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Abstract—Computer-Assisted Bone Fractures Diagnosis in
musculoskeletal radiographs plays a crucial role in aiding medical
professionals in accurate and timely fracture detection. In this
work, we explore a Generative Adversarial Network based ap-
proach for this task, which is a powerful deep learning model ca-
pable of generating realistic images and detecting anomalies. Our
proposed approach leverages the potential of GANs to generate
synthetic radiographs with fractures and identify anomalous pat-
terns, thereby enhancing fracture diagnosis. Through extensive
experimentation and evaluation on musculoskeletal radiograph
datasets (MURA), we demonstrate the effectiveness of GAN-based
models in improving fracture detection performance by adopting
several evaluation metrics notably accuracy, precision, F1-score
and detection speed. These findings highlight the potential of
integrating GANs into computer-assisted diagnosis, contribut-
ing to the advancement of fracture diagnosis methodologies in
orthopedics. It is important to note that GANs operate by
training a generator network to produce synthetic images and a
discriminator network to distinguish between real and generated
images. This adversarial process fosters the generation of realistic
radiographs with fractures, enabling accurate and automated
detection. Our findings contribute to the advancement of fracture
diagnosis methodologies and pave the way for more efficient and
precise diagnostic tools in the field of orthopedics.

Keywords—Deep learning; generative adversarial network; di-
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I. INTRODUCTION

Accurate and timely diagnosis of bone fractures is crucial
in musculoskeletal radiology for effective patient care and
treatment planning[1], [2], [3]. Conventional methods heavily
rely on the expertise of radiologists [4], which can be sub-
jective and time-consuming. However, recent advancements
in artificial intelligence and deep learning techniques have
paved the way for computer-assisted diagnosis systems that
can aid radiologists in detecting and classifying fractures with
improved accuracy [5].

In this article, we explore the application of generative
adversarial networks (GANs) for computer-assisted bone frac-
ture diagnosis in musculoskeletal radiographs. GANs are a
class of deep learning models comprising two neural networks:
a generator and a discriminator[6]. Its architecture give a
promising future for anomaly detection in several fields[7], [8],
[9]. The integration of GANs in fracture diagnosis presents
several advantages. Firstly, it offers the potential to reduce
radiologists’ workload by automating the initial screening
process. This allows radiologists to allocate more time and

attention to complex cases, ultimately improving patient care.
Secondly, GANs have shown promise in enhancing diagnostic
accuracy by providing a reliable second opinion. By learning
from a large dataset of medical images, GANs can capture
subtle fracture features and aid radiologists in making more
informed decisions. Moreover, GAN-based systems have the
potential to contribute to the standardization of fracture di-
agnosis. By learning from diverse cases and incorporating
a wide range of fracture patterns, these systems can help
minimize inter-observer variability and increase diagnostic
consistency across different healthcare settings. Furthermore,
the continuous learning capabilities of GANs enable the sys-
tem to adapt to new data and improve its diagnostic per-
formance over time. Despite these promising advancements,
several challenges must be addressed. Ensuring the robustness
and generalizability of GAN-based fracture diagnosis systems
across various patient populations, imaging modalities, and
fracture types is essential. Furthermore, ethical considerations,
data privacy, and regulatory frameworks need to be carefully
considered to ensure the responsible and safe implementation
of these technologies in clinical practice.

In this work, we will investigate how the integration of
GANs in computer-assisted bone fracture diagnosis can hold
a great potential in revolutionizing musculoskeletal radiology.
By combining the expertise of radiologists with the power of
deep learning, these systems can enhance diagnostic accuracy,
streamline workflow, and contribute to standardized fracture
diagnosis. As ongoing research and development in this field
continue to unfold, it is expected that GAN-based computer-
assisted diagnosis systems will play a pivotal role in improving
fracture detection and patient care in the near future. To this
end, we will explore MURA dataset [10], the largest public
radiographic image datasets, to see what GANs may be drawn
on orthopedic anomaly detection on X-ray images.

The contribution through this work can be summarized as
follows:

• Efficient and accurate anomaly detection techniques
based on deep learning to detect bone fractures.

• Applying several GANs models in one work to have
a rich comparative study.

• Review the examined deep learning models, ap-
proaches and architectures.

• Identification of the most suitable data pre-processing
techniques for our study, especially for the dataset em-
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ployed. This analysis provides valuable insights into
the optimal preprocessing steps required to improve
the overall effectiveness of the models.

• Optimize the performance of the examined models
to overcome the performance of recent and relevant
works.

• Evaluates the effectiveness of the examined models
using different evaluation metrics to have a compari-
son and analysis study based on their results.

The rest of the paper is designed as follows: In Section I we
provide the essential background to understand the rest of the
paper. Section II lays out a brief summary of the related work
in the same field. Section III presents our paper’s methodology.
Section IV presents the experiment, materials used, dataset
description and evaluation metrics for a promising compar-
ative analysis study. Section V presents models’ results and
discusses the outcomes based on several evaluation metrics.
Finally, the conclusion and the findings of this work are in
Section VI.

II. RELATED WORK

Fractures are highly accurate indicators of orthopedic
pathology in most hospitals. However, analyzing medical im-
ages to identify bone fractures can be time-consuming and
requires the expertise of qualified professionals. To address
these challenges, scientists have been investigating ways to
reduce diagnosis time and improve decision precision, aiming
to assist doctors in their diagnostic processes [11], [12], [5],
[13]. Several studies have demonstrated the potential of AI/DL
in supporting medical professionals and decision-makers by
developing automated tools that enhance the accuracy of
physician interpretation [14], [5], [15], [16], [17], [18], [19],
[20] and facilitate the creation of effective and cost-efficient
treatment plans [15]. While many studies have focused on
accurately detecting musculoskeletal abnormalities using CNN
models, our research specifically explores the application of
generative adversarial networks (GANs) [21] as a novel ap-
proach as shown in Table I. In this article [22], we propose the
Res-UnetGAN network, an unsupervised anomaly detection
approach based on GANs. The architecture combines the
ResNet50 and UNet models within the generative network to
calculate the normal distribution of samples. The discriminator
employs a deep separable convolution-based convolutional
neural network model to facilitate the adversarial training
process. Anomaly identification is achieved by evaluating the
reconstruction error score, which measures the quality of
reconstruction and detects the presence of defects. Extensive
testing on the Mura dataset demonstrates that our proposed
method outperforms several other models in terms of defect
detection accuracy.

In addition, [23] Davletshina et al. highlighted the value
of unsupervised techniques trained on radiographic images
without anomalies. Their approach aims to improve diagnostic
accuracy and reduce the possibility of overlooking critical
areas. By leveraging cutting-edge unsupervised learning tech-
niques, they successfully identify anomalies and demonstrate
the justifiability of the results.

Through our research, we aim to contribute to the advance-
ment of fracture diagnosis by integrating the capabilities of

GANs in framework will be used by radiographs. Hopefully
this approach will have the potential to enhance the efficiency
and accuracy of fracture diagnosis, enabling timely interven-
tions and improved patient care.

III. METHODS

In this section we will present our proposed framework and
we will review GAN models investigated in this study.

A. Proposed Framework

In the proposed framework for fracture diagnosis as shown
in Fig. 1, the process begins with the acquisition of the
images using medical imaging devices; then will be inte-
grated into computers. These medical images are then passed
through a deep learning system that performs preprocessing
tasks such as image enhancement, augmentation, rotation, and
normalization. The preprocessed images are then fed into the
fracture detection algorithm, which utilizes GAN models and
CAM technique to identify and visualize fractures within the
medical image. Once the detection process is complete, the
system evaluates the results using various evaluation metrics
such as accuracy, precision, F1-score, and detection speed.
These metrics provide quantitative measures of the system’s
performance in correctly identifying fractures. Based on these
metrics, a final decision is generated, indicating the presence
or absence of fractures in the input image. This decision is
crucial in assisting radiologists in making accurate diagnoses
and treatment decisions. The framework aims to enhance the
efficiency and time to diagnosis fracture detection, ultimately
improving patient care in the field of musculoskeletal radiol-
ogy.

B. Overview of GANs

Generative Adversarial Network (GAN) is a powerful deep
learning framework that has gained considerable attention in
recent years [6]. As in Fig. 2 GANs are composed of two
main components: a generator and a discriminator. The concept
behind GANs is to train the generator and discriminator in a
competitive manner. Initially, the generator produces random
samples, and the discriminator tries to correctly identify them
as fake. As training progresses, both the generator and dis-
criminator learn and improve their capabilities. The generator
aims to generate samples that are increasingly difficult for
the discriminator to differentiate from real data, while the
discriminator continuously adapts to distinguish the real and
generated samples accurately.

One of the significant advantages of GANs is their ability
to generate new and realistic data that captures the underlying
distribution of the training data. GANs have been widely
used for various applications, including image synthesis, text
generation, anomaly detection, medical diagnosis, and data
augmentation [5], [8], [7], [24], [26], [27]. The generated
samples can be used to enhance training datasets, generate
novel and diverse content, or assist in data analysis tasks.
Despite their remarkable capabilities, GANs come with their
own challenges. Training GANs can be complex and prone
to instability, often requiring careful hyperparameter tuning
and architectural considerations. Issues like mode collapse,
where the generator fails to explore the entire distribution of
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TABLE I. SUMMARY OF RECENT WORKS OF FRACTURE DETECTION IN MUSCULOSKELETAL RADIOGRAPHS

[Ref](Year) Dataset Approach Results

[24](2021) MURA dataset A proposed unsupervised anomaly detection method is the Res-
UNetGAN Network. This method incorporates a GAN that merges
ResNet50 and UNet architectures to create an autoencoder framework.
This structure enables the system to learn distinctive characteristics
from the input data.

Res-UnetGAN: 0.92
GANomaly: 0.81 Skip-
GANomaly: 0.90 CVAE-
GAN-Based: 0.86 EGBAD:
0.80

[23](2020) MURA dataset Comparative study between GAN and AE models on anomaly detec-
tion.

CAE: 0.57 VAE: 0.48 DC-
GAN: 0.53 BiGAN: 0.54 Al-
phaGAN: 0.60

[25](2020) MURA dataset Computer Based Diagnosis (CBDs) model based on DenseNet201 and
Inception V3 models, they were used to classify the given dataset as
abnormal or normal.

DenseNet201: 87.15
InceptionV3: 86.11
Ensemble: 88.54

Fig. 1. Our framework for fracture diagnosis.

Fig. 2. Architecture of a generative adversarial network.

real data, can also arise. However, ongoing research aims to
address these challenges and further improve the performance
and stability of GANs.

To sum up, the ability of GANs to generate realistic and
novel data has opened up new possibilities in various domains,
including computer vision and data analysis. With continued
advancements and research, GANs hold great promise for gen-
erating high-quality synthetic data and pushing the boundaries
of generative modeling even further.

In the following Table II, we describe the different GAN
models implemented in this work.

IV. EXPERIMENT

A. Experimentation Setup

The following subsection provide an overview of the
dataset utilized in this study, including a description of its
characteristics. The training settings and evaluation metrics
employed.

1) Dataset description: The MURA dataset is a widely
recognized and utilized dataset in the field of musculoskeletal
imaging[10]. It comprises a large collection of radiographic
images across different anatomical regions, including upper ex-
tremities, lower extremities, and the torso. The dataset focuses
on various musculoskeletal conditions, especially fractures.
The MURA dataset serves as a valuable resource for devel-
oping and evaluating algorithms and models in the domain
of musculoskeletal radiography. Researchers and practitioners
leverage this dataset to advance the field and improve diag-
nostic accuracy, automated diagnosis systems, and computer-
assisted fracture detection techniques. The dataset is provide
by the Stanford Program for Artificial Intelligence in Medicine:
https://stanfordmlgroup.github.io/competitions/mura/.

2) Evaluation metrics: Accuracy: Accuracy is a widely
used evaluation metric that measures the overall correctness
of a fracture detection model [30]. It calculates the percentage
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TABLE II. DESCRIPTION OF IMPLEMENTED MODELS

Model Type Description

[24] GANomaly GAN-based anomaly
detection model

Ganomaly combines GAN architecture with anomaly detection techniques to
identify fractures in radiographs. It learns to generate normal images and
detects anomalies based on reconstruction error.

[24] SkipGANomaly GAN-based anomaly
detection model

SkipGanomaly extends the GAN architecture by incorporating skip connec-
tions to improve the quality of reconstructed images.

[26] AnoGAN GAN-based anomaly
detection model

AnoGAN combines GAN architecture with unsupervised learning to detect
anomalies in images.

[27] MadGAN GAN-based anomaly
detection model

MadGAN is a GAN architecture that utilizes multiple discriminators to
enhance the detection of anomalies.

[28] AttentionGAN GAN model image-to-
image translation

AttentionGAN is a type of GAN that incorporates an attention mechanism to
improve the quality of generated images. It selectively focuses on important
regions, capturing fine details and producing realistic outputs.

[5] DCGAN GAN model with deep
convolutional layers

DCGAN is a foundational GAN model that employs deep convolutional layers
for image generation. It can be utilized to generate synthetic radiographs with
fractures for training or augmenting the dataset.

[5] CycleGAN GAN model for image-
to-image translation

CycleGAN is primarily used for domain adaptation and image translation
tasks. Although not directly designed for fracture detection, it can potentially
be employed to translate normal radiographs to fractured ones, facilitating the
identification of fractures based on the translated images.

[29] SAGAN GAN model with self-
attention mechanism

SAGAN incorporates self-attention mechanisms to improve the quality and
coherence of generated images.

of correctly identified fractures out of all the samples in the
dataset.

Accuracy =
TruePositives+ TrueNegatives

TotalSamples

Precision: Precision is a metric that focuses on the positive
predictions made by the fracture detection model[30]. It mea-
sures the proportion of correctly identified fractures out of
all the predicted fractures. Precision helps assess the model’s
ability to minimize false positives, indicating how reliable the
model is when it identifies a sample as a fracture.

Precision =
TruePositives

TruePositives+ FalsePositives

F1-Score: The F1-Score is a combined metric that takes
into account both precision and recall, providing a balanced
measure of the fracture detection model’s performance[30].
It considers the trade-off between false positives and false
negatives. The F1-Score is particularly useful when the dataset
is imbalanced or when both precision and recall are equally
important.

F1Score = 2 ∗ Precision ∗Recall

Precision+Recall

Detection Speed: Detection speed is an essential evaluation as-
pect that measures the efficiency of a fracture detection model
in processing and analyzing musculoskeletal radiographs[30].
It quantifies the time taken by the model to detect fractures
in a given dataset or per image. Faster detection speeds are
desirable, particularly in clinical settings where time is of the
essence.

By considering these evaluation metrics - accuracy, preci-
sion, F1-Score, and detection speed - we can thoroughly assess
the performance and efficiency of fracture detection models.
These metrics provide valuable insights into the model’s abil-
ity to correctly identify fractures, minimize false positives,
achieve a balance between precision and recall, and process
radiographic images efficiently.

B. Preprocessing

The MURA dataset, presents a challenge due to its diverse
range of images of bone abnormalities with different formats
and sizes. To address this issue and make the data more
uniform, we employed image pre-processing techniques to
enhance the image quality. Initially, we applied binary thresh-
olding to identify the Region of Interest (RoI) within the image
and extract its contours. This process enabled us to isolate the
relevant region for classification and crop it accordingly.

Data augmentation played a vital role in our research, help-
ing to expand the dataset and improve the learning algorithm.
Several augmentation approaches were employed, including
horizontal image flipping, random rotation within a range of
30 degrees, scaling within the range of 95-130 percent, and
randomly adjusting brightness within the range of 80-120
percent.

Prior to initiating the learning process, radiographs were
normalized to have the same mean and standard deviation as
the images in the ImageNet training set. This normalization
step ensured consistency and facilitated subsequent stages of
the project.

www.ijacsa.thesai.org 963 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

Fig. 3. Fracture diagnosis results: Hip.

Following data augmentation and normalization con-
tributed to enhancing the quality, consistency, and effectiveness
of the dataset for our research purposes.

V. RESULTS AND DISCUSSION

In this section, we discuss the performance of GAN models
for bone fracture detection in radiographs, focusing on key
evaluation metrics such as accuracy, precision, F1-score, and
detection speed. These metrics provide valuable insights into
the effectiveness and efficiency of the models in identifying
fractures and aiding in clinical decision-making. Various fac-
tors influence the performance of the models, including archi-
tectural approach, layer design, padding, shape, normalization,
activation, loss function, optimizer, batch size, learning rate,
pooling, and output layer. Consequently, achieving an effective
result required multiple tuning iterations. Many of our models
comprised computationally expensive layers and modules, ne-
cessitating long training durations that were often impractical
on basic hardware or laptop configurations. Preprocessing
played a crucial role in obtaining good results in our deep
learning tasks. After selecting the appropriate GAN models
for the study based on a benchmark between the different
GAN model, extensive data preparation was necessary. The
image size proved to be a significant parameter impacting the
accuracy of detecting fractures. To this end, several treatments
were involved on our dataset as mentioned in preprocessing
section. Also, to overcome the limitations of the available data,
we employed data augmentation techniques, which augmented
the amount of data during the training phase. However, we
had to be cautious regarding the rotation methods, excessive
compression, and shear, as they could negatively affect the
performance of bone fracture diagnosis. By considering these
factors and conducting thorough experimentation, we aimed
to optimize our models and enhance the accuracy of our
results. It is evident that preprocessing, data augmentation, data
normalization and careful parameter selection are vital consid-
erations when striving for accurate and reliable outcomes in
deep learning tasks related to bone fracture detection. Overall,
as shown in Fig. 3 and 4 after selecting the input image we
configure our framework by choosing body part treated, image
modality and evaluation metrics that the user want to display.
We see the visualized results by Grad-CAM and obtained from
our implemented GAN models for bone fracture detection in
radiographs were promising. The models demonstrated a high

Fig. 4. Fracture diagnosis results: Elbow.

level of accuracy, achieving performance within the range of
0.7% to 0.954%. These results indicate that the GAN-based
approach holds considerable potential for improving fracture
diagnosis in the field of orthopedics.

Comparing our GAN models with previous works, it is
evident that they compare favorably in terms of performance.
The accuracy achieved by our models aligns with some results
reported in works with the same task with different techniques
and surpasses others results reported in relevant literature.
This suggests that the utilization of GANs for bone fracture
diagnosis can yield significant improvements in diagnostic
accuracy and support medical professionals in their decision-
making processes.

Detailly, Table III shows that MadGAN, CycleGAN,
SAGAN and SkipGANomaly on average achieves the best
accuracy (0.954%; 0.922%; 0.9%;0.901%). These accuracy
scores indicate that the models were successful in cor-
rectly classifying fractures in radiographs, contributing to
improved diagnostic capabilities. While with less processing
time MadGAN and SAGAN have speed detection higher than
other models. So we can consider MagGAN and SAGAN are
the most powerful models. This is due to their architectures.
MadGAN has the incorporation of multiple discriminators
that can enhance the detection and identification of frac-
tures in radiographs as anomalous patterns. SAGAN use self-
attention mechanisms can improve the coherence and quality
of generated images. Although not specifically tailored for
fracture detection, its ability to produce visually consistent
radiographs was the main cause to have an accurate fracture
identification. Then we had GANomaly, AttentionGAN and
AnoGAN achieved an accuracy of 0.861% and 0.842%. Those
are reputable results even those models were not explicitly
designed for fracture detection, but it could give a better
performance in anomaly detection in other fields and with other
parameters notably type of data, size of dataset, experiment
setting, etc. For DCGAN, its performance in fracture detection
be less compared to the models explicitly designed for anomaly
detection or fracture identification. Because its architecture is
not explicitly designed for fracture detection also due to the
high number of convolutional layers that take more time to
give the predictive result.

One notable advantage of GAN models is their ability to
generate synthetic data, which can be beneficial in addressing
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TABLE III. COMPARISON OF MODELS BASED ON PERFORMANCE METRICS

Models Accuracy Precision F1-Score Detection Speed
Ganomaly 0.861 0.873 2.863 2.987

SkipGanomaly 0.901 0.903 0.907 5.837

AttentionGAN 0.842 0.877 0.8418 2.291

MadGAN 0.954 0.958 0.953 1,418

SAGAN 0.9 0.905 0.907 0,2

AnoGAN 0.838 0.848 0.842 3.738

DCGAN 0.7 0.724 0.705 15.233

CycleGAN 0.932 0.917 0.928 8.412

the issue of limited labeled datasets. By leveraging the genera-
tive capabilities of GANs, it becomes possible to augment the
available data and improve the robustness and generalization
of the models. This can be particularly valuable in medical
imaging, where acquiring large annotated datasets can be
challenging. Despite the promising results, it is important to
acknowledge the limitations and challenges associated with
GAN models for fracture detection. One key consideration is
the computational complexity and resource requirements of
training and deploying GAN models. The training process of
GANs can be computationally intensive and time-consuming,
necessitating powerful hardware and substantial computational
resources. This can pose practical limitations, especially in
clinical settings where quick and efficient diagnosis is crucial.

To sum up, our study demonstrates the potential of
GAN models in detecting bone fractures in radiographs. The
achieved accuracy and performance indicate that GANs can
serve as valuable tools for assisting medical professionals
in fracture diagnosis. However, challenges related to com-
putational complexity, data availability, and interpretability
need to be addressed for broader adoption and real-world
application. Future research should focus on optimizing GAN
architectures, addressing dataset limitations to further enhance
the performance and practicality of GAN models in fracture
detection.

VI. CONCLUSION

In conclusion, this article has presented an exploration
of Computer-assisted Bone Fractures Diagnosis in muscu-
loskeletal radiographs using Generative Adversarial Networks
(GANs). The use of GANs in medical image analysis has
shown great potential in aiding clinicians and radiologists
in the accurate and efficient detection of bone fractures.
By leveraging the power of GANs, we have demonstrated
the ability to generate realistic radiographs with fractures,
detect anomalies, and improve the overall diagnostic process.
Through our research, we have observed promising results in
utilizing GAN-based models such as MadGAN, CycleGAN,
SkipGanomaly, and SAGAN for fracture detection. These
models have demonstrated their effectiveness in generating
high-quality images, identifying anomalies, and translating
normal radiographs to fractured ones. The performance of
these models, although influenced by various factors such as
dataset size, training configuration, and preprocessing tech-
niques, has shown significant potential in enhancing frac-

ture diagnosis accuracy and reducing the reliance on manual
interpretation. However, it is important to acknowledge the
challenges that lie ahead. Further research and development
are required to address limitations such as data heterogeneity,
model generalization, and interpretability. Additionally, the
ethical implications, including patient privacy and the need for
human oversight in the diagnostic process, should be carefully
considered and addressed. In conclusion, the application of
Generative Adversarial Networks for Computer-Assisted Bone
Fractures Diagnosis in musculoskeletal radiographs holds great
promise. By harnessing the power of GANs, we can im-
prove the accuracy, efficiency, and overall quality of fracture
detection, ultimately benefiting both clinicians and patients.
Continued advancements in this field have the potential to
revolutionize musculoskeletal radiography and pave the way
for more effective and precise diagnostic tools in the future.
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