
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

A Fine-grained Access Control Model with
Enhanced Flexibility and On-chain Policy Execution

for IoT Systems

Hoang-Anh Pham1, Ngoc Nhuan Do2, Nguyen Huynh-Tuong3
Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam1,2

Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam1,2

Industrial University of Ho Chi Minh City (IUH), 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Vietnam3

Abstract—Blockchain-based access control mechanisms have
garnered significant attention in recent years due to their poten-
tial to address the security and privacy challenges in the Internet
of Things (IoT) ecosystem. IoT devices generate massive amounts
of data that are often transmitted to cloud-based servers for
processing and storage. However, these devices are vulnerable to
attacks and unauthorized access, which can lead to data breaches
and privacy violations. Blockchain-based access control mecha-
nisms can provide a secure and decentralized solution to these
issues. This paper presents an improved Attribute-based Access
Control (ABAC) approach with enhanced flexibility, which utilizes
decentralized identity management on the Substrate Framework,
codifies access control policies by Rust programming language,
and executes access control policies on-chain. The proposed design
ensures trust and security while enhancing flexibility compared to
existing works. In addition, we implement a PoC to demonstrate
the feasibility and investigate its effectiveness.

Keywords—Attribute-based Access Control (ABAC); Internet of
Things (IoT); blockchain; substrate framework

I. INTRODUCTION

Access control is a security approach that governs who
or what has access to and uses resources in a computing
environment. The primary objective of access control is to
reduce the hazards of unauthenticated system access while
protecting personal information. Therefore, most computing
applications require access control services to control and
prohibit unauthorized access to system resources such as
networks, devices, files, or sensitive data. Meanwhile, the
number of connected IoT devices is rapidly increasing due
to the maturation of connecting protocols for IoT (e.g., BLE,
LoRa, NB-IoT, LTE, 5G, and 6G). In addition, the growth
of Big Data and Artificial Intelligence also motivates data
collection from the physical environment by adopting IoT
infrastructures. However, this means that security in IoT be-
comes more critical because IoT systems can yield a lot of
sensitive data [1][2][3][4]. For example, a faulty firmware of
a camera vendor caused millions of camera devices of clients
to be exposed publicly to the Internet, and malicious parties
can exploit resources legitimately. Therefore, access control
employment is an essential solution to improve the security of
IoT systems.

Most conventional access controls for IoT are based on a
centralized architecture with many limitations, such as single-
point-of-failure, trusted third-party requirements, and low scal-
ability [5][6][7]. Meanwhile, the maturity of Blockchain drives

towards applying to numerous areas beyond cryptocurrencies
to solve concerns of trust and security, such as digital certificate
[8], smart factory [9], smart parking [10], healthcare [11],
and traceability [12]. Additionally, there have been various
research studies on the amalgamation of Blockchain to solve
problems in existing IoT systems regarding scalability, interac-
tion, security, privacy, and trust [13][14][15][16][17]. However,
many aspects must be considered when applying Blockchain to
conventional access control methods for IoT systems [18][19].
Due to heterogeneity and scenario variety in IoT, coarse-
grained access control schemes, such as Discretionary Access
Control (DAC), Mandatory Access Control (MAC), and Role-
based Access Control (RBAC), become cumbersome in admin-
istration. Nevertheless, fine-grained access control schemes,
such as Attribute-based Access Control (ABAC), not only
provide flexible administration but also guarantee security [20].

In the ABAC scheme, access control is evaluated by
attributes (e.g., subject, object, and environmental attributes)
and instructed by codifiable policies. Those features produce
ABAC’s advantages but make it challenging to design, es-
pecially on Blockchain platforms. An ABAC design should
consider two main parts: attribute management and policy
execution. Besides the scheme aspect, identity management
is also crucial in access control. Thanks to the decentralized
identity (DID) standard, participants own DIDs associated
with their human-readable information on Blockchain, which
can be resolved to DID Document (DDO). This standard
also facilitates authentication (DID Auth), which is generally
necessary before authorization or access validation. Nowadays,
existing Blockchain-based ABAC solutions for IoT still have
several limitations. They do not ensure both security and flexi-
bility. Moreover, several solutions based on ancient Blockchain
platforms, such as Bitcoin and Ethereum, need to be improved
in terms of scalability for massive IoT systems.

In this paper, we propose an improved ABAC-based ap-
proach developed on the Substrate Blockchain Framework,
which ensures trust and security while enhancing flexibility
compared to existing ABAC-based works. The main contribu-
tions of this paper can be summarized as follows:

• Propose an alternative design of a blockchain-based
access control approach that includes improved fea-
tures compared to similar works.

• Present the implementation of a proof-of-concept in
detail to demonstrate the feasibility and evaluate the

www.ijacsa.thesai.org 83 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

effectiveness of the proposed design.

The rest of this paper is organized as follows. Section
II summarizes related works to clarifies the scope of our
study. Then, Section III describes our proposed system. The
implementation and evaluation are presented in Section IV.
Finally, Section V provides concluding remarks and future
works.

II. RELATED WORKS

A. Conventional Access Control Approaches

Discretionary Access Control (DAC) [21] is an identity-
based access control model that gives users specific permis-
sions to control their resources and data. Data owners can
set access permissions for another user or group of users.
These permissions are usually stored in an access control
list. DAC is a simple and highly granular design because it
allows users to freely configure access parameters on each
data sample. However, it becomes a disadvantage and makes it
for administrators more challenging to operate and maintain a
more extensive system with a variety of users, data, and access
configurations.

Mandatory Access Control (MAC) is a hierarchical model
determined by the security level. In this model, each user is
granted a security level, and each object is assigned a security
label. A user can only access the according resource with a
security label equal to or lower than that user’s security level.
In addition, this access control model also gives administrators
complete control over access while users cannot configure
their permissions. Therefore, the MAC model has a very
high security. However, MAC-based systems can become quite
unmanageable since administrators must configure permissions
to all users and objects, leading to being overwhelmed if the
system grows too fast.

Role-based Access Control (RBAC) [22] is a model based
on user roles and responsibilities. Instead of granting access
to users, RBAC gives access to roles that are then used to
grant users the rights to access the system resources according
to granted roles. RBAC has several variants, including flat
RBAC, hierarchical RBAC, and constrained RBAC. The RBAC
is suitable for small and medium systems because its static
property is unsuitable for systems that grant access according
to dynamic parameters.

Attribute-based Access Control (ABAC) [23] provides fine-
grained and contextual access control capabilities based on
attributes of users, system resources, and environment. The
ABAC scheme allows administrators to define access control
policies without prior knowledge of specific access objects. In
addition, it can provide dynamic access control because it al-
lows the use of environmental attributes, such as time, location,
or IP address. Access decisions can be changed between access
requests as attributes change. However, the ABAC scheme has
low visibility (i.e., it is difficult to determine the privileges of a
particular user) because it works based on attributes from many
different sources. This also makes it challenging to identify
security risks in the whole system.

Capability-based Access Control (CapBAC) [24] is an
access control model based on the capability that is a token
holding the privileges granted to users. When a user wants to

perform any actions on system resources, he has to send a
request with his token to the service provider to check the
validity of the token before deciding to allow or deny the
request without verifying the requester’s privileges because the
token was published by a trusted server. This procedure makes
the system not needing to maintain the users’ list or the access
policies list at the access points. However, issuing tokens
by authentication servers and validating tokens at service
providers might consume time in case of token withdrawal.

Access control models can be selected and deployed ac-
cording to specific applications and conditions. Historically,
centralized systems were often chosen to implement access
control systems or through a third-party service provider. How-
ever, centralized systems are often limited regarding system
scalability and the problem of single-point-of-failure, i.e., the
risk at the centralized entity. In the meantime, allowing third
parties to manage important security information, such as
access control, can lead to information leakage risks and loss
of user privacy. In addition, the system administrator has full
control over the system, including manipulation of system
usage history, which reduces the reliability and transparency
of the entire access control system. However, Blockchain can
tackle these limitations with prominent characteristics such as
immutability, stability, audibility, and reliability.

B. Blockchain-based Access Control Approaches

Applying Blockchain technology to access control manage-
ment for IoT systems is a direction with many potential ben-
efits. In [25], the authors proposed an access control solution
by adopting smart contracts to define access control contracts
(ACC). Each pair of a subject and an object in the system has
one ACC that stores the subject’s permissions with the object
resources. This also means the number of ACCs will increase
exponentially as the IoT system expands. Some other works
[26][27] proposed blockchain-based authentication and autho-
rization mechanisms for IoT with multiple domains and parties
as access control solutions. Meanwhile, in [28], the authors
proposed a capability-based access control on Blockchain,
which applies the Decentralized Identifier standard to identify
the parties involved in the system, including resource owners,
resource access requests, and devices. However, this method
does not have flexibility in access administration because it is
a coarse-grained access control scheme that usually becomes
cumbersome in access control management with large IoT
systems, especially with many changes.

As mentioned above, fine-grained access control schemes
are suitable for IoTs but more complex when developing on
Blockchain. The six following works are the most closely
related to ours. In [29], the authors proposed a fine-grained
access control framework based on Hyperledger Fabric, called
Fabric-IoT. Attribute fields for users, devices, and policies are
pre-defined, and administrators specify their values. Mean-
while, values of environment attributes are dynamically de-
tected at the request processing time. In this work, a policy
definition is limited to only being set values of the pre-
defined attribute fields. In addition, policy execution for the
relationship between attributes and access decisions is hard-
coded in a smart contract. A similar design was presented by
Song et al. in [30], but user and device attribute fields in this

www.ijacsa.thesai.org 84 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

work do not need to be pre-defined. These two Blockchain-
based approaches are generally simplified from the original
ABAC scheme, making them less dynamic and flexible.

In [31], attributes and policies are stored on a Hyperledger
Fabric blockchain and an InterPlanetary File System. A policy
execution is performed at distributed nodes in a network, called
off-chain execution, and its final result is reduced with the
Practical Byzantine Fault Tolerance (PBFT) algorithm. This
approach does not take advantage of Blockchain for policy
execution. Meanwhile, Maesa at al. [32] proposed a manner
to transpile ABAC policies with XACML language to smart
contracts with Solidity language, which can be executed on
EVM-integrated Blockchain. Similarly, in [33], the authors
proposed a scheme to interpret ABAC policies with XAMCL
language to Blockchain transactions in JSON and scripting-
logic expression. Those can be executed as Bitcoin scripts with
several extended commands dedicated to collecting attribute
information in the ABAC scheme.

Besides policy execution, attribute management is cru-
cial in ensuring the ABAC scheme’s security. These above-
mentioned works took attributes of subjects and objects pro-
vided by third parties or managed by an administrator. How-
ever, in [34], the authors proposed a model for endorsing
subject attributes on Blockchain. An entity, so-called a trusted
entity, can issue or revoke endorsements for other entities’
attributes. An attribute’s trust is a value accumulated from the
trust levels of the entities endorsing it. Trust levels of entities
are maintained by a reputation system deployed on Blockchain.
Because of focusing on attribute endorsement, this work did
not take policy execution in the scope of its study.

To the best of the authors’ knowledge, existing ABAC
designs for IoTs on Blockchain have yet to ensure trust,
security, and flexibility simultaneously. Therefore, this paper
proposes an improved ABAC design for IoTs, which utilizes
decentralized identity management on Blockchain, applies
attribute endorsement to ensure attribute trust and security,
and leverage smart contract to codify policy for enhancing
flexibility. We define four criteria to highlight the improvement
of the proposed design in terms of flexibility compared to six
related methods, as shown in Table I.

• C1: Attributes are modifiable.

• C2: Policies are codifiable.

• C3: Policies are executed on-chain.

• C4: Attribute values are endorsed.

TABLE I. COMPARISON OF RELATED WORKS AND OURS

Criteria [29] [30] [31] [32] [33] [34] Ours

C1 No N/A Yes N/A Yes Yes Yes

C2 No No Yes Yes Yes N/A Yes

C3 No Yes Yes Yes Yes No Yes

C4 No No Yes No No Yes Yes

III. THE PROPOSED APPROACH

IoT infrastructures typically consist of numerous devices
deployed distributedly in the physical world. These devices
can be categorized into end-devices, gateway, and IoT devices.
As the largest and most distributed part among others, end-
devices should be optimized in cost and energy consumption,
letting them be neglected with battery power for a long time. In
addition, end-devices are usually constrained in computing and
storing capability, so they can not efficiently perform heavy
cryptographic techniques to consolidate security. Moreover,
low-power networks (LPWN) of wireless end-devices also
have low bandwidth. Therefore, security methods will be
mainly deployed on gateways since they employ electric grid
power, high bandwidth internet connection, and more powerful
computing and storage capacity. Besides, IoT devices, such
as surveillance cameras, robots, or smartwatches, which have
more powerful hardware configurations, are also considered to
accommodate self-serving cryptographic security techniques.
In the proposed design, we choose gateways as end-points
for access control service, restricting requests from outside to
inside resources for empowering security and privacy.

As the core of the proposed design, critical data and
execution of access control are carried out on Blockchain
to empower security and trust. We develop the proposed
method on Substrate Framework and customize the Blockchain
system for the access control services with three major obli-
gations. First, Blockchain is an underlying infrastructure for
a decentralized identifying system, facilitating authentication.
Second, it provides methods for participants to manage their
access control attributes on Blockchain. Third, it provides a
distributed computing environment to manage and execute
access control policies.

The proposed access control system comprises users with
different roles and permissions, who can be divided into three
types: regular users, trusted users, and administrators. The reg-
ular users include requesters who request access to resources
and owners who own shared resources. The trusted users can
endorse attributes of regular users, specifically requesters or
subjects. The administrators are a minority in the system and
are responsible for governing access to IoT resources through
policies. With a large or global IoT system, there can be
many multiple domains in which several administrators can
manage each domain. This access control system is not tied
to a specific IoT domain; in other words, it also supports
multiple IoT domains. Furthermore, owners are considered to
have sovereignty over their own IoT devices, which they may
control locally and physically.

A. Security Assumptions

A security system is usually designed and built based on
specific assumptions. Our proposed system will be developed
based on four security assumptions (SA).

• SA1: Regarding physical devices such as IoT devices
and gateways, they are assumed to operate reliably to
protect themselves. It is noted that a device cannot
be secured with only software solutions if a device
is physically attacked and manipulated. However, a
malicious device will not harm other trusted devices.

www.ijacsa.thesai.org 85 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

• SA2: The connection from IoT devices to the
Blockchain system is also considered secure, allowing
transactions from devices to reach the Blockchain
or events returned from the Blockchain to propagate
smoothly.

• SA3: Like other Blockchain systems, participants are
responsible for the confidentiality of their Blockchain
accounts and other private keys associated with their
decentralized identity. In addition, users with special
roles, such as administrators, are assumed to be trusted
in their authority.

• SA4: Actual deployment conditions might influence
Blockchain network topology and the selection of
consensus algorithms. However, a Blockchain system
must be distributed, immutable, and transparent as
inherent characteristics.

Among these four assumptions above, except for the last
one (SA4), when other assumptions are violated, it just locally
affects; for example, a compromised IoT device or a disclosed
Blockchain account, the security problems will be only af-
fected locally.

B. System Design

An access control system should have flexibility to be
easily adopted for numerous scenarios. The flexibility also
makes access management more convenient for administrators,
particularly in granting or revoking permissions. Hence, we
chose the ABAC scheme that a fine-grained access control
scheme. In addition, to consider the flexibility of an access
control system, we scope our study in two following use-cases.

• In smart agriculture, combining low-power wireless
sensor networks with automatic control systems fa-
cilitates agriculture precision. Commonly, an agricul-
tural product has to go through many stages before
reaching its consumer, such as planting, harvesting,
processing, transporting, and retailing, hence the need
for traceability. Blockchain technology allows parties
from those stages to participate in a system to share
data in trust. Each farm or each factory can have
numerous IoT devices, employees, several managers,
and one possessor. To control access to IoT devices, a
possessor can delegate to managers; in turn, they will
manage access permissions for employees through
ABAC policies. In this use case, managers could
endorse employees’ attributes or delegate to their
assistants as trusted endorsers. Environment attributes
like DateTime can grant temporary permissions for
seasonal employees. Third parties, such as business
partners and inspection centers, may also be granted
appropriate permissions to access to monitor activity.

• Another use-case is to manage access controls for an
IoT camera system on a campus. These cameras can
be rented to students who want to conduct related
experiments such as video streaming. A CapBAC-
based Blockchain approach has been proposed in [28].
Owners control tenant access by issuing or revoking
capability tokens, and each token issuing requires the
participation of both the owner and the tenant. When

the system scales up, managing issued and revoked
tokens becomes cumbersome and inflexible. Mean-
while, the ABAC design can provide more efficient
access management for that case. Surveillance cam-
eras can be divided into groups for easy management
by defining attributes in a large system. Owners can
grant permissions to tenants by endorsing their corre-
sponding attributes. Note that a pre-defined policy just
links the camera group to the tenant group. Besides
that, environment attributes can help rent out based on
time conveniently.

Fig. 1 depicts the system architecture of the proposed
method on Substrate Framework that supports DID man-
agement and smart contracts via DID and Contract Pallets,
respectively. In addition, we design the ABAC scheme as an
ABAC Pallet and integrate it into the Substrate Framework. A
typical Substrate’s Pallet has two main parts: storage decla-
ration and external methods (so-called extrinsic definition).
Extrinsic calls only accomplish each updation to pallet storage,
and the change is also attached to Blockchain. As the core
of the proposed design, the ABAC Pallet has three storage
declarations for ABAC Attributes, Endorsements, and Policy
Attachments, described as follows.

• The first one is to store attributes (Attribute Storage)
of subjects and objects according to their decentralized
identities. Each ABAC attribute is in the form of key-
value pair. With self-sovereign design thinking, an
owner of a decentralized identity also owns associated
ABAC attributes on Blockchain.

• The second one is to store endorsements
(Endorsement Storage), which trusted endorsers
confirmed for reviewed attributes of subjects. The
endorsements make trusty for the current values of
the subject’s attributes. The endorsers can specify a
validity period for their endorsements.

• The third one is storing objects’ attachments with
ABAC policies (Policy Storage), which is in the form
of a one-to-many relationship. In the proposed design,
an ABAC policy is a deployed smart contract with a
unique address on the blockchain system. For those
policies to be valid to an object, attachments need to
be committed by the corresponding owner or adminis-
trators. Each attachment also holds a reminiscent name
and logs its author.

Based on the storage declarations above, necessary extrin-
sic are designed to control ABAC attributes, attribute endorse-
ments, and policy attachments from outside Blockchain. To
ensure the caller has authority with corresponding data on
Blockchain, these extrinsic all require a decentralized identifier
owned by the caller as the first parameter. Other parameters in
a specific extrinsic are selected to fit multiple demands.

• There are two extrinsic for users to control attributes
associated with their DIDs, including setAttributes()
and clearAttributes(). Extrinsic setAttributes() allows
users to create and modify one or more attributes on
Blockchain. If an attribute with its key does not exist,
a creation will occur, and vice versa, and an attribute-
value update will be activated. Note that once the

www.ijacsa.thesai.org 86 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Fig. 1. System architecture.

value of an attribute is modified, all of its previous
endorsements will no longer be valid, and then it
will be deleted. Otherwise, extrinsic clearAttributes()
is to delete the existing attributes of a decentralized
identifier by specifying the corresponding attribute
names.

• There are two extrinsic for trusted users to control en-
dorsements of subject attributes, including endorseAt-
tributes() and unendorseAttributes(). Endorsers can
use endorseAttributes() to endorse multiple existing
attributes of a subject with a specific validity duration.
In the Substrate Framework, the value of that validity
duration can be represented by a multiplier of the
block finalization interval (e.g., 6 seconds by default).
Otherwise, unendorseAttributes() allow endorsers to
proactively delete their endorsements before expiring.

• There are two extrinsic for owners or administrators
to manage policies of corresponding objects, includ-
ing attachPolicy() and detachPolicy(). As mentioned
above, a policy exists on Blockchain as a smart
contract with a unique Blockchain address. Extrinsic
attachPolicy() allows owners or administrators to con-
nect an object and a policy. Furthermore, a reminiscent
name for the attachment is also enabled, and the
caller’s DID is logged. Meanwhile, extrinsic detach-
Policy() deletes the connection between an object and
its policy.

C. Policy Execution Model

Access control policies define rules executed to make
access decisions for requests. The policy execution should

help flexibility in management but ensure security. In our
design, the policy execution model coordinates on-chain and
off-chain parts as described in Fig. 2. The off-chain part
is performed outside the Blockchain system and is usually
conducted on gateways. Policy Enforcement Point (PEP) is a
middleware for receiving and handling access requests. When
receiving an access request, PEP will forward that request to
the Off-chain Context Handle (OFF-CH), and the Environment
Attribute Detection (EAD) will derive related information as
environment attributes. Subsequently, OFF-CH invokes on-
chain policy execution, which contains the subject’s DID, the
object’s DID, and environmental attributes. Once on-chain
policy execution is completed, access decisions are returned
to OFF-CH, which will forward them to the PEP. Based on
those decisions, PEP enforces denying or allowing for the
corresponding request.

The on-chain part is performed distributedly on
Blockchain, where attributes of subjects and objects are
stored and managed via distributed identities. Authority
participants, including device owners or administrators, define
policies of objects, which are also stored and managed on
Blockchain. All on-chain data modifications are attached
to the blocks. When the system receives an invocation of
on-chain policy execution, the On-chain Context Handle
(ON-CH) will forward it to Policy Decision Point (PDP)
to execute corresponding policies. Note that which policies
will be executed can be specified in the invocation or
derived from the object’s DID. During the execution, the
ON-CH is responsible for fetching necessary attributes from
the Subject/Object Attribute Authority to the PDP. Once
completed, access decisions go from the PDP to the ON-CH
and propagate to the OFF-CH through Blockchain events.

www.ijacsa.thesai.org 87 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Fig. 2. Policy execution model.

A policy is a combination of programmable logic that
defines the relationship among subject, object, environment
attributes, and access decisions. In fact, policies can be ex-
pressed by procedural programming languages and deployed
in appropriate computing environments. However, we leverage
smart contracts in Substrate Framework to define policies.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

To investigate the proposed design, we implement and de-
ploy a proof-of-concept (PoC) based on Substrate Blockchain
Framework. Some abbreviations used to describe our algo-
rithms are described in Table II. As presented in Section III-B,
there are six main extrinsic for attributes management, attribute
endorsement, and policy management in the proposed design.
These six extrinsic belong to the ABAC Pallet (see Fig. 1) as
interfaces to allow exteriors to manipulate their on-chain data.
We implement these extrinsic as Algorithms 1, 2, and 3. Some
remarks are summarized as follows:

• In Algorithm 1, if an attribute is modified or deleted,
all its endorsements shall be dropped automatically, as
in lines 11 and 23.

• In Algorithm 2, before creating an endorsement for an
attribute, its existence should be verified as line 6, and
its value is calculated as line 7. For example, if EV is
3600 and the block generation interval is six seconds,

the corresponding endorsements will be valid for six
hours.

• In Algorithm 3, the checkPerm() is used to make
sure those who utilize these functions are the object’s
owner or administrators delegated, and a reminiscent
name is also possibly associated with each attachment
for later use.

To express the access control policy by a smart contract
for general purposes, several rules in development should be
proposed to scope it for access validation. Firstly, it needs a
list of trusted endorsers so that its administrator can decide
who is trusted with them. Secondly, it must have at least one
method for access validation. Thirdly, those methods should
take necessary arguments (e.g., DIDs, DIDo, and EA), result
in access decisions, and express policy logic in its body.
Remarkably, there can be multiple policy logic expressions in
one access validation method, and an access control template
is proposed as Algorithm 4. A typical procedure should have
five steps as follows.

• Step 1: Reading necessary attribute values.

• Step 2: Checking validity of the necessary attributes.

• Step 3: Evaluating defined policy logic.

• Step 4: Making a decision.

• Step 5: Saving the decision to the returning list

www.ijacsa.thesai.org 88 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

TABLE II. ABBREVIATIONS

Symbol Description

DID Distributed Identifier

DIDa Administrator’s DID

DIDe Endorser’s DID

DIDo Object’s DID

DIDs Subject’s DID

ATL Attribute List

AS Attribute Storage

AV Attribute Value

ANL Attribute Name List

ES Endorsement Storage

EV Endorsement Validity

PS Policy Storage

PAddr Policy Address

PRN Policy’s Reminiscent Name

EA Environment Attribute

ADL Access Decision List

ACCs The ith Blockchain Account

AEK Authentication’s Encrypted Key

APKo Authentication’s Private Key of An Object

EAC Encrypted Authentication Challenge

DDO DID Document

In case of failing to read attribute values or invalid en-
dorsement, the corresponding expression should be bypassed,
and no decision should be considered denying access.

Moreover, to demonstrate the feasibility of the entire sys-
tem based on the proposed design, we also develop an example
script of the off-chain access control as Algorithm 5, which
works as an Express.js server running on an access control
object (e.g., the Gateway) and opens REST API for listening
access control requests. This module can communicate with
Blockchain via a Web Socket connection manipulated by the
Polkadot.js API library to query on-chain storage or listen to
Blockchain events. Some remarks are summarized as follows.

• Lines 1 and 2 are to establish a Web Socket connec-
tion to Blockchain and to initialize a DID Resolver,
respectively. As a service, the infinite loop handles
every access request when it comes. The correspond-
ing handler will be triggered based on the incoming
request type.

• Lines 8 to 13 are to perform an authentication process
between the sender (i.e., a subject) and an object.
When this process finishes, an authentication chal-
lenge will return to the subject.

• Lines 14 to 20 are to complete the DID Authentication
process. The request must include an authentication
response corresponding to the previous authentication
challenge for the subject. If the response matches the
challenge, an encrypted key will be returned to the
subject as a successful authentication. Otherwise, an
error will be returned as a failed authentication.

Algorithm 1 Attribute Management

Require: DID, ATL[], ANL[]
1: %Two extrinsics for users to control attributes associated

with their DIDs
2: function setAttributes(DID,ATL[])
3: for attr in ATL do
4: key ← < DID, attr.name >
5: value← attr.value
6: if AS.Exist(key) == true then
7: AS.Insert(key, value)
8: else
9: AS.Mutate(key, value)

10: keys← < DID, attr.name, ∗ >
11: ES.RemoveAll(keys)
12: end if
13: end for
14: return Success
15: end function
16:
17: function clearAttributes(DID,ANL[])
18: for name in ANL do
19: key ← < DID, name >
20: if AS.Exist(key) == true then
21: AS.Remove(key)
22: keys← < DID, name, ∗ >
23: ES.RemoveAll(keys)
24: end if
25: end for
26: return Success
27: end function

Algorithm 2 Attribute Endorsement

Require: DIDe, DIDs, ATL[], EV
1: % Two extrinsics for trusted users to control endorsements

of subject attributes
2: function endorseAttributes(DIDe, DIDs, ANL[], EV)
3: for name in ANL do
4: keya ← < DIDs, name >
5: keye ← < DIDs, DIDe, name >
6: if AS.Exist(keya) == true then
7: value← EV + CurrentBlockNumber()
8: ES.Insert(keye, value)
9: end if

10: end for
11: return Success
12: end function
13:
14: function unendorseAttributes(DIDe, DIDs, ANL[])
15: for name in ANL do
16: keye ← < DIDs, DIDe, name >
17: if ES.Exist(keye) == true then
18: ES.Remove(keye)
19: end if
20: end for
21: return Success
22: end function

• Lines 21 to 29 are to validate and then access a specific
resource if authorized. The subject and policy validity

www.ijacsa.thesai.org 89 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Algorithm 3 Policy Management

Require: DIDa, DIDo, PAddr, PRN
1: % Two extrinsics for trusted users to manage access

control policy
2: function attachPolicy(DIDa, DIDo, PAddr, PRN)
3: if checkPerm(DIDa, DIDo) == false then
4: return Fail
5: end if
6: key ← < DIDo, PAaddr >
7: value← < DIDa, PRN >
8: PS.Insert(key, value)
9: return Success

10: end function
11:
12: function detachPolicy(DIDa, DIDo, PAddr)
13: if checkPerm(DIDa, DIDo) == false then
14: return Fail
15: end if
16: key ← < DIDo, PAddr >
17: PS.Remove(key)
18: return Success
19: end function
20:
21: % A helper function to check permission for Policy At-

tachment
22: function checkPerm(DIDa, DIDo)
23: Admins← DidPallet.GetDelegates(
24: DIDo, “PolicyAdmin”)
25: if DIDa == DIDo then ▷ self-management
26: return true
27: else if DIDa ∈ Admins then
28: return true
29: end if
30: return false
31: end function
32:

must be verified before making an on-chain access
validation to get access decisions (ADL) returned from
Blockchain. At line 27, OnChainV alidation() can
collect environment attributes (EA) and encapsulate
them into invocating on-chain policy execution.

The entire source code are freely shared at
https://github.com/substrate-iot.

B. Deployment

We adopt containerization to simulate a Blockchain net-
work as a runtime environment because it is flexible in
establishing a more decentralized Blockchain. Currently, we
have established a network consisting of 12 Blockchain nodes.
Notably, Substrate Blockchain uses a Proof-of-Authority con-
sensus algorithm that does not press on computing capability.
Therefore, deploying multiple Blockchain nodes on low-cost
desktops or personal computers is convenient for experiments
while guaranteeing all Blockchain features.

The deployment process of our implementation on contain-
ers in Substrate Blockchain Framework is summarized in four
main steps as follows.

Algorithm 4 The template to express the access control policy
by smart contract
Input: DIDs, DIDo, EA[]
Output: String[] (ADL: List of access decisions)

1: function validateAccess(DIDs, DIDo, EA[])
2: Initialize ADL as an empty array of string
3:
4: % Start of policy logic 1
5: . . . read attribute values . . .
6: . . . check validity of attributes . . .
7: . . . evaluate policy logic 1 . . .
8: . . . make a decision for evaluation 1 . . .
9: ADL.Push(the result for logic 1)

10: % End of policy logic 1
11:
12: % Start of policy logic 2
13: . . .
14: . . .ADL.Push(the result for logic 2)
15: % End of policy logic 2
16: . . .
17: % Start of policy logic n
18: . . .
19: ADL.Push(the result for logic n)
20: % End of policy logic n
21: return ADL
22: end function

• Step 1: Create a docker image (DI) which includes
the executable file (EF) of the Blockchain node by
compiling the source code (SC).

SC
compile−−−−−→ EF

copy−−−→ DI

• Step 2: Generate Blockchain accounts (ACC) for every
node in the networks.

EF
generate−−−−−−→ {ACC1, ACC2, ..., ACC12}

• Step 3: Update the Default Chain Specification file
(DCS), which would be loaded each the executable file
boots up. A node must be aware of all other nodes and
be updated with all other nodes’ Blockchain addresses.
Then, each particular node will have an Updated Chain
Specification (UCS).

EF
generate−−−−−−→ DCS

modify−−−−−→ UCS

• Step 4: Activate containers according to the number
of Blockchain nodes from the docker image with
the updated chain specification and their associated
Blockchain account.

{DI,UCS,ACCi}
activate−−−−−→ BlockhainNodei

C. Evaluation

We conduct experiments to investigate the timing problem,
a common design metric in most IoT systems. It measures how
long it takes to complete a transaction, especially when many
users utilize the Blockchain simultaneously. If it is too long,
it will negatively affect to real-time demand and scalability
of the IoT system. Therefore, our experiments investigate the
amount of time elapsed to thoroughly submit transactions

www.ijacsa.thesai.org 90 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

Algorithm 5 An off-chain access control JavaScript
Input: DIDo, APKo

1: api← PolkadotJS.ConnectTo(Blockchain)
2: DidResolver ← BuildDidResolver(api)
3: while true do
4: < req, type, data > ← GetRequest()
5: if req == null then
6: continue
7: end if
8: if type == “AuthRequest” then
9: DDO ← DidResolver(data.DID)

10: publicKey ← GetAuthPublicKey(DDO)
11: EAC ← GenerateEncryptedChallange(
12: publicKey)
13: CacheChallange(data.DID,EAC)
14: return Response(EAC)
15: else if type == “AuthResponse” then
16: authRe← data.authReponse
17: result← V erifyAuthResponse(
18: data.DID, authRe)
19: Ensure(result == true)
20: encryptedKey ← GenerateEncryptedKey()
21: CacheEncryptedKey(data.DID, encryptedKey)
22: return Response(encryptedKey)
23: else if type == “AccessResourceX” then
24: encryptedKey ← data.encryptedKey
25: PAddr ← data.policyAddress
26: avRe← V erifyAuthV alidity(
27: data.DID, encryptedKey)
28: pvRe← V erifyPolicyV alidity(
29: DIDo, PAddr)
30: Ensure(avRe == true&&pvR == true)
31: ADL← OnChainV aldation(
32: data.DID,PAddr)
33: Ensure(“allow resource X” ∈ ADL)
34: return Response(current data of resouce X)
35: end if
36: return Response(Error)
37: end while

for seven main functions, including six extrinsic, as above-
presented, and one for executing access policies. In each
testing process, transactions have been submitted consecutively
until a specific number of times is reached. The number of
transactions for each process is increased by x10 times. Each
testing process is performed five times to eliminate the effect
of the natural unexpected random factor, and the final result is
averaged. Fig. 3 summarises the experimental results, in which
a logarithmic scale is utilized to present the value clearly due
to the large differences.

Some findings are discussed based on the experimental
results as follows:

• A single transaction’s elapsed time, called response
time, is roughly 1.0 to 1.5 on the logarithmic scale,
equivalently from 10 to 30 milliseconds.

• When the number of transactions increases by x10
times, the elapsed times will also rise linearly by
x10 times because it is equivalent to one unit on the
logarithmic scale.

• At a specific number of consecutive transactions, the
period of testing processes in different transaction
types are almost the same, but one’s validateAccess()
is slightly greater than others. This is because invoking
validateAccess() is a policy execution that leads to a
smart contract execution behind the scenes, which is
more complex than a normal extrinsic transaction.

• For application aspects, the average response time of
15 milliseconds is appropriate for the soft real-time
IoT system. Besides, it can handle a vast number of
transactions at a time, up to 10000, without any prob-
lems such as significant transaction failures or starva-
tion. Therefore, the proposed design could meet the
requirements of the IoT systems in terms of response
time and accommodate more transactions compared to
popular Blockchains like Bitcoin or Ethereum.

D. Security Analysis

The proposed design is trusted since it is inherently
achieved by Blockchain compared to centralized systems.
However, there is a trust-sharing model that is not mentioned
before but exists implicitly in the proposed design. Device
owners are considered the root of trust and can share it with
other policy administrators through DID delegation. These
administrators can manage ABAC policies of delegated devices
or objects; in turn, they can specify who are trusted endorsers
for ABAC policies. These trusted endorsers can endorse ABAC
attributes of users or subjects to make them valid for access
validation. The trust-sharing model makes access management
more convenient but still maintains trust.

Additionally, the security of the proposed system is dis-
cussed on three typical security aspects of a software system:
confidentiality, integrity, and availability (so-called CIA triad).

• Confidentiality is considered at IoT resources that
should only be accessed by subject requests satis-
fying the requirements in the object’s policies. For
a malicious subject to access an IoT resource of an
object, it has to modify its own ABAC attributes on
blockchain to meet the object’s policy. Nevertheless,
such forged ABAC attributes have no meaning for
access validation because they are not endorsed by
one of the trusted endorsers specified in the policies.
Furthermore, there are accident cases, for example,
leakage of the blockchain account’s private key. The
previous trusted blockchain account and its DID be-
come malicious. In such cases, endorsers can revoke
their endorsements for that blockchain account. Sim-
ilarly, device owners can also revoke delegations for
policy administration in case administrators become
malicious.

• Integrity is considered in on-chain data and policy
execution. The data in the pallets’ storages, such as
ABAC attributes, attribute endorsement, ABAC policy
attachment, etc., can only be modified by extrinsic
signed by their owner’s blockchain account. Regarding
ABAC policies, once a smart contract is instantiated,
the hash of both its source code and argument values
passed into its constructor will be saved to the Pallet
Contract’s storage. This means that access validation

www.ijacsa.thesai.org 91 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

1 10 100 1000 10000
0

1

2

3

4

5

Number of consecutive transactions

E
la

ps
ed

tim
e

(i
n
lo
g 1

0
(m

s)
)

setAttributes()
clearAttributes()
endorseAttributes()
unendorseAttributes()
attachPolicy()
detachPolicy()
validateAccess()

Fig. 3. Experimental results in terms of response time.

expressions of policy in the source code and trusted
endorsers specified at the instantiating stage via the
constructor are guaranteed to be consistent. Further-
more, policy execution can be distributedly conducted,
and the result, which is access decisions, can be logged
in the respective smart contract’s storage. Generally,
the integrity of policy execution is ensured by the
smart contract. Moreover, in accident situations such
as Blockchain account leakage, transactions originat-
ing from those leaked accounts are traceable because
all transactions are kept in blocks.

• Availability is achieved by relying on a decentralized
architecture with Blockchain technology. A decentral-
ized system solves the single-point-of-failure problem
in a centralized system; it can withstand a certain num-
ber of nodes failing simultaneously, and that number
depends on the blockchain network topology and con-
sensus algorithm. Each transaction has a certain fee in
a blockchain system integrated with cryptocurrencies,
so DoS or DDoS attacks by spamming transactions to
disrupt the system are expensive for attackers.

As such, our proposed design achieves trust and security.
However, these properties are also affected by the factors of
a Blockchain system, such as network topology, consensus
algorithm, and the number of honest nodes. Nonetheless, there
is a horizontal scaling solution for the trust and security of
a system by increasing the number of its Blockchain nodes.
Meanwhile, consensus algorithm selection for a Blockchain is
a trade-off between performance and security level, depending
on assumptions of trust and security.

V. CONCLUSION

This paper presents details of a Blockchain-based ABAC
model that includes two main parts: attributes management
and policy execution. Each decentralized identifier (DID) can
be associated with attributes to verify access permission,

where attributes may need to be authenticated by trusted users
(e.g., endorsers) via their DIDs. In our proposed model, the
resource (e.g., IoT device or document) owner is considered
the center, root-of-trust, who can delegate the authority to
other administrators. Resource owners and administrators can
also specify trusted endorsers for an access control policy
for a particular object. Access control policies are codifiable
by smart contracts, enhancing flexibility in access control
management. Besides, policy validation is also executed on-
chain, guaranteeing security in terms of the CIA triad. There-
fore, our proposed design has demonstrated improved features
compared to similar works based on four criteria, as shown
in Table I. Furthermore, we also implemented the proposed
model to investigate the performance regarding response time.
The experimental results show that the proposed model could
meet the soft real-time requirement for IoT systems.

In future work, intensive experiments be conducted to
investigate other essential metrics, such as workload at the
Blockchain node, storage cost, and transaction fee, before
deploying it to practical applications.

ACKNOWLEDGMENT

The authors acknowledge Ho Chi Minh City University of
Technology (HCMUT), VNU-HCM for supporting this study.

REFERENCES

[1] A. Riahi Sfar, E. Natalizio, Y. Challal, and Z. Chtourou, “A Roadmap
for Security Challenges in the Internet of Things,” Digital Communi-
cations and Networks, vol. 4, no. 2, pp. 118–137, 2018.

[2] L. Tawalbeh, F. Muheidat, M. Tawalbeh, and M. Quwaider, “IoT Privacy
and Security: Challenges and Solutions,” Applied Sciences, vol. 10,
no. 12, 2020.

[3] I. Ben Dhaou, “A Secure IoT-enabled Sensor Node for Traffic Light
Management and Level of Service Computation,” in Proceedings of the
18th International Multi-Conference on Systems, Signals and Devices
(SSD), 2021, pp. 644–648.

[4] Rachit, , S. Bhatt, and P. Ragiri, “Security Trends in Internet of Things:
a Survey,” SN Applied Sciences, vol. 3, no. 121, 2021.

www.ijacsa.thesai.org 92 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 6, 2023

[5] H. A. Maw, H. Xiao, B. Christianson, and J. A. Malcolm, “A Survey
of Access Control Models in Wireless Sensor Networks,” Journal of
Sensor and Actuator Networks, vol. 3, no. 2, pp. 150–180, 2014.

[6] F. Cai, N. Zhu, J. He, P. Mu, W. Li, and Y. Yu, “Survey of Access control
Models and Technologies for Cloud Computing,” Cluster Computing,
vol. 22, pp. 6111–6122, 2019.

[7] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang, “A Survey on
Access Control in the Age of Internet of Things,” IEEE Internet of
Things Journal, vol. 7, no. 6, pp. 4682–4696, 2020.

[8] D.-H. Nguyen, D.-N. Nguyen-Duc, N. Huynh-Tuong, and H.-A. Pham,
“CVSS: A Blockchainized Certificate Verifying Support System,” in
Proceedings of the 9th International Symposium on Information and
Communication Technology (SoICT). New York, NY, USA: Associa-
tion for Computing Machinery, 2018.

[9] J. Wan, J. Li, M. Imran, D. Li, and F. e Amin, “A Blockchain-Based
Solution for Enhancing Security and Privacy in Smart Factory,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3652–3660,
2019.

[10] W. A. Amiri, M. Baza, K. Banawan, M. Mahmoud, W. Alasmary, and
K. Akkaya, “Towards Secure Smart Parking System Using Blockchain
Technology,” in Proceedings of the 17th Annual Consumer Communi-
cations and Networking Conference (CCNC), 2020, pp. 1–2.

[11] K. Mohammad Hossein, M. E. Esmaeili, T. Dargahi, A. Khonsari, and
M. Conti, “BCHealth: A Novel Blockchain-based Privacy-Preserving
Architecture for IoT Healthcare Applications,” Computer Communica-
tions, vol. 180, pp. 31–47, 2021.

[12] D.-H. *Nguyen, N. Huynh-Tuong, and H.-A. Pham, “A Blockchain-
Based Framework for Developing Traceability Applications towards
Sustainable Agriculture in Vietnam,” Security and Communication
Networks, vol. 2022, 2022.

[13] I. Riabi, H. K. B. Ayed, and L. A. Saidane, “A Survey on Blockchain
based Access Control for Internet of Things,” in Proceedings of the
15th International Wireless Communications and Mobile Computing
Conference (IWCMC), 2019, pp. 502–507.

[14] S. Rouhani and R. Deters, “Blockchain Based Access Control Systems:
State of the Art and Challenges,” in Proceedings of IEEE/WIC/ACM
International Conference on Web Intelligence. New York, NY, USA:
Association for Computing Machinery, 2019, p. 423–428.

[15] T. Kumar, E. Harjula, M. Ejaz, A. Manzoor, P. Porambage, I. Ahmad,
M. Liyanage, A. Braeken, and M. Ylianttila, “BlockEdge: Blockchain-
Edge Framework for Industrial IoT Networks,” IEEE Access, vol. 8, pp.
154 166–154 185, 2020.

[16] P. Patil, M. Sangeetha, and V. Bhaskar, “Blockchain for IoT Access
Control, Security and Privacy: A Review,” Wireless Personal Commu-
nications, vol. 117, pp. 1815–1834, 2021.

[17] H. A. Hussain, Z. Mansor, and Z. Shukur, “Comprehensive Survey and
Research Directions on Blockchain IoT Access Control,” International
Journal of Advanced Computer Science and Applications, vol. 12, no. 5,
2021.

[18] B. Bhushan, P. Sinha, K. M. Sagayam, and A. J, “Untangling
Blockchain technology: A survey on state of the art, security threats,
privacy services, applications and future research directions,” Computers
and Electrical Engineering, vol. 90, p. 106897, 2021.

[19] S. Pal, A. Dorri, and R. Jurdak, “Blockchain for IoT access control:
Recent trends and future research directions,” Journal of Network and
Computer Applications, vol. 203, p. 103371, 2022.

[20] S. Sun, S. Chen, R. Du, W. Li, and D. Qi, “Blockchain Based Fine-
Grained and Scalable Access Control for IoT Security and Privacy,” in
Proceedings of IEEE Fourth International Conference on Data Science
in Cyberspace (DSC), 2019, pp. 598–603.

[21] J. Moffett, M. Sloman, and K. Twidle, “Specifying discretionary access
control policy for distributed systems,” Computer Communications,
vol. 13, no. 9, pp. 571–580, 1990, network Management.

[22] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based access
control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[23] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-based
access control,” Computer, vol. 48, no. 2, pp. 85–88, 2015.

[24] S. Gusmeroli, S. Piccione, and D. Rotondi, “IoT Access Control
Issues: A Capability Based Approach,” in Proceedings of the Sixth
International Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing, 2012, pp. 787–792.

[25] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart Contract-
Based Access Control for the Internet of Things,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 1594–1605, 2019.

[26] G. Ali, N. Ahmad, Y. Cao, S. Khan, H. Cruickshank, E. A. Qazi, and
A. Ali, “xDBAuth: Blockchain Based Cross Domain Authentication and
Authorization Framework for Internet of Things,” IEEE Access, vol. 8,
pp. 58 800–58 816, 2020.

[27] Y. E. Oktian and S.-G. Lee, “BorderChain: Blockchain-Based Access
Control Framework for the Internet of Things Endpoint,” IEEE Access,
vol. 9, pp. 3592–3615, 2021.

[28] Y. Nakamura, Y. Zhang, M. Sasabe, and S. Kasahara, “Capability-based
access control for the internet of things: An ethereum blockchain-based
scheme,” in Proceedings of IEEE Global Communications Conference
(GLOBECOM), 2019, pp. 1–6.

[29] H. Liu, D. Han, and D. Li, “Fabric-IoT: A Blockchain-Based Access
Control System in IoT,” IEEE Access, vol. 8, pp. 18 207–18 218, 2020.

[30] L. Song, Z. Zhu, M. Li, L. Ma, and X. Ju, “A Novel Access Control
for Internet of Things Based on Blockchain Smart Contract,” in Pro-
ceedings of the 5th Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), vol. 5, 2021, pp. 111–117.

[31] S. Sun, R. Du, S. Chen, and W. Li, “Blockchain-Based IoT Access
Control System: Towards Security, Lightweight, and Cross-Domain,”
IEEE Access, vol. 9, pp. 36 868–36 878, 2021.

[32] D. Di Francesco Maesa, P. Mori, and L. Ricci, “A Blockchain based
Approach for the Definition of Auditable Access Control Systems,”
Computers and Security, vol. 84, no. C, p. 93–119, 2019.

[33] E. Chen, Y. Zhu, Z. Zhou, S.-Y. Lee, W. E. Wong, and W. C.-C.
Chu, “Policychain: A Decentralized Authorization Service With Script-
Driven Policy on Blockchain for Internet of Things,” IEEE Internet of
Things Journal, vol. 9, no. 7, pp. 5391–5409, 2022.

[34] S. Dramé-Maigné, M. Laurent, and L. Castillo, “Distributed access
control solution for the IoT based on multi-endorsed attributes and
smart contracts,” in Proceedings of the 15th International Wireless
Communications and Mobile Computing Conference (IWCMC), 2019,
pp. 1582–1587.

www.ijacsa.thesai.org 93 | P a g e

