0.001 0.001 -0.001 0.002 

π2,6 -0.001 -0.001 -0.001 -0.001 

π3,6 0.001 0.002 0.001 0.002 

π4,6 -0.001 -0.002 -0.002 -0.001 

π5,6 -0.001 -0.001 -0.001 0.001 

π6,6 0.998 0.999 0.998 0.998 

π7,6 0.002 0.001 -0.001 -0.002 

π8,6 0.002 0.002 0.001 0.002 
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TABLE X. ESTIMATES OF ПJ, J = 7 

Parameter 
0

7
̂

 

1

7
̂

 

2

7
̂

 

3

7
̂

 
π0,7 -0.002 -0.001 0.002 -0.001 

π1,7 -0.001 0.001 -0.001 0.002 

π2,7 0.001 -0.001 -0.002 0.001 

π3,7 -0.002 0.001 -0.001 -0.002 

π4,7 0.001 0.002 -0.001 0.002 

π5,7 -0.002 0.001 -0.001 0.002 

π6,7 0.002 0.002 0.001 0.002 

π7,7 1.002 0.999 1.001 0.998 

π8,7 -0.002 0.002 0.001 -0.002 

TABLE XI. ESTIMATES OF ПJ, J = 8 

Parameter 
0

8
̂

 

1

8
̂

 

2

8
̂

 

3

8
̂

 
π0,8 0.0 0.0 0.0 0.0 

π1,8 0.0 0.0 0.0 0.0 

π2,8 -0.001 -0.002 -0.001 0.002 

π3,8 0.0 0.0 0.0 0.0 

π4,8 0.0 0.0 0.0 0.0 

π5,8 0.0 0.0 0.0 0.0 

π6,8 0.001 -0.001 0.001 -0.001 

π7,8 0.002 0.001 -0.002 0.001 

π8,8 1.0 1.0 1.0 1.0 

The estimated values obtained through 2SLS are identical 
to those presented in Table I and Table II. Based on these 
experimental findings, we can conclude that it is possible to 

write 
b,b

zeros(1,b)

I
ˆ

 
 
  

  for each iteration. This suggests that 

relations (49) and (50) are practically fulfilled. Consequently, 
we have effectively confirmed through experimentation that we 

have 
iv didim

ˆ ˆχ =χ . 

The slight discrepancies we observe could be attributed to 
minor modeling errors. 

The crucial aspect of this analysis revolves around relations 
(36), (49), and (50). Essentially, these relations indicate that we 
can treat the states simulated by the IV method and the DIDIM 
method as interchangeable, and that column W:,k projects 
orthogonally onto its counterpart V:,k. Importantly, W:,k is not 
derived from a linear combination of multiple columns of V, 
which could potentially be the case in an absolute sense. As a 
result, we effectively differentiate the component of W:,k that is 
correlated with the model from the component correlated with 
ρ. The strong adherence of relations (49) and (50) primarily 
arises from the careful adjustment of control gains during each 

iteration in the simulation, aiming to ensure that ( s s sθ ,θ ,θ ) = (

ddm ddm ddm
θ ,θ ,θ ) = (

nf nf nf
θ ,θ ,θ ) closely approximates (

r r r
θ ,θ ,θ ), 

while keeping modeling errors at a minimum. Experiments 
were conducted with significant modeling errors. For example, 
we intentionally omitted the term LMX2 from the model. As a 
result, both methods converge to an inaccurate solution. 
Consequently, relations (49) and (50) are no longer fulfilled. 
This serves as evidence that our projections are flawed because 

Y is being regressed on a subspace that no longer accurately 
represents the model. 

A. The Parameters Used  

To overcome these issues, an alternative identification 
approach is proposed. This method relies on a closed-loop 
simulation, where the direct dynamic model is used with the 
same control law and reference trajectories as those applied to 
the real robot. The parameters obtained through this 
identification method are determined by minimizing the 2-
norm of the error between the measured torque and the 
simulated torque. This results in a nonlinear least squares 
problem. The analytical expression of the sensitivity functions 
is greatly simplified by using the inverse model to express the 
simulated torque, which greatly facilitates the calculation of the 
solution. 

In the robot identification procedure, the inverse dynamic 
model (IDM) and the linear least squares (LLS) method are 
commonly used. To create an overdetermined system, the IDM 
is sampled during the robot's motion using stimulating 
trajectories. This approach has proven to be effective in 
identifying numerous robots and prototypes [17], [20], [3]. 

However, it requires accurate measurements of joint 
positions and torques at a high sampling frequency (greater 
than 100 Hz). Furthermore, the identification is performed in a 
closed loop due to the inherent instability of the double 
integrator, resulting in a noisy observation matrix. 
Consequently, in theory, the linear least squares estimator may 
exhibit bias [19]. 

To address this issue, we have adapted the instrumental 
variables (IV) technique, building upon the research work 
conducted by Hugues Garnier's team [6], [9], [8]. Recently, a 
new identification method has been proposed and validated on 
a two-degree-of-freedom robot [18]. This approach only 
requires the joint torques as input parameters. The robot is 
simulated in a closed loop, assuming the same control structure 
and stimulating trajectories. 

The optimal parameters are determined by minimizing the 
squared difference between the simulated and measured 
torques. Experimental results demonstrate a significant 
correlation between the outcomes obtained using the 
instrumental variables (IV) method and those of the DIDIM 
method, indicating a strong agreement between these two 
approaches. 

VII. CONCLUSION 

This paper presents a comparative analysis of the IV and 
DIDIM methods using 2SLS. The theoretical framework is 
substantiated by experimental findings. The results of this 
study demonstrate that under specific conditions, we achieve a 

numerical equality of 
iv didim

ˆ ˆχ =χ . 

From our standpoint, this outcome holds significance as it 
indicates that the IV method, as employed in robot 
identification and widely used in various applications, tends to 
converge towards the model-based approach. This observation 
provides a possible explanation for the IV method's resilience 
to assumptions made about noise. However, it would be overly 
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simplistic, and possibly incorrect, to equate the IV method with 
the model-based method. The outcome relies on the 
construction of our instruments and how they are implemented. 

In the end, 2SLS could serve as a diagnostic tool, enabling 
us to examine the projection of each regressor column onto the 
space formed by the instrumental matrix columns. The MDI 
and DIDIM methods will be implemented on cable-driven 
parallel structure interfaces, such as the VIRTUOSE robots 
developed by HAPTION; also, will explore other methods for 
robot enhancement. 
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