
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

927 | P a g e

www.ijacsa.thesai.org

Diversity-based Test Case Prioritization Technique to

Improve Faults Detection Rate

Jamal Abdullahi Nuh
1
, Tieng Wei Koh

2
, Salmi Baharom

3
, Mohd Hafeez Osman

4
, Lawal Babangida

5
, Sukumar

Letchmunan
6
, Si Na Kew

7

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia
1, 2, 3, 4, 5

School of Computer Sciences, Universiti Sains Malaysia (USM), 11800 Pulau Pinang, Malaysia
6

Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia, 80130 Skudai, Malaysia
7

Abstract—Regression testing is an important task in software

development, but it is often associated with high costs and

increased project expenses. To address this challenge,

prioritizing test cases during test execution is essential as it aims

to swiftly identify the hidden faults in the software. In the

literature, several techniques for test case prioritization (TCP)

have been proposed and evaluated. However, existing weight-

based TCP techniques often overlook the true diversity coverage

of test cases, resulting in the use of average-based weighting

practices and a lack of systematic calculation for test case

weights. Our research revolves around prioritizing test cases by

considering multiple code coverage criteria. The study presents a

novel diversity technique that calculates a diversity coverage

score for each test case. This score serves as a weight to

effectively rank the test cases. To evaluate the proposed

technique, an experiment was conducted using five open-source

programs and measured its performance in terms of the average

percentage of fault detection (APFD). A comparison was made

against an existing technique. The results revealed that the

proposed technique significantly improved the fault detection

rate compared to the existing approach. It is worth noting that

this study is the first of its kind to incorporate the true diversity

score of test cases into the TCP process. The findings of our

research make valuable contributions to the field of regression

testing by enhancing the effectiveness of the testing process

through the utilization of diversity-based weighting techniques.

Keywords—Regression testing; fault detection; test case

prioritization; test case diversity; test case coverage; species

diversity

I. INTRODUCTION

Despite the importance of regression testing, it has been
described as an expensive operation, and various approaches
have been developed to overcome this challenge. One of these
effective approaches is test case prioritization (TCP), which
aims to prioritize the execution of the most critical test cases to
detect hidden faults more rapidly during the test execution
process. TCP employs several techniques such as algorithms
and metrics to reorder test cases. The primary objective of
these techniques is to determine the optimal ordering
combination of the test suite based on specific criteria.

The most crucial aspect of TCP is the detection of faults,
which can only be known after executing the test cases.
Therefore, it becomes necessary to estimate or predict the test
cases that can achieve this goal before the test execution
process begins. During the estimation phase, TCP techniques

rely on various code coverage measures as surrogate indicators.
These measures directly examine the code and describe how
multiple test cases cover the code under test [1]. These
coverage measures include line, branch, method, and so on [2],
also referred to as criteria. Moreover, relying solely on a single
criterion may not be sufficient and can be misleading, as it only
represents a portion of the code structure. Thus, considering
multiple criteria has been recognized as effective and can
potentially identify the test cases that will ultimately enhance
the fault detection rate [3]-[6].

Researchers have proposed several weight-based
techniques to address TCP problems by incorporating code
coverage information [2], [7]-[10]. These techniques integrate
different code coverage criteria such as line, branch, method,
and more. The objective is to assign weights to each criterion
and calculate the final priority value for each test case.
However, some of these techniques derive weights based on
averages [3], [5], [11], while others assign fixed weight scores
to the considered criteria based on specific factors [12], [13].
Such informal practices of weight assignment to test cases and
criteria can be deemed unfair [14], as test cases cover distinct
code structures and are executed with diverse test contents and
different input values [4]. However, test cases with these
characteristics can unveil hidden faults within the covered
structures. Nonetheless, previous weight-based techniques may
not effectively maximize the fault detection rate due to
ineffective weightage. This inefficiency primarily stems from
the informal characterization of code coverage information,
leading to ambiguous and unjust weight scores for the test
cases. Consequently, these practices ultimately result in the
selection of ineffective test cases that fail to expedite fault
detection during the testing process [14]. As the nature of faults
is diverse, identification of all fault locations within a program
poses challenges due to the distribution of faults [15].
Therefore, the source code information (e.g., code-coverage
data) are the best available resource to use as surrogate
measure in order to identify the best capable test cases that can
execute the fault code and eventually reveal such faults [16].
Hence, the future strategies will depend on the level of
understanding and representation, as well as the reformulation
of the current code coverage data. These factors will determine
the extent to which fault detection can be maximized.

Within the specialized literature, there has been a
suggestion regarding the need to develop a new TCP strategy
that enhances the fault detection rates of test cases [17], [18].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

928 | P a g e

www.ijacsa.thesai.org

This motivation has prompted our current study, which aims to
explore new research directions by specifically examining the
role of diversity within test case coverage data to improve the
fault detection rate. While some previous techniques drew
inspiration from concepts in Biology or related domains,
certain biodiversity concepts, such as species diversity and its
associated metrics, have remained unexplored in TCP research.
Thus, the concepts of species diversity have served as the
inspiration for this study and applying these concepts during
the weighting practices is crucial.

In this study, assumption made is that whenever a test case
covers a diverse code structure and that program structure is
executed correctly, any faults in that area can be revealed. Our
goal is to transform the previous test case problem into a
species diversity problem and adopt species diversity metrics
[30] to measure the true diversities of the test cases based on
their coverage counts. Each line of code is treated as unique,
and it is assumed that every test case is susceptible to faults.
Therefore, the prioritization of test cases is based on their
diversity scores, with higher scores indicating coverage of
diverse code structures. It is believed that a test case that
maintains diverse coverage is better in terms of fault detection
compared to a test case that covers few code structures or
receives a lower diversity score.

The contributions of this work can be summarized as
follows:

 This study represents a pioneering approach as it is the
first of its kind to utilize species diversity concepts to
weigh test cases based on their true diversities in terms
of code coverage counts.

 Through rigorous comparative experimental studies,
this study provides empirical validation of the proposed
metric's effectiveness in terms of the average
percentage of fault detection rate (APFD).

The paper is structured as follows: Section II provides an
overview of related works in the field. Section III introduces
the proposed technique, while Section IV presents a
motivational example. The study experiment is presented in
Section V, followed by the presentation of results and analysis
in Section VI. Finally, Section VII summarizes the study and
suggests potential future research directions.

II. RELATED WORK

TCP is a vibrant area of research, with numerous
algorithms and metrics being proposed and evaluated [2], [19],
[20]. This section provides an overview of existing studies on
weight-based techniques and their research directions.

Earlier studies delved into TCP techniques, aiming to
address cost constraints and improve fault detection in
regression testing [7], [8]. These studies introduced a general-
purpose TCP technique that incorporated statement and branch
coverage information. The primary focus was on two classical
greedy algorithms: a total greedy algorithm and an additional
greedy algorithm.

The literature also explored combinations of various TCP
techniques [4], [21]. These studies integrated strategies from

the total and additional greedy algorithms and incorporated
probabilistic techniques by assigning probability scores to the
relevant criteria. These probability values were adjusted based
on the specific technique employed.

Criticism has been directed at existing practices that
revolve around code isolation units or single-criteria techniques
[22]. Such isolations may lead to a loss of valuable coverage
information crucial for identifying program faults. Other
studies ranked test cases based on estimated coverage
information derived from static code structures [23], while
some employed multi-criteria decision-making (MCDM)
techniques for test case ranking [14].

TCP techniques have also been applied to Object-Oriented
Programs (OOP). For instance, in [24], nine coverage criteria
were considered, and fixed weights were assigned to each
criterion to rank the test cases. In [12], a coupling measure was
employed to rank test cases based on a constructed dependency
graph. Another study [13] incorporated dependence-based
analysis, selecting test cases based on their dependency scores.

Iyad and Khalid [11] introduced the average weight-based
technique for TCP, utilizing line of code (LOC) and method
coverage as criteria. Test cases with higher scores were
assigned higher priority rankings. They evaluated their
technique using a small experimental program.

Initial research on multi-criteria weight-based TCP
techniques proposed a method incorporating ten factors
grouped into four categories: Requirement, time, defect, and
complexity [25]. Each factor was assigned a weighted score,
and the evaluation focused on factors such as defect severity,
prioritization time, and acceptable test case size.

Another weighted technique was proposed by Ahmad et al.
[26], where test case execution decisions were based on final
weight scores derived from three criteria: pairwise event,
frequency pairwise, and fault matrix. These weights were used
to prioritize the execution of test cases.

A TCP technique considering multiple coverage criteria
was proposed by Prakash and Rangaswamy [3]. The
researchers criticized the use of single criteria and existing
techniques for being time-consuming and costly. They
introduced a multi-coverage Average Weight-based Technique
(AWT) and empirically demonstrated its superiority in terms of
modified APFD. Building upon this work, Ammar et al. [5]
proposed an Enhanced AWT (EAWT) technique that assigned
different weights to test cases with similar weight scores,
assuming they covered the same code segment and revealed
similar faults. However, it is worth noting that this assumption
may not hold true in practice, as test cases can vary
significantly and possess dissimilar input values.

Several TCP techniques have been presented to enhance
fault detection rates, with multi-coverage weighting techniques
exhibiting promising performance. However, there has been
relatively less focus on TCP techniques for OOP, particularly
in Java [27] to [29].

Moreover, single coverage criteria have shown lower
effectiveness compared to lightweight metrics, particularly
multi-coverage weight-based metrics [3], [22]. However,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

929 | P a g e

www.ijacsa.thesai.org

existing techniques often treat criteria and test cases, similarly,
disregarding their inherent differences in nature and lacking
formal weight calculations. Additionally, diversity weighting
practices have been largely overlooked in the TCP literature.

Other additional notable gap in the existing literature is that
their consideration of prioritizing test cases based on greedy
approaches, where only the test case with the highest coverage
count is executed. However, this greedy approach fails to
assess whether the test case covers multiple criteria or not, as it
primarily focuses on maximizing coverage for a single
criterion. When dealing with multiple criteria, this approach
proves to be inadequate and might even lead to some test cases
to receive similar weights. This study argues that test cases that
cover multiple criteria in a diverse manner have a higher
potential for detecting hidden faults. Since the faults are
distributed over the different code structures and the exact
locations of faults are unknown, considering diverse coverage
becomes crucial in enhancing fault detection capabilities.

A recent survey on TCP and several other studies have
emphasized the need for novel techniques, including diversity
measures, to improve the current state of TCP techniques [17]
[31]. This paper aims to address this need by investigating
diversity weighting strategies in test cases, an aspect that has
not been previously explored.

III. PROPOSED DIVERSITY WEIGHTED BASED TECHNIQUE

In this section, the proposed technique that considers
multiple coverage criteria is discussed including instruction
coverage, branch coverage, line coverage, and method
coverage. These criteria provide insights into the underlying
structure of the source code being tested. Adequate testing of a
program necessitates a sufficient number of diverse test cases
that target different areas within the code structure. While
various TCP techniques with different motivations have been
explored in the existing literature to prioritize test cases, our
study introduces a unique approach utilizing the species
diversity metric, originally employed in ecology to measure
species diversity [30]. Therefore, these measures were selected
for the following reasons:

 These metrics address the identified gap and serve the
purpose of calculating the true diversity score of test
cases across multiple coverage criteria.

 In contrast to previous informal weight practices, the
selected metric assigns formal and unique weights to
the test cases, describing their diverse code coverage
characteristics.

 By employing these measurements, each test case can
be identified as a unique entity, and their unique
diversity scores can be used as tie-breaking strategy and
ranking priorities. This means that test cases with
higher diversity are ranked higher than those with lower
diversity.

On the other hand, the proposed approach encompasses two
stages: (1) the adoption of four dynamic code coverages, which
are treated as species-based problems, and (2) the introduction
of a novel diversity weighting technique that computes the
Final Priority Value (FPV) for each test case.

A. Adopt and Charecterize Code Coverage as a Species

based Approach

The code coverage criteria adopted in this study encompass
instruction coverage, branch coverage, line coverage, and
method coverage. This section provides a description of how
the TCP problem was formulated, utilizing a species-based
approach. This characterization aims to enhance the
effectiveness of the test execution process.

Code coverage information consists of multiple test cases,
each associated with their respective coverage counts for
various code structures, also known as criteria. In this study
these entities were treated as a species-based problem and
introduce the following terms, definitions, and symbols to
facilitate our discussion and analysis:

Definition 1: Test cases are analogous to species(s), and it
is important to emphasize that each species is unique. Test
cases are purposefully designed with different test inputs and
the ability to target various parts of the system under test
(SUT).

Definition 2: A test suite, consisting of a group of unique
species, represents a community(s). S is defined as S = {𝑠1,
𝑠2…. s𝑖}, where i represents the ith species in S. 𝑠1 denotes the
first species, while si denotes the last species in the set.

Definition 3: Code structures or criteria are considered as
species habitat (HB): In this case, the criteria include branch
coverage (br), instruction coverage (in), line coverage (li), and
method coverage (me). HB is defined as HB = {Hb1,
Hb2…Hbj}, where j represents the jth habitat in HB (e.g., in,
br, li, and me). A species can be found in any of these habitats,
for example, 𝑠1 can be present in Hb1, Hb2, Hb3 or Hb4, and
their presence is recorded in terms of coverage counts.

Definition 4: The coverage counts are denoted as n,
representing the number of ith species (si) found in jth habitat
(Hbj), which is also written as nij. It is important to note that
the coverage counts, n, can range from 0 to any non-negative
number. A count of 0 indicates that the habitat is not
represented by that species, indicating a loss of species.

Definition 5: The total coverage count of each species
across all habitats is denoted as N.

B. Diversity-Aware TCP Technique

In this paper, a species diversity metric that measures the
diversity of each species in relation to its habitats was used.
This metric allows us to identify species with higher diversity,
indicating their effectiveness and prioritization during the test
execution process.

The proposed Diversity-aware TCP technique integrates
multiple code coverage metrics to calculate a unique diversity
weight for each test case. This diversity weight is determined
by the extent of diversity exhibited by the species covering
multiple code structures, also known as criteria. Our
assumption is that species with higher coverage diversity
scores are more likely to uncover hidden faults.

To illustrate the methodology employed in the proposed
Diversity-based TCP technique, the following steps are
outlined:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

930 | P a g e

www.ijacsa.thesai.org

a) Step one: Collecting Coverage Values. In this step,

the test case coverage needs to be collected for various criteria

using tools such as JaCoCo within the JUnit framework.

b) Step two: Calculating Diversity Score. In this step,

the species diversity score is calculated using the Gini-

Simpson's index, which is a well-known diversity measure.

This metric takes into account the dominance of species and

assigns higher weight to abundant species. The proposed Gini-

Simpson index (1-D) is derived from the original Simpson's

index (D) [30]. The formulas for calculating the Gini-Simpson

index are as follows:

 𝑠

 (
∑ ()

) 1)

where,

1-D(si) denoted as the Gini–Simpson index (1-D) of the ith

species;

ni,j represents the count of species from the ith species under the

jth habitat;

Ni represents the total count of coverage for the jth species

across all habitats; and

Σ denotes the sum of multiple terms.

c) Step three: Ranking the Species. In this step, the

prioritization of species occurs after calculating the diversity

scores using the specified metric. The species are ranked

based on these scores in descending order, from highest to

lowest.

IV. MOTIVATIONAL EXAMPLE

To illustrate the functionality of the proposed technique, a
demonstration is provided in this section using the information
presented in Table I. The table includes eight species (T1 to
T8) and four habitats (in, br, li, and me). Based on this
coverage information, the test cases were assigned weights
according to their diversity. The demonstration involves the
following phases:

1) Collect the coverage counts for each species in relation

to the selected habitats.

2) Calculate the diversity score for each species based on

their habitats. This step may include a subset step specific to

the calculation process of the chosen metric.

3) Rank the test cases in descending order from highest to

lowest value.

1) Phase one: Collecting Coverage Counts

During this phase, the coverage counts of species need to
be collected with respect to the selected habitats. Tools such as
JaCoCo can be utilized to facilitate this process. The data
provided below represents a subset of species obtained from
the CruiseControl program, along with the habitats they cover,
as shown in Table I. It is important to note that the program
consists of 299 species, but for the purpose of demonstration,
only eight species was selected from the program.

TABLE I. SPECIES COVERAGE COUNTS OF CRUISECONTROL PROGRAM

Species IN BR LI ME

T1 74 2 27 8

T2 97 8 32 7

T3 87 5 32 6

T4 31 1 12 4

T5 34 1 14 3

T6 41 2 17 5

T7 127 10 31 5

T8 111 2 40 9

2) Phase two: Calculate the Diversity Score

To calculate the diversity associated with each species
across the selected habitats, the diversity score is used as a
weight for the species. The calculation process can be outlined
as follows.

The following example provides guidelines on how to
calculate the diversity score using the given data, specifically
focusing on the Gini-Simpson index as described in equation
(1). Please note that the calculation process for other metrics
can be carried out using a similar approach. The following
steps are involved in this process:

 Step 1: calculate total coverage count of ith species
across all habitats, denoted as Ni where Ni = Σ ni,j. In
this case, NT8 = (111+2+40+9) = 162, NT7=
(127+10+31+5) = 173, and the remaining values are
listed in column two in Table II.

 Step 2: calculate Ni (Ni -1) for each species e.g., NT8
(NT8 -1). In this case, T8 = 162*(162-1) = 26082, T7 =
173*(173-1) = 29756, and the remaining values are
listed in column three in Table II.

 Step 3: calculate ni,j (ni,j -1) of ith species in jth habitat
e.g. nT8me(nT8me -1). In this case, T8 = 9*(9-1) = 72,
T7 = 5*(5-1) = 20, and the remaining values are listed
in columns four and five in Table II.

 Step 4: calculate Σ ni,j (ni,j -1) of ith species in jth
habitat. In this case, the results of this calculation are
listed in column two in Table III.

 Step 5: calculate D where D = Σ ni,j (ni,j -1)/(Ni (Ni -
1)) (diversity weight of Simpson). In this case, the
results of this calculation are listed in column three in
Table III.

 Step 6: calculate 1-D (diversity weight of Gini–Simpson
metric). This is the result needed to rank test cases. The
results of this calculation are listed in column four in
Table III.

TABLE II. STEPS 1-3: COVERAGE VALUES AND TEST CASES OF

CRUISECONTROL PROGRAM

 Step 1 Step 2 Step 3: ni,j(ni,j-1)

Species Ni Ni (Ni -1) IN BR LI ME

T1 111 12210 5402 2 702 56

T2 144 20592 9312 56 992 42

T3 130 16770 7482 20 992 30

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

931 | P a g e

www.ijacsa.thesai.org

 Step 1 Step 2 Step 3: ni,j(ni,j-1)

Species Ni Ni (Ni -1) IN BR LI ME

T4 48 2256 930 0 132 12

T5 52 2652 1122 0 182 6

T6 65 4160 1640 2 272 20

T7 173 29756 16002 90 930 20

T8 162 26082 12210 2 1560 72

TABLE III. STEP 4-6: COVERAGE VALUES AND TEST CASES OF

CRUISECONTROL PROGRAM

 Step 4 Step 5: D Step 6

Species Σ ni,j(ni,j-1) Σ ni,j(ni,j-1)/ Ni (Ni -1) 1-D

T1 6162 0.5047 0.4953

T2 10402 0.5051 0.4949

T3 8524 0.5083 0.4917

T4 1074 0.4761 0.5239

T5 1310 0.494 0.506

T6 1934 0.4649 0.5351

T7 17042 0.5727 0.4273

T8 13844 0.5308 0.4692

3) Phase three: Rank the Test Cases

In the second phase, the diversity score of each species is
computed using the suggested metric mentioned earlier. This
score serves as a priority value, allowing the ranking of species
from highest to lowest based on this value. The resulting
ranked species are as follows:

1-D(si) = T6, T4, T5, T1, T2, T3, T8, T7.

V. EXPERIMENTS

The objective of this experimentation is to evaluate the
fault detection rate of the diversity weighted technique. In this
section, an overview of the steps and tools used to assess the
effectiveness of the proposed weighted technique in TCP is
provided. A comparative analysis is conducted between the
proposed weighted technique and an existing weighted
technique, including [5].

A. Experimental Goal

The main focus of this paper is to prioritize test cases that
can effectively detect hidden faults in a program during the
early stages of the execution process. The objective is to
determine which technique, between the proposed diversity
weighted technique and an existing weight-based technique,
exhibits a higher fault detection rate. The research question
being investigated is whether the proposed technique
outperforms the existing technique in terms of fault detection
rate.

B. Study Objects

This study utilized five object-oriented programs, namely
CruiseControl (A), DisjointSets (B), AccountSubType (C),
Losenotify (D), and Odset (E). These programs were obtained
from the Software Artifact Infrastructure Repository and have
been previously utilized in other TCP studies [27], [13]. In this
study, the entire programs were analyzed without dividing
them into different versions.

The characteristics of the programs were measured,
including lines of code (LOC), number of classes (NOC),
number of species (NOS), and number of mutants (NOM).
Unlike previous studies [13], certain characteristics,
specifically the program sizes in terms of NOC and LOC, were
calculated differently in this study. The measurements were
obtained after generating all the program's test cases using an
automated tool called o3smeasures, which is an Eclipse plugin.
Table IV illustrates that the program sizes varied from 684 to
4989 LOC, while the number of species ranged from 15 to 299
NOS.

The implementation of the study object was done using the
Java programming language, and the test cases (species) were
written using the JUnit-5 framework. The JUnit species were
generated using a tool called Randoop, which automatically
generates unit tests for Java classes. The test coverage for these
species was calculated using the JaCoCo agent, which is also
an Eclipse plugin, taking into account all the desired coverage
criteria. Furthermore, program faults were intentionally
introduced using popular mutant generation tools called
MuJava (µJava) [27], [13].

TABLE IV. STUDY OBJECT CHARACTERISTICS

ID Objects LOC NOC NOS NOM

A CruiseControl 4958 6 299 9

B DisjointSets 1809 5 15 2

C AccountSubType 684 8 53 27

D Losenotify 1463 6 132 6

E Odset 4989 4 167 5

C. Performance Measures

To compare the effectiveness of different techniques, the
Average Percentage of Faults Detected (APFD) is commonly
used as a standard metric. This metric facilitates the
comparison of fault detection rates achieved by different
techniques, aiding in the determination of the most effective
approach. The objective is to maximize the fault detection rate
by executing the test cases. APFD is well-suited for this task as
it provides test engineers with prompt feedback, enabling the
early identification and resolution of faults.

Let T represent the test case community, m represent the
total number of faults detected in a specific object, n represent
the total number of test cases (species), and TFi denote the
position of the first test case that detects the ith fault. The
APFD formula is as follows:

APFD = 1-

A higher APFD rate indicated better performance, and the
results were reported as a percentage to quantify the
differences.

VI. RESULT

This section presents the experimental results for all five
Java programs when applying the proposed technique using
Equation 1. The results were carefully organized, summarized,
and presented.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

932 | P a g e

www.ijacsa.thesai.org

To prioritize species from multiple programs that cover
different habitats, the proposed technique was compared to an
existing TCP technique. Since these techniques rank the
species differently, they can yield distinct results. The
evaluation of these techniques was performed using the APFD
metric (see Equation 2). Each program received an APFD
score (in percentages) from both techniques.

The experiment's findings are summarized and illustrated
using a bar chart (refer to Fig. 1) for visual representation of
the data. The horizontal axis (x-axis) of the chart represents the
five employed programs, identified by their respective ID
labels. The vertical axis (y-axis) represents the APFD scores
obtained by the different TCP techniques after applying them
to the object programs. The APFD score, ranging from 0 to 100
percent, serves as a performance indicator, where higher scores
indicate better results.

Fig. 1. APFD values of 1-D and EAWT.

Fig. 1 presents a comparison between the diversity-
weighted technique utilizing the Gini-Simpson index and the
EAWT technique. The data clearly indicates that the newly
proposed technique exhibits strong performance across all the
programs.

The EAWM technique exhibited the highest and lowest
APFD scores among all the programs, achieving 83.67% for
program A and 50.63% for program D, respectively. In
contrast, the proposed technique consistently achieved the
highest or second highest APFD scores across the programs.
Specifically, it scored 88.13% and 84.47% for programs A and
D, respectively, outperforming the EAWM technique. It is
noteworthy that the EAWM technique demonstrated weaker
performance in multiple programs, particularly programs D, E,
and B, where APFD scores ranged from 50.63% to 56.67%. In
comparison, the proposed technique consistently delivered
higher APFD scores in those programs. The lowest APFD
score obtained by the proposed technique was 58.50% for
program E, which still surpassed the corresponding technique's
score of 56.35% for the same program. These findings indicate
the superior performance of the proposed technique across
various programs, even in scenarios with lower APFD scores.

After comparing the APFD results for each object under
different techniques, it was evident that the proposed technique
based on the Gini-Simpson index (1-D) outperformed the
existing weight-based technique (EAWT). The 1-D technique
exhibited a substantial improvement in APFD scores, with a
mean difference of 12.62% higher than the EAWT technique.

Although the objects varied in size and the techniques
produced different rankings for the species, there were
indications that prioritizing test cases based on their true
diversity score had the potential to achieve higher APFD
scores. While certain programs received lower APFD scores,
this could be attributed to the nature and distribution of faults
within those programs. Another possible reason for the poorer
performance of the existing technique could be its feature of
postponing certain fault-revealing species. In contrast, the
proposed technique avoided species postponement, especially
when they received similar final weight values. Conversely, the
existing technique delayed some species assuming their
similarity in fault identification, which could lead to slower
detection of certain faults.

VII. ANALYSIS AND DISCUSSIONS

The results obtained from the experiment conducted clearly
stated that the proposed diversity-weighted technique was
effective when compared with the existing weight-based
technique. This means the proposed technique prioritizes test
cases based on their true diversity score, and therefore achieved
higher fault detection rates, as depicted by the APFD scores.
The obtained results were consistent across all the Java
programs considered in this study.

Fig. 1 presents a comparison between the diversity-
weighted technique using the Gini-Simpson index (1-D) and
the existing technique (EAWT) in terms of APFD scores across
all programs. It is evident that the proposed technique
consistently outperforms the existing technique. The EAWT
technique shows varying levels of performance, with the
highest and lowest APFD scores achieved in programs A and
D, respectively. On the other hand, the proposed technique
consistently achieves the highest APFD scores across all
programs.

The APFD results strongly support the effectiveness of the
proposed technique. The proposed technique (1-D) consistently
outperforms the EAWT technique, with a mean difference
reaching up to 12.62%. These findings indicate that prioritizing
test cases based on their true diversity scores can significantly
improve the fault detection rate.

The higher performance reported in the proposed diversity
weighted technique of the Gini-Simpson index can be
attributed to its ability of considering the test case’s true
diversity based on their multiple coverage counts. Such
features include treating each test cases and each line of code
as unique entity and formally assigning diversity scores
accordingly, the proposed technique ensures that test cases
covering diverse code structures with higher diversity score are
prioritized first. This strategy is different from those in the
existing technique, which relies on average-based weight
assignment and thus might eventually result in unfair and
ambiguous weight scores for test cases.

0

10

20

30

40

50

60

70

80

90

100

A B C D E

APFD (%)

1-D EAWT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

933 | P a g e

www.ijacsa.thesai.org

The variations in APFD scores among the programs can
also be attributed to the nature and distribution of faults within
the programs. Furthermore, the decreased fault detection
performance of the existing technique may be attributed to its
feature of postponing certain fault-revealing test cases,
especially when they receive similar weight scores. In contrast,
the proposed technique avoids postponing strategies and only
aim to prioritize test cases based on their true diversity scores,
leading to more effective fault detection.

Overall, the findings of this study highlight the significance
of incorporating true diversity scoring into the test case
prioritization process. Employing diversity-based metrics
during the test case weighting enhances the effectiveness of
regression testing by considering only those test cases that
cover diverse code structures and executing them first during
the test execution cycles. This approach improves the fault
detection rate and contributes to more efficient and cost-
effective software development.

VIII. THREAT TO VALIDITY

This section describes the validity threats that might arise
during the experiments. In this study, programs from the SIR
repository were adopted, and their corresponding test cases and
mutants were generated using automated tools employed in
previous related studies. However, it is important to note that
these programs might be outdated, and the tools used may have
limitations in generating effective test cases or diverse mutants.
This threat (internal validity) was mitigated by addressed by
adopting recent tools that are widely utilized in the literature or
continuously updated tools were selected.

On the other hand, external validity threats related to the
generalizability of the results were also considered. These
threats pertain to the subject programs, their test cases, and
their mutants, which may affect the external validity. To
mitigate these concerns, six Java programs with over six
hundred test cases were selected from a reputable open-source
repository. However, it is important to acknowledge that there
may still be limitations within this context, which can be
addressed in future research.

IX. FUTURE WORK

In future research, it is recommended to explore the
following directions.

In future research, it is recommended to conduct a
comparison study between the proposed approach, and the
existing ones by applying them to a diverse set of object
programs. Such a comparison might provide further insights
into the effectiveness of these different approaches in fault
detection.

While this study is the first of its kind to investigate the
effectiveness of species diversity metrics, the focus has been on
the Gini-Simpson index (1-D). However, there are several
other species diversity metrics that are worth investigating in
the future. This will provide additional insights into the
effectiveness of different metrics and their impact on the
analysis of diversity in various domains.

The study also suggests improving the informal practices of
assigning weights to different criteria of interest. Therefore,
investigating the role of the species diversity metrics in
formalizing the weighting practices for these criteria before
calculating the final priority value of the test cases is
recommended.

X. CONCLUSION

In the context of regression testing, prioritizing test cases is
a critical task aimed at optimizing their execution order based
on specific criteria to enhance the effectiveness of the testing
process.

In this study, a novel diversity-based TCP technique that
incorporates multiple code coverage criteria and assigns
weights to individual test cases was proposed. Each test case
was treated as a unique species, while the coverage criteria
were considered as habitats. To quantify the diversity within
each test case across its covered habitats, a new diversity
metric was introduced. The diversity scores obtained were then
used as a basis for ranking the test cases, with higher scores
indicating a higher potential for fault detection.

To evaluate the effectiveness of the proposed TCP
technique in terms of fault detection, an experiment was
conducted using five open-source programs and compared the
results with an existing technique. Our proposed diversity-
based technique consistently outperformed the existing
technique, achieving higher scores in terms of the APFD across
all tested programs.

The results obtained from our proposed technique highlight
its ability to improve the fault detection rate.

ACKNOWLEDGMENT

This work received partial support from the Fundamental
Research Grant Scheme (FRGS) under grant number
FRGS/1/2019/SS06/UPM/02/6, project code 05-01-19-
2199FR, and vote number 5540324, funded by the Ministry of
Education Malaysia.

REFERENCES

[1] M. Khatibsyarbini, M. Isa, D. N. A. Jawawi, and R. Tumeng, “Test case
prioritization approaches in regression testing: A systematic literature
review,” Information and Software Technology, vol. 93, pp. 74–93,
2018.

[2] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[3] N. Prakash and T. R. Rangaswamy, “Weighted method for coverage-
based test case prioritization,” Journal of computational Information
systems, 2013.

[4] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified test
case prioritization approach,” ACM Transactions on Software
Engineering and Methodology, vol. 24, no. 2, p. 10, Dec. 2014.

[5] A. Ammar, S. Baharom, A. A. A. Ghani, and J. Din, “Enhanced
weighted method for test case prioritization in regression testing using
unique priority value,” 2016 International Conference on Information
Science and Security (ICISS), pp. 1–6, 2016.

[6] J. Ahmad, and S. Baharom, (2017). “A systematic literature review of
the test case prioritization technique for sequence of events,”
International Journal of Applied Engineering Research, 12(7), 1389-
1395.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 6, 2023

934 | P a g e

www.ijacsa.thesai.org

[7] G. Rothermel, R. Untch, C. Chengyun, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on Software
Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[8] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE transactions on
software engineering, vol. 28, no. 2, pp. 159–182, 2002.

[9] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, and L. Etxeberria,
“Employing multi-objective search to enhance reactive test case
generation and prioritization for testing industrial cyber-physical
systems,” IEEE Transactions on Industrial Informatics, vol. 14, no. 3,
pp. 1055–1066, March 2018.

[10] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case
prioritization using ordered sequences of program entities,” Software
Quality Journal, vol. 22, no. 2, pp. 335–361, Jun. 2014.

[11] A. Iyad and M. O. N. Khalid, “Combined source code approach for test
case prioritization,” ICISS ’18: Proceedings of the 2018 International
Conference on Information Science and System, pp. 12–15, Apr. 2018.

[12] S. Panda, D. Munja, and D. P. Mohapatra, “A slice-based change impact
analysis for regression test case prioritization of object-oriented
programs,” Advances in Software Engineering, vol. 2016, pp. 1–20,
May 2016.

[13] C. R. Panigrahi and R. Mall, “A heuristic-based regression test case
prioritization approach for object-oriented programs,” Innovations in
Systems and Software Engineering, vol. 10, no. 3, pp. 155–163, 2014.

[14] A. D. Shrivathsan, R. Krishankumar, A. R. Mishra, K. S. Ravichandran,
S. Kar, and V. Badrinath, “An integrated decision approach with
probabilistic linguistic information for test case prioritization,”
Mathematics, vol. 8, no. 11, 2020.

[15] Y. Wang, X. Chen, W. Zhou, X. Liu, J. Li, and G. Lu, “Using Algebra
Graph Representation to Detect Pairwise-Constraint Software Faults,” in
IEEE Access, vol. 8, pp. 184550–184559, 2020.

[16] T. B. Noor and H. Hemmati, “A similarity-based approach for test case
prioritization using historical failure data,” 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pp. 58–68,
2015.

[17] R. Mukherjee and K.S. Patnaik, “A survey on different approaches for
software test case prioritization,” Journal of King Saud University -
Computer and Information Sciences, vol. 33, no. 9, pp. 1041–1054,
2021.

[18] H. Hemmati, “Advances in techniques for test prioritization,” Advances
in Computers, vol. 112, pp. 185–221, 2019.

[19] K. R. Walcott, M. lou Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in International symposium on
Software testing and analysis, 2006, pp. 1–12.

[20] S. Wang, S. Ali, A. Gotlieb, D. Pradhan, D. Buchmann, and M. Liaaen,
“Multi-objective test prioritization in software product line testing: an
industrial case study,” SPLC ’14: Proceedings of the 18th International
Software Product Line Conference, vol. 1, pp. 32–41, Sep. 2014.

[21] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,”
In 2013 35th International Conference on Software Engineering (ICSE),
pp. 192–201, 2013.

[22] R. Huang, Q. Zhang, D. Towey, W. Sun, and J. Chen, “Regression test
case prioritization by code combinations coverage,” Journal of Systems
and Software, vol. 169, p. 110712, 2020.

[23] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A
static approach to prioritizing JUnit test cases,” IEEE Transactions on
Software Engineering, vol. 38, no. 6, pp. 1258–1275, 2012.

[24] N. Chauhan, “A Multi-Factor Coverage Based Test Case Prioritization
Technique for Object Oriented Software”. International Journal of
System & Software Engineering, 3(1), pp. 18-23, 2015

[25] T. Muthusamy and K. Seetharaman, “Efficiency of test case
prioritization technique based on practical priority factor,” International
Journal of Soft Computing, vol. 10, no. 2, pp. 183-188, 2015.

[26] J. Ahmad, S. Baharom, A. A. Abd Ghani, H. Zulzalil, and J. Din,
“Measuring the Effectiveness of TCP Technique for Event Sequence
Test Cases,” In Science and Information Conference, Springer, Cham,
2018, vol 857, pp. 881-897.

[27] R. Mukherjee and K. S. Patnaik, “Prioritizing JUnit Test Cases Without
Coverage Information: An Optimization Heuristics Based Approach,”
IEEE Access, vol. 7, pp. 78092–78107, 2019.

[28] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test case
prioritization in a JUnit testing environment,” Proceedings -
International Symposium on Software Reliability Engineering, ISSRE,
pp. 113–124, 2004.

[29] V. KS and S. Mathew, “Test case prioritization and distributed testing of
object-oriented program,” Turkish Journal of Electrical Engineering &
Computer Sciences, vol. 27, no. 5, pp. 3582–3598, 2019.

[30] E. H. Simpson, “Measurement of diversity,” Nature, vol. 163, pp. 688–
688, 1949.

[31] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter:
Quantifying the diversity of sets of test cases,” 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST),
pp. 223–233, 2016.

