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Abstract—Regression testing is an important task in software 

development, but it is often associated with high costs and 

increased project expenses. To address this challenge, 

prioritizing test cases during test execution is essential as it aims 

to swiftly identify the hidden faults in the software. In the 

literature, several techniques for test case prioritization (TCP) 

have been proposed and evaluated. However, existing weight-

based TCP techniques often overlook the true diversity coverage 

of test cases, resulting in the use of average-based weighting 

practices and a lack of systematic calculation for test case 

weights. Our research revolves around prioritizing test cases by 

considering multiple code coverage criteria. The study presents a 

novel diversity technique that calculates a diversity coverage 

score for each test case. This score serves as a weight to 

effectively rank the test cases. To evaluate the proposed 

technique, an experiment was conducted using five open-source 

programs and measured its performance in terms of the average 

percentage of fault detection (APFD). A comparison was made 

against an existing technique. The results revealed that the 

proposed technique significantly improved the fault detection 

rate compared to the existing approach. It is worth noting that 

this study is the first of its kind to incorporate the true diversity 

score of test cases into the TCP process. The findings of our 

research make valuable contributions to the field of regression 

testing by enhancing the effectiveness of the testing process 

through the utilization of diversity-based weighting techniques. 

Keywords—Regression testing; fault detection; test case 

prioritization; test case diversity; test case coverage; species 
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I. INTRODUCTION 

Despite the importance of regression testing, it has been 
described as an expensive operation, and various approaches 
have been developed to overcome this challenge. One of these 
effective approaches is test case prioritization (TCP), which 
aims to prioritize the execution of the most critical test cases to 
detect hidden faults more rapidly during the test execution 
process. TCP employs several techniques such as algorithms 
and metrics to reorder test cases. The primary objective of 
these techniques is to determine the optimal ordering 
combination of the test suite based on specific criteria. 

The most crucial aspect of TCP is the detection of faults, 
which can only be known after executing the test cases. 
Therefore, it becomes necessary to estimate or predict the test 
cases that can achieve this goal before the test execution 
process begins. During the estimation phase, TCP techniques 

rely on various code coverage measures as surrogate indicators. 
These measures directly examine the code and describe how 
multiple test cases cover the code under test [1]. These 
coverage measures include line, branch, method, and so on [2], 
also referred to as criteria. Moreover, relying solely on a single 
criterion may not be sufficient and can be misleading, as it only 
represents a portion of the code structure. Thus, considering 
multiple criteria has been recognized as effective and can 
potentially identify the test cases that will ultimately enhance 
the fault detection rate [3]-[6]. 

Researchers have proposed several weight-based 
techniques to address TCP problems by incorporating code 
coverage information [2], [7]-[10]. These techniques integrate 
different code coverage criteria such as line, branch, method, 
and more. The objective is to assign weights to each criterion 
and calculate the final priority value for each test case. 
However, some of these techniques derive weights based on 
averages [3], [5], [11], while others assign fixed weight scores 
to the considered criteria based on specific factors [12], [13]. 
Such informal practices of weight assignment to test cases and 
criteria can be deemed unfair [14], as test cases cover distinct 
code structures and are executed with diverse test contents and 
different input values [4]. However, test cases with these 
characteristics can unveil hidden faults within the covered 
structures. Nonetheless, previous weight-based techniques may 
not effectively maximize the fault detection rate due to 
ineffective weightage. This inefficiency primarily stems from 
the informal characterization of code coverage information, 
leading to ambiguous and unjust weight scores for the test 
cases. Consequently, these practices ultimately result in the 
selection of ineffective test cases that fail to expedite fault 
detection during the testing process [14]. As the nature of faults 
is diverse, identification of all fault locations within a program 
poses challenges due to the distribution of faults [15]. 
Therefore, the source code information (e.g., code-coverage 
data) are the best available resource to use as surrogate 
measure in order to identify the best capable test cases that can 
execute the fault code and eventually reveal such faults [16]. 
Hence, the future strategies will depend on the level of 
understanding and representation, as well as the reformulation 
of the current code coverage data. These factors will determine 
the extent to which fault detection can be maximized. 

Within the specialized literature, there has been a 
suggestion regarding the need to develop a new TCP strategy 
that enhances the fault detection rates of test cases [17], [18]. 
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This motivation has prompted our current study, which aims to 
explore new research directions by specifically examining the 
role of diversity within test case coverage data to improve the 
fault detection rate. While some previous techniques drew 
inspiration from concepts in Biology or related domains, 
certain biodiversity concepts, such as species diversity and its 
associated metrics, have remained unexplored in TCP research. 
Thus, the concepts of species diversity have served as the 
inspiration for this study and applying these concepts during 
the weighting practices is crucial. 

In this study, assumption made is that whenever a test case 
covers a diverse code structure and that program structure is 
executed correctly, any faults in that area can be revealed. Our 
goal is to transform the previous test case problem into a 
species diversity problem and adopt species diversity metrics 
[30] to measure the true diversities of the test cases based on 
their coverage counts. Each line of code is treated as unique, 
and it is assumed that every test case is susceptible to faults. 
Therefore, the prioritization of test cases is based on their 
diversity scores, with higher scores indicating coverage of 
diverse code structures. It is believed that a test case that 
maintains diverse coverage is better in terms of fault detection 
compared to a test case that covers few code structures or 
receives a lower diversity score. 

The contributions of this work can be summarized as 
follows: 

 This study represents a pioneering approach as it is the 
first of its kind to utilize species diversity concepts to 
weigh test cases based on their true diversities in terms 
of code coverage counts. 

 Through rigorous comparative experimental studies, 
this study provides empirical validation of the proposed 
metric's effectiveness in terms of the average 
percentage of fault detection rate (APFD). 

The paper is structured as follows: Section II provides an 
overview of related works in the field. Section III introduces 
the proposed technique, while Section IV presents a 
motivational example. The study experiment is presented in 
Section V, followed by the presentation of results and analysis 
in Section VI. Finally, Section VII summarizes the study and 
suggests potential future research directions. 

II. RELATED WORK 

TCP is a vibrant area of research, with numerous 
algorithms and metrics being proposed and evaluated [2], [19], 
[20]. This section provides an overview of existing studies on 
weight-based techniques and their research directions. 

Earlier studies delved into TCP techniques, aiming to 
address cost constraints and improve fault detection in 
regression testing [7], [8]. These studies introduced a general-
purpose TCP technique that incorporated statement and branch 
coverage information. The primary focus was on two classical 
greedy algorithms: a total greedy algorithm and an additional 
greedy algorithm. 

The literature also explored combinations of various TCP 
techniques [4], [21]. These studies integrated strategies from 

the total and additional greedy algorithms and incorporated 
probabilistic techniques by assigning probability scores to the 
relevant criteria. These probability values were adjusted based 
on the specific technique employed. 

Criticism has been directed at existing practices that 
revolve around code isolation units or single-criteria techniques 
[22]. Such isolations may lead to a loss of valuable coverage 
information crucial for identifying program faults. Other 
studies ranked test cases based on estimated coverage 
information derived from static code structures [23], while 
some employed multi-criteria decision-making (MCDM) 
techniques for test case ranking [14]. 

TCP techniques have also been applied to Object-Oriented 
Programs (OOP). For instance, in [24], nine coverage criteria 
were considered, and fixed weights were assigned to each 
criterion to rank the test cases. In [12], a coupling measure was 
employed to rank test cases based on a constructed dependency 
graph. Another study [13] incorporated dependence-based 
analysis, selecting test cases based on their dependency scores. 

Iyad and Khalid [11] introduced the average weight-based 
technique for TCP, utilizing line of code (LOC) and method 
coverage as criteria. Test cases with higher scores were 
assigned higher priority rankings. They evaluated their 
technique using a small experimental program. 

Initial research on multi-criteria weight-based TCP 
techniques proposed a method incorporating ten factors 
grouped into four categories: Requirement, time, defect, and 
complexity [25]. Each factor was assigned a weighted score, 
and the evaluation focused on factors such as defect severity, 
prioritization time, and acceptable test case size. 

Another weighted technique was proposed by Ahmad et al. 
[26], where test case execution decisions were based on final 
weight scores derived from three criteria: pairwise event, 
frequency pairwise, and fault matrix. These weights were used 
to prioritize the execution of test cases. 

A TCP technique considering multiple coverage criteria 
was proposed by Prakash and Rangaswamy [3]. The 
researchers criticized the use of single criteria and existing 
techniques for being time-consuming and costly. They 
introduced a multi-coverage Average Weight-based Technique 
(AWT) and empirically demonstrated its superiority in terms of 
modified APFD. Building upon this work, Ammar et al. [5] 
proposed an Enhanced AWT (EAWT) technique that assigned 
different weights to test cases with similar weight scores, 
assuming they covered the same code segment and revealed 
similar faults. However, it is worth noting that this assumption 
may not hold true in practice, as test cases can vary 
significantly and possess dissimilar input values. 

Several TCP techniques have been presented to enhance 
fault detection rates, with multi-coverage weighting techniques 
exhibiting promising performance. However, there has been 
relatively less focus on TCP techniques for OOP, particularly 
in Java [27] to [29]. 

Moreover, single coverage criteria have shown lower 
effectiveness compared to lightweight metrics, particularly 
multi-coverage weight-based metrics [3], [22]. However, 
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existing techniques often treat criteria and test cases, similarly, 
disregarding their inherent differences in nature and lacking 
formal weight calculations. Additionally, diversity weighting 
practices have been largely overlooked in the TCP literature. 

Other additional notable gap in the existing literature is that 
their consideration of prioritizing test cases based on greedy 
approaches, where only the test case with the highest coverage 
count is executed. However, this greedy approach fails to 
assess whether the test case covers multiple criteria or not, as it 
primarily focuses on maximizing coverage for a single 
criterion. When dealing with multiple criteria, this approach 
proves to be inadequate and might even lead to some test cases 
to receive similar weights. This study argues that test cases that 
cover multiple criteria in a diverse manner have a higher 
potential for detecting hidden faults. Since the faults are 
distributed over the different code structures and the exact 
locations of faults are unknown, considering diverse coverage 
becomes crucial in enhancing fault detection capabilities. 

A recent survey on TCP and several other studies have 
emphasized the need for novel techniques, including diversity 
measures, to improve the current state of TCP techniques [17] 
[31]. This paper aims to address this need by investigating 
diversity weighting strategies in test cases, an aspect that has 
not been previously explored. 

III. PROPOSED DIVERSITY WEIGHTED BASED TECHNIQUE 

In this section, the proposed technique that considers 
multiple coverage criteria is discussed including instruction 
coverage, branch coverage, line coverage, and method 
coverage. These criteria provide insights into the underlying 
structure of the source code being tested. Adequate testing of a 
program necessitates a sufficient number of diverse test cases 
that target different areas within the code structure. While 
various TCP techniques with different motivations have been 
explored in the existing literature to prioritize test cases, our 
study introduces a unique approach utilizing the species 
diversity metric, originally employed in ecology to measure 
species diversity [30]. Therefore, these measures were selected 
for the following reasons: 

 These metrics address the identified gap and serve the 
purpose of calculating the true diversity score of test 
cases across multiple coverage criteria. 

 In contrast to previous informal weight practices, the 
selected metric assigns formal and unique weights to 
the test cases, describing their diverse code coverage 
characteristics. 

 By employing these measurements, each test case can 
be identified as a unique entity, and their unique 
diversity scores can be used as tie-breaking strategy and 
ranking priorities. This means that test cases with 
higher diversity are ranked higher than those with lower 
diversity. 

On the other hand, the proposed approach encompasses two 
stages: (1) the adoption of four dynamic code coverages, which 
are treated as species-based problems, and (2) the introduction 
of a novel diversity weighting technique that computes the 
Final Priority Value (FPV) for each test case. 

A. Adopt and Charecterize Code Coverage as a Species 

based Approach 

The code coverage criteria adopted in this study encompass 
instruction coverage, branch coverage, line coverage, and 
method coverage. This section provides a description of how 
the TCP problem was formulated, utilizing a species-based 
approach. This characterization aims to enhance the 
effectiveness of the test execution process. 

Code coverage information consists of multiple test cases, 
each associated with their respective coverage counts for 
various code structures, also known as criteria. In this study 
these entities were treated as a species-based problem and 
introduce the following terms, definitions, and symbols to 
facilitate our discussion and analysis: 

Definition 1: Test cases are analogous to species(s), and it 
is important to emphasize that each species is unique. Test 
cases are purposefully designed with different test inputs and 
the ability to target various parts of the system under test 
(SUT). 

Definition 2: A test suite, consisting of a group of unique 
species, represents a community(s). S is defined as S = {𝑠1, 
𝑠2…. s𝑖}, where i represents the ith species in S. 𝑠1 denotes the 
first species, while si denotes the last species in the set. 

Definition 3: Code structures or criteria are considered as 
species habitat (HB): In this case, the criteria include branch 
coverage (br), instruction coverage (in), line coverage (li), and 
method coverage (me). HB is defined as HB = {Hb1, 
Hb2…Hbj}, where j represents the jth habitat in HB (e.g., in, 
br, li, and me). A species can be found in any of these habitats, 
for example, 𝑠1 can be present in Hb1, Hb2, Hb3 or Hb4, and 
their presence is recorded in terms of coverage counts.  

Definition 4: The coverage counts are denoted as n, 
representing the number of ith species (si) found in jth habitat 
(Hbj), which is also written as nij. It is important to note that 
the coverage counts, n, can range from 0 to any non-negative 
number. A count of 0 indicates that the habitat is not 
represented by that species, indicating a loss of species. 

Definition 5: The total coverage count of each species 
across all habitats is denoted as N. 

B. Diversity-Aware TCP Technique 

In this paper, a species diversity metric that measures the 
diversity of each species in relation to its habitats was used. 
This metric allows us to identify species with higher diversity, 
indicating their effectiveness and prioritization during the test 
execution process. 

The proposed Diversity-aware TCP technique integrates 
multiple code coverage metrics to calculate a unique diversity 
weight for each test case. This diversity weight is determined 
by the extent of diversity exhibited by the species covering 
multiple code structures, also known as criteria. Our 
assumption is that species with higher coverage diversity 
scores are more likely to uncover hidden faults. 

To illustrate the methodology employed in the proposed 
Diversity-based TCP technique, the following steps are 
outlined: 
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a) Step one: Collecting Coverage Values. In this step, 

the test case coverage needs to be collected for various criteria 

using tools such as JaCoCo within the JUnit framework. 

b) Step two: Calculating Diversity Score. In this step, 

the species diversity score is calculated using the Gini-

Simpson's index, which is a well-known diversity measure. 

This metric takes into account the dominance of species and 

assigns higher weight to abundant species. The proposed Gini-

Simpson index (1-D) is derived from the original Simpson's 

index (D) [30]. The formulas for calculating the Gini-Simpson 

index are as follows: 

                        𝑠   

  (
∑    (     )
 
   

        
)                                       1) 

where, 

1-D(si) denoted as the Gini–Simpson index (1-D) of the ith 

species; 

ni,j represents the count of species from the ith species under the 

jth habitat; 

Ni represents the total count of coverage for the jth species 

across all habitats; and 

Σ denotes the sum of multiple terms. 

c) Step three: Ranking the Species. In this step, the 

prioritization of species occurs after calculating the diversity 

scores using the specified metric. The species are ranked 

based on these scores in descending order, from highest to 

lowest. 

IV. MOTIVATIONAL EXAMPLE 

To illustrate the functionality of the proposed technique, a 
demonstration is provided in this section using the information 
presented in Table I. The table includes eight species (T1 to 
T8) and four habitats (in, br, li, and me). Based on this 
coverage information, the test cases were assigned weights 
according to their diversity. The demonstration involves the 
following phases: 

1) Collect the coverage counts for each species in relation 

to the selected habitats. 

2) Calculate the diversity score for each species based on 

their habitats. This step may include a subset step specific to 

the calculation process of the chosen metric. 

3) Rank the test cases in descending order from highest to 

lowest value. 

1) Phase one: Collecting Coverage Counts 

During this phase, the coverage counts of species need to 
be collected with respect to the selected habitats. Tools such as 
JaCoCo can be utilized to facilitate this process. The data 
provided below represents a subset of species obtained from 
the CruiseControl program, along with the habitats they cover, 
as shown in Table I. It is important to note that the program 
consists of 299 species, but for the purpose of demonstration, 
only eight species was selected from the program. 

TABLE I.  SPECIES COVERAGE COUNTS OF CRUISECONTROL PROGRAM 

Species IN BR LI ME 

T1 74 2 27 8 

T2 97 8 32 7 

T3 87 5 32 6 

T4 31 1 12 4 

T5 34 1 14 3 

T6 41 2 17 5 

T7 127 10 31 5 

T8 111 2 40 9 

2) Phase two: Calculate the Diversity Score 

To calculate the diversity associated with each species 
across the selected habitats, the diversity score is used as a 
weight for the species. The calculation process can be outlined 
as follows. 

The following example provides guidelines on how to 
calculate the diversity score using the given data, specifically 
focusing on the Gini-Simpson index as described in equation 
(1). Please note that the calculation process for other metrics 
can be carried out using a similar approach. The following 
steps are involved in this process: 

 Step 1: calculate total coverage count of ith species 
across all habitats, denoted as Ni where Ni = Σ ni,j. In 
this case, NT8 = (111+2+40+9) = 162, NT7= 
(127+10+31+5) = 173, and the remaining values are 
listed in column two in Table II. 

 Step 2: calculate Ni (Ni -1) for each species e.g., NT8 
(NT8 -1). In this case, T8 = 162*(162-1) = 26082, T7 = 
173*(173-1) = 29756, and the remaining values are 
listed in column three in Table II. 

 Step 3: calculate ni,j (ni,j -1) of ith species in jth habitat 
e.g. nT8me(nT8me -1). In this case, T8 = 9*(9-1) = 72, 
T7 = 5*(5-1) = 20, and the remaining values are listed 
in columns four and five in Table II. 

 Step 4: calculate Σ ni,j (ni,j -1) of ith species in jth 
habitat. In this case, the results of this calculation are 
listed in column two in Table III. 

 Step 5: calculate D where D = Σ ni,j (ni,j -1)/( Ni (Ni -
1)) (diversity weight of Simpson). In this case, the 
results of this calculation are listed in column three in 
Table III. 

 Step 6: calculate 1-D (diversity weight of Gini–Simpson 
metric). This is the result needed to rank test cases. The 
results of this calculation are listed in column four in 
Table III. 

TABLE II.  STEPS 1-3: COVERAGE VALUES AND TEST CASES OF 

CRUISECONTROL PROGRAM 

 Step 1 Step 2 Step 3: ni,j(ni,j-1) 

Species Ni Ni (Ni -1) IN BR LI ME 

T1 111 12210 5402 2 702 56 

T2 144 20592 9312 56 992 42 

T3 130 16770 7482 20 992 30 
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 Step 1 Step 2 Step 3: ni,j(ni,j-1) 

Species Ni Ni (Ni -1) IN BR LI ME 

T4 48 2256 930 0 132 12 

T5 52 2652 1122 0 182 6 

T6 65 4160 1640 2 272 20 

T7 173 29756 16002 90 930 20 

T8 162 26082 12210 2 1560 72 

TABLE III.  STEP 4-6: COVERAGE VALUES AND TEST CASES OF 

CRUISECONTROL PROGRAM 

 Step 4 Step 5: D Step 6 

Species Σ ni,j(ni,j-1) Σ ni,j(ni,j-1)/ Ni (Ni -1) 1-D 

T1 6162 0.5047 0.4953 

T2 10402 0.5051 0.4949 

T3 8524 0.5083 0.4917 

T4 1074 0.4761 0.5239 

T5 1310 0.494 0.506 

T6 1934 0.4649 0.5351 

T7 17042 0.5727 0.4273 

T8 13844 0.5308 0.4692 

3) Phase three: Rank the Test Cases 

In the second phase, the diversity score of each species is 
computed using the suggested metric mentioned earlier. This 
score serves as a priority value, allowing the ranking of species 
from highest to lowest based on this value. The resulting 
ranked species are as follows: 

1-D(si) = T6, T4, T5, T1,  T2, T3, T8, T7. 

V. EXPERIMENTS 

The objective of this experimentation is to evaluate the 
fault detection rate of the diversity weighted technique. In this 
section, an overview of the steps and tools used to assess the 
effectiveness of the proposed weighted technique in TCP is 
provided. A comparative analysis is conducted between the 
proposed weighted technique and an existing weighted 
technique, including [5]. 

A. Experimental Goal 

The main focus of this paper is to prioritize test cases that 
can effectively detect hidden faults in a program during the 
early stages of the execution process. The objective is to 
determine which technique, between the proposed diversity 
weighted technique and an existing weight-based technique, 
exhibits a higher fault detection rate. The research question 
being investigated is whether the proposed technique 
outperforms the existing technique in terms of fault detection 
rate. 

B. Study Objects 

This study utilized five object-oriented programs, namely 
CruiseControl (A), DisjointSets (B), AccountSubType (C), 
Losenotify (D), and Odset (E). These programs were obtained 
from the Software Artifact Infrastructure Repository and have 
been previously utilized in other TCP studies [27], [13]. In this 
study, the entire programs were analyzed without dividing 
them into different versions. 

The characteristics of the programs were measured, 
including lines of code (LOC), number of classes (NOC), 
number of species (NOS), and number of mutants (NOM). 
Unlike previous studies [13], certain characteristics, 
specifically the program sizes in terms of NOC and LOC, were 
calculated differently in this study. The measurements were 
obtained after generating all the program's test cases using an 
automated tool called o3smeasures, which is an Eclipse plugin. 
Table IV illustrates that the program sizes varied from 684 to 
4989 LOC, while the number of species ranged from 15 to 299 
NOS. 

The implementation of the study object was done using the 
Java programming language, and the test cases (species) were 
written using the JUnit-5 framework. The JUnit species were 
generated using a tool called Randoop, which automatically 
generates unit tests for Java classes. The test coverage for these 
species was calculated using the JaCoCo agent, which is also 
an Eclipse plugin, taking into account all the desired coverage 
criteria. Furthermore, program faults were intentionally 
introduced using popular mutant generation tools called 
MuJava (µJava) [27], [13]. 

TABLE IV.  STUDY OBJECT CHARACTERISTICS 

ID Objects LOC NOC NOS NOM 

A CruiseControl 4958 6 299 9 

B DisjointSets 1809 5 15 2 

C AccountSubType 684 8 53 27 

D Losenotify 1463 6 132 6 

E Odset 4989 4 167 5 

C. Performance Measures 

To compare the effectiveness of different techniques, the 
Average Percentage of Faults Detected (APFD) is commonly 
used as a standard metric. This metric facilitates the 
comparison of fault detection rates achieved by different 
techniques, aiding in the determination of the most effective 
approach. The objective is to maximize the fault detection rate 
by executing the test cases. APFD is well-suited for this task as 
it provides test engineers with prompt feedback, enabling the 
early identification and resolution of faults. 

Let T represent the test case community, m represent the 
total number of faults detected in a specific object, n represent 
the total number of test cases (species), and TFi denote the 
position of the first test case that detects the ith fault. The 
APFD formula is as follows: 

APFD = 1-  

A higher APFD rate indicated better performance, and the 
results were reported as a percentage to quantify the 
differences. 

VI. RESULT 

This section presents the experimental results for all five 
Java programs when applying the proposed technique using 
Equation 1. The results were carefully organized, summarized, 
and presented. 
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To prioritize species from multiple programs that cover 
different habitats, the proposed technique was compared to an 
existing TCP technique. Since these techniques rank the 
species differently, they can yield distinct results. The 
evaluation of these techniques was performed using the APFD 
metric (see Equation 2). Each program received an APFD 
score (in percentages) from both techniques. 

The experiment's findings are summarized and illustrated 
using a bar chart (refer to Fig. 1) for visual representation of 
the data. The horizontal axis (x-axis) of the chart represents the 
five employed programs, identified by their respective ID 
labels. The vertical axis (y-axis) represents the APFD scores 
obtained by the different TCP techniques after applying them 
to the object programs. The APFD score, ranging from 0 to 100 
percent, serves as a performance indicator, where higher scores 
indicate better results. 

 

Fig. 1. APFD values of 1-D and EAWT. 

Fig. 1 presents a comparison between the diversity-
weighted technique utilizing the Gini-Simpson index and the 
EAWT technique. The data clearly indicates that the newly 
proposed technique exhibits strong performance across all the 
programs. 

The EAWM technique exhibited the highest and lowest 
APFD scores among all the programs, achieving 83.67% for 
program A and 50.63% for program D, respectively. In 
contrast, the proposed technique consistently achieved the 
highest or second highest APFD scores across the programs. 
Specifically, it scored 88.13% and 84.47% for programs A and 
D, respectively, outperforming the EAWM technique. It is 
noteworthy that the EAWM technique demonstrated weaker 
performance in multiple programs, particularly programs D, E, 
and B, where APFD scores ranged from 50.63% to 56.67%. In 
comparison, the proposed technique consistently delivered 
higher APFD scores in those programs. The lowest APFD 
score obtained by the proposed technique was 58.50% for 
program E, which still surpassed the corresponding technique's 
score of 56.35% for the same program. These findings indicate 
the superior performance of the proposed technique across 
various programs, even in scenarios with lower APFD scores. 

After comparing the APFD results for each object under 
different techniques, it was evident that the proposed technique 
based on the Gini-Simpson index (1-D) outperformed the 
existing weight-based technique (EAWT). The 1-D technique 
exhibited a substantial improvement in APFD scores, with a 
mean difference of 12.62% higher than the EAWT technique. 

Although the objects varied in size and the techniques 
produced different rankings for the species, there were 
indications that prioritizing test cases based on their true 
diversity score had the potential to achieve higher APFD 
scores. While certain programs received lower APFD scores, 
this could be attributed to the nature and distribution of faults 
within those programs. Another possible reason for the poorer 
performance of the existing technique could be its feature of 
postponing certain fault-revealing species. In contrast, the 
proposed technique avoided species postponement, especially 
when they received similar final weight values. Conversely, the 
existing technique delayed some species assuming their 
similarity in fault identification, which could lead to slower 
detection of certain faults. 

VII. ANALYSIS AND DISCUSSIONS 

The results obtained from the experiment conducted clearly 
stated that the proposed diversity-weighted technique was 
effective when compared with the existing weight-based 
technique. This means the proposed technique prioritizes test 
cases based on their true diversity score, and therefore achieved 
higher fault detection rates, as depicted by the APFD scores. 
The obtained results were consistent across all the Java 
programs considered in this study. 

Fig. 1 presents a comparison between the diversity-
weighted technique using the Gini-Simpson index (1-D) and 
the existing technique (EAWT) in terms of APFD scores across 
all programs. It is evident that the proposed technique 
consistently outperforms the existing technique. The EAWT 
technique shows varying levels of performance, with the 
highest and lowest APFD scores achieved in programs A and 
D, respectively. On the other hand, the proposed technique 
consistently achieves the highest APFD scores across all 
programs. 

The APFD results strongly support the effectiveness of the 
proposed technique. The proposed technique (1-D) consistently 
outperforms the EAWT technique, with a mean difference 
reaching up to 12.62%. These findings indicate that prioritizing 
test cases based on their true diversity scores can significantly 
improve the fault detection rate. 

The higher performance reported in the proposed diversity 
weighted technique of the Gini-Simpson index can be 
attributed to its ability of considering the test case’s true 
diversity based on their multiple coverage counts. Such 
features include treating each test cases and each line of code 
as unique entity and formally assigning diversity scores 
accordingly, the proposed technique ensures that test cases 
covering diverse code structures with higher diversity score are 
prioritized first. This strategy is different from those in the 
existing technique, which relies on average-based weight 
assignment and thus might eventually result in unfair and 
ambiguous weight scores for test cases. 
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The variations in APFD scores among the programs can 
also be attributed to the nature and distribution of faults within 
the programs. Furthermore, the decreased fault detection 
performance of the existing technique may be attributed to its 
feature of postponing certain fault-revealing test cases, 
especially when they receive similar weight scores. In contrast, 
the proposed technique avoids postponing strategies and only 
aim to prioritize test cases based on their true diversity scores, 
leading to more effective fault detection.  

Overall, the findings of this study highlight the significance 
of incorporating true diversity scoring into the test case 
prioritization process. Employing diversity-based metrics 
during the test case weighting enhances the effectiveness of 
regression testing by considering only those test cases that 
cover diverse code structures and executing them first during 
the test execution cycles. This approach improves the fault 
detection rate and contributes to more efficient and cost-
effective software development. 

VIII. THREAT TO VALIDITY 

This section describes the validity threats that might arise 
during the experiments. In this study, programs from the SIR 
repository were adopted, and their corresponding test cases and 
mutants were generated using automated tools employed in 
previous related studies. However, it is important to note that 
these programs might be outdated, and the tools used may have 
limitations in generating effective test cases or diverse mutants. 
This threat (internal validity) was mitigated by addressed by 
adopting recent tools that are widely utilized in the literature or 
continuously updated tools were selected. 

On the other hand, external validity threats related to the 
generalizability of the results were also considered. These 
threats pertain to the subject programs, their test cases, and 
their mutants, which may affect the external validity. To 
mitigate these concerns, six Java programs with over six 
hundred test cases were selected from a reputable open-source 
repository. However, it is important to acknowledge that there 
may still be limitations within this context, which can be 
addressed in future research. 

IX. FUTURE WORK 

In future research, it is recommended to explore the 
following directions. 

In future research, it is recommended to conduct a 
comparison study between the proposed approach, and the 
existing ones by applying them to a diverse set of object 
programs. Such a comparison might provide further insights 
into the effectiveness of these different approaches in fault 
detection. 

While this study is the first of its kind to investigate the 
effectiveness of species diversity metrics, the focus has been on 
the Gini-Simpson index (1-D). However, there are several 
other species diversity metrics that are worth investigating in 
the future. This will provide additional insights into the 
effectiveness of different metrics and their impact on the 
analysis of diversity in various domains. 

The study also suggests improving the informal practices of 
assigning weights to different criteria of interest. Therefore, 
investigating the role of the species diversity metrics in 
formalizing the weighting practices for these criteria before 
calculating the final priority value of the test cases is 
recommended. 

X. CONCLUSION 

In the context of regression testing, prioritizing test cases is 
a critical task aimed at optimizing their execution order based 
on specific criteria to enhance the effectiveness of the testing 
process. 

In this study, a novel diversity-based TCP technique that 
incorporates multiple code coverage criteria and assigns 
weights to individual test cases was proposed. Each test case 
was treated as a unique species, while the coverage criteria 
were considered as habitats. To quantify the diversity within 
each test case across its covered habitats, a new diversity 
metric was introduced. The diversity scores obtained were then 
used as a basis for ranking the test cases, with higher scores 
indicating a higher potential for fault detection. 

To evaluate the effectiveness of the proposed TCP 
technique in terms of fault detection, an experiment was 
conducted using five open-source programs and compared the 
results with an existing technique. Our proposed diversity-
based technique consistently outperformed the existing 
technique, achieving higher scores in terms of the APFD across 
all tested programs. 

The results obtained from our proposed technique highlight 
its ability to improve the fault detection rate. 
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