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Abstract—Mask-wearing remains to be one of the primary
protective measures against COVID-19. To address the difficulty
of manual compliance monitoring, face mask detection models
considerate of both frontal and angled faces were developed.
This study aimed to test the performance of the said models in
classifying multi-face images and upon running on a Raspberry
Pi device. The accuracies and inference speeds were measured
and compared when inferencing images with one, two, and
three faces and on the desktop and the Raspberry Pi. With an
increasing number of faces in an image, the models’ accuracies
were observed to decline, while their speeds were not significantly
affected. Moreover, the YOLOv5 Small model was regarded to be
potentially the best model for use on lower resource platforms,
as it experienced a 3.33% increase in accuracy and recorded the
least inference time of two seconds per image among the models.

Keywords—Face mask detection; multi-face detection; Rasp-
berry Pi; embedded platform

I. INTRODUCTION

Throughout history, infectious diseases have continuously
emerged and evolved due to natural causes and human activ-
ities [1][2]. These diseases can affect a significant number of
people and even become global health issues. A timely exam-
ple would be the Coronavirus disease or COVID-19, a highly
contagious disease caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 or SARS-CoV-2 [3]. It originated in
Wuhan, China in December 2019 and was eventually declared
by the World Health Organization (WHO) a pandemic from
March 2020 to May 2023 [4][5]. In the first 50 days of its onset
in China, there were more than 70,000 infected individuals and
1800 deaths recorded [6]. In the current Philippine context,
the Department of Health (DOH) has reported a total of about
4.16 million cases of infection, 66,000 deaths, and 4.09 million
recoveries in the Philippines as of June 2023 [7].

To combat the spread of COVID-19, several health proto-
cols have been issued by authorities and institutions. Among
the common ones are physical distancing, hand hygiene,
surface disinfection, proper ventilation, and, especially, mask-
wearing [8]. Regarding mask use, the WHO promotes the
wearing of non-medical or medical masks in poorly ventilated
or crowded indoor settings and public areas with insuffi-
cient physical distancing. Moreover, wearing strictly medical
masks is recommended for vulnerable populations, potential
or confirmed COVID-19 patients, and caretakers of COVID-19

patients [9]. The Centers for Disease Control and Prevention
(CDC) recommends mask-wearing in public transportation
vehicles and hubs. For people situated in COVID-19 hotspots,
the CDC requires the use of face masks, especially for those
who are highly susceptible to severe infection [10].

For guidelines against COVID-19 to take full effect, public
compliance is essential. However, the extended pandemic
duration has resulted in growing complacency and, conse-
quently, disobedience to health protocols [11]. While stricter
monitoring of compliance can be helpful, the need for physical
distancing and a reduced workforce due to the pandemic makes
it challenging. To address this issue, the Ateneo Laboratory for
Intelligent Visual Environment (ALIVE) has developed face
mask detection models that can classify medically-approved
masks, non-medically-approved masks, and unmasked faces in
consideration of both forward-looking and angled or side-view
face images [12].

The said models were tested using only a desktop com-
puter. In real-time monitoring of mask-wearing compliance,
portable devices with relatively lower processing capabilities
may be used for convenience. Moreover, only single-face
images were considered in both model training and testing. In
public settings, multiple faces may be captured by the mask
detection models at a time.

With these, the study then aims to evaluate and compare the
performance of the developed mask detection models on both
desktop and the embedded platform Raspberry Pi. Multi-face
mask detection will also be explored by testing the models on
combined single-face images from the validation and test sets.
It builds on [12] by making the following contributions:

• The real-time performance of robust mask detection
models considerate of both frontal and angled faces
are examined through deployment on a Raspberry Pi.
This helps determine the viability of using the models
for live monitoring on low-power systems.

• A comparative analysis of the models’ mask detection
capabilities in a desktop computer and a Raspberry Pi
is performed. This results in insights into the strengths
and limitations of the existing models based on the
computational power of the hardware used.

• The models’ performance in detecting multiple
masked faces is observed. This helps identify the
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suitability of using the models for simultaneous mask
detection in crowded settings.

This paper contains the following sections: Section II
provides a discussion on the object detection architectures used
by the developed models, the robust detection models from
[12] involved in this study, and related works on real-time and
multi-face mask detection. Section III elaborates on the meth-
ods employed in this study, particularly multi-face inference
and real-time implementation on a Raspberry Pi. Section IV
presents a description of the results and their detailed analysis.
Lastly, Section V summarizes the study’s findings and offers
recommendations on potential future developments.

II. RELATED WORK

A. Object Detection Architectures

In developing the models involved in this study, the state-
of-the-art object detection architectures CenterNet and YOLO,
particularly YOLOv5, were used.

CenterNet [13] is characterized by anchorless object de-
tection, which implements a more time- and resource-efficient
algorithm in place of the standard Non-Maximum Suppression
(NMS) technique. Under this approach, objects are modeled as
a single point, corresponding to the center of the bounding
box. Searching of center points is done through keypoint
estimation, while determining other object properties including
the size, location, and pose involves regression. In evaluating
the relevance of bounding box predictions, the CenterNet
architecture focuses on where their centers are located rather
than how much they overlap with the object being detected.
Compared to anchor-based detectors, fewer irrelevant detec-
tions are generated by CenterNet, resulting in faster inference
and less power usage.

On the other hand, YOLO (You Only Look Once) is a
state-of-the-art framework that generally operates by dividing
an input image into grids, with object detection taking place
in each grid. This approach boasts remarkable speed and
efficient consumption of computational resources. YOLOv5
[14], one of the latest versions of YOLO, mostly differs from
its predecessors in terms of the model backbone, neck, and
head. In charge of image feature extraction, a combination
of Cross Stage Partial Networks (CSPNet) [15] and Darknet
termed CSPDarknet serves as the backbone of YOLOv5. With
CSPNet, the issue of duplicate gradients common in large-
scale backbones gets resolved, resulting in increased inference
speed and reduced model size due to the decline in parameters
and floating-point operations per second. Path Aggregation
Network (PANet) [16] functions as the model neck, used to
create feature pyramids for aggregating and passing features
to the model head. It implements a novel feature pyramid
structure with an improved bottom-up path that allows for
better low-level feature propagation. Overall, PANet helps in
locating objects more accurately. For generating predictions
and bounding boxes, YOLOv5 retains the model head utilized
by YOLOv4, which can perform multi-scale detection [17].
The activation and loss functions of YOLOv5 also set it apart
from older YOLO models and contribute to its faster learning
and enhanced performance. To deal with the vanishing gradient
problem, it uses Leaky Rectified Linear Unit and Sigmoid

activation functions. For the loss function, it employs the
Binary Cross-Entropy with Logits Loss function.

B. Mask Detection Models and Dataset

As previously stated, this study makes use of the object
detection models from [12] which include YOLOv5 Small,
YOLOv5 Medium, CenterNet Resnet50 V1 FPN 512x512,
and CenterNet HourGlass104 512x512. These models were
trained for the image classification task on the relabeled Face
Mask Label Dataset (FMLD) curated in [12]. The relabeled
FMLD is made to train deep learning models in detecting three
mask-wearing classifications, which are Medical Masks, Non-
Medical Masks, and No Mask, in consideration of front and
side view face images. With this, the six classes represented
in the dataset are Front - Medical Mask, Front - Non-Medical
Mask, Front - No Mask, Side - Medical Mask, Side - Non-
Medical Mask, and Side - No Mask. In the relabeled FMLD,
there are 50 images per class which sum up to a total of 300
images. In relation to this, the training of each object detection
model involved 300 epochs. The classification accuracies of
the models on the test set of the relabeled FMLD were then
measured and compared. The models with the highest accuracy
were found to be the CenterNet Resnet50 and CenterNet
HourGlass104 models, both having an overall accuracy of
95%. The YOLOv5 Medium comes next with an overall
accuracy of 93.33%, and the YOLOv5 Small model is the
least accurate with 91.67%.

C. Similar Works

The study of ben Abdel Ouahab et al. [18] aimed to
develop a mask detection model and evaluate its real-time
performance on the Raspberry Pi. Fine-tuning was performed
on the pre-trained MobileNetV2 model, constructing a new
classification head with five layers: average pooling, flatten,
dense with ReLU activation, dropout, and dense with softmax
activation. The model was trained on a dataset with 1915
masked and 1918 unmasked face images. It achieved an
accuracy of 99% upon testing on the validation set. For real-
time implementation, two high-performing laptops, Raspberry
Pi 3 and 4 devices, and Raspberry 4 devices with Intel Neural
Compute Stick (NCS) 2 were used. The model obtained the
highest average FPS value of 4.8 on the Raspberry Pi 4 (8
GB RAM) with NCS 2 among the different versions. It was
observed that the performance of the model in terms of speed
decreased significantly when deployed on low-power systems
rather than on desktop devices.

Moreover, Mohandas et al. [19] focused on creating a real-
time face mask detection system running on edge computing
devices for access and egress control. For model training,
transfer learning was employed on the SSD InceptionV2 model
using a GPU-accelerated device. The dataset used for re-
training consisted of images from the Real-World Masked
Faces Dataset (RMFD), Labelled Faces in the Wild (LFW)
dataset, and various web resources. Upon implementation on a
Raspberry Pi 4 device, an average detection time of 1.13 ms per
frame was obtained. The model also achieved perfect precision
for both classes, 89% recall for masked faces, and 91% recall
for unmasked faces on the Raspberry Pi 4, which is comparable
to its performance on the GPU-enabled computer. While the
system is meant to detect only one face at a time, restricting

www.ijacsa.thesai.org 968 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

the face to a certain Region of Interest, it was found to be
effective for detecting multiple masked or unmasked faces as
well.

Lastly, the study of Reza et al. [20] investigated the face
mask detection performance of selected Convolutional Neural
Network (CNN) models on mobile IoT devices. New classifiers
were added to the MobileNetV2, InceptionV3, VGG16, and
ResNet50 models and trained on top of their frozen layers.
Model training involved a public dataset containing both
single- and multiple-face images of masked and unmasked peo-
ple. The models were trained four times, using varying ratios
of the training data, and tested accordingly on the NVIDIA
Jetson TX2 and Jetson Nano. VGG16 had the highest average
accuracy across all ratios and for both devices, reaching a peak
of 96.07% for 20% training data, but obtained the slowest
inference speed. On the other hand, MobileNetV2 performed
the best in terms of speed, having the least inference time of
25.10 ms for 5% and 10% training data, but lagged behind
in testing accuracy. InceptionV3 achieved promising accuracy
results upon being trained and tested on the smallest dataset
ratio.

III. METHODOLOGY

This study used two general sets of methods, which are
Multi-Face Inference and Real-Time Implementation in Rasp-
berry Pi. In the corresponding subsections, the procedures
performed are discussed in greater detail.

A. Multi-Face Inference

To evaluate the multi-face mask detection performance
of the models from [12], images with two or three faces
must be included in the test set for this study. Since the
mask detection models in [12] were trained and tested on
the relabeled FMLD, the same dataset was used in building
the test set. Single-face images from the validation and test
sets in [12] were combined through the image editing tool
Photopea to synthetically produce images that contain two or
three faces. The images used per multi-face combination came
from random classes, but the equal representation of all six
classes among the test images with two or three faces was
ensured as far as possible. Black pixels were used to fill the
empty spaces left in the synthetic multi-face images which
were caused by the varying dimensions of component images.
Fig. 1 and 2 present sample test images with two and three
faces, respectively.

Using the four mask detection models from [12], infer-
encing was done on the multi-face images created from the
relabeled FMLD. The classification accuracy for each class and
the overall classification accuracy were recorded. Moreover,
the inference speed was examined to describe the relationship
between the number of faces in an image and the speed at
which the models classify the image, if any. First, baseline
speeds for all four models were determined through the infer-
encing of single-face images from the validation and test sets
used in [12] and the computation of average inference time
per image. Then, similar steps were carried out to measure the
speeds for inferencing two-face and three-face images using
the four models. For the YOLOv5 models, the speeds were
automatically printed out after the completion of inference.

Fig. 1. Sample image containing two faces.

Fig. 2. Sample image containing three faces.

Conversely, calculating the inference speed for the CenterNet
models was done using the timeit package for Python. The
desktop computer utilized for testing was equipped with an
NVIDIA GTX 1080 Ti GPU.

For further verification of the mask detection models’
classification accuracies on the images with two or three
faces, the single-face images that comprise the synthetic multi-
face images went through individual inferencing. This pro-
cess served as a way of confirming that any difference in
classification accuracy between an image with a single face
and one with multiple faces can be primarily attributed to
the number of faces in an image instead of other possible
factors. In individually inferencing the faces present in the
test images containing two or three faces, the classification
accuracy for each class and the overall classification accuracy
were recorded.

www.ijacsa.thesai.org 969 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

B. Real-Time Implementation in Raspberry Pi

To test the capabilities of the mask detection models from
[12] on lower resource machines, they were exported and run
on an embedded system, and their performance in terms of
accuracy and speed was measured. This process is aimed at
assessing the feasibility of deploying the models on portable or
mobile platforms for increased accessibility and convenience
of use.

Initially, it was planned to export all four models from
[12] to a Raspberry Pi 4 Model B with 4GB of RAM for
testing procedures. Unfortunately, there were compatibility
issues with the Tensorflow 2 Object Detection API, which
facilitated the use of the CenterNet models. Transferring and
running the said models on the Raspberry Pi turned out to be
challenging due to the format in which they were exported by
the Tensorflow 2 Object Detection API. While it is possible to
run the CenterNet models on the Raspberry Pi, it was not done
successfully for this study. In the end, only the YOLOv5 Small
and Medium models were run and tested on the Raspberry Pi.
The CenterNet models were excluded since it was taking a
significant amount of time to resolve the problems.

In testing the YOLOv5 models on the Raspberry Pi, the
classification accuracies were recorded, so that the perfor-
mance in terms of accuracy when running on a desktop
computer and an embedded system may be compared. This was
performed using the same methods from the testing phase in
[12] and Section III A as well. Inferencing with the YOLOv5
models running on the Raspberry Pi device was performed
on the combined validation and test set images from [12].
The class with the highest predicted confidence score was
determined to be the predicted class for each image. To
compute the accuracy per class in percentage value, the number
of correct predictions was divided by the total number of
images per class, and the resulting quotient was then multiplied
by 100. Python was used for inferencing and calculating the
respective classification accuracies of each mask detection
model. In particular, the PyTorch package was instrumental
in inferencing with the YOLOv5 models.

Aside from their classification accuracies, the inference
speeds of the YOLOv5 models upon testing on the Raspberry
Pi were also recorded. This process served as a way of
determining if the processing speeds of the YOLOv5 models
on a low-end computing device fall within an acceptable range.
This was performed using similar procedures from Section III
A. Measuring of speeds took place while inferencing images
with one, two, and three faces from the combination of the
validation and test sets used in [12].

IV. RESULTS AND DISCUSSION

A. Multi-Face Inference

A total of 20 synthetic multi-face images were produced
from the dataset preparation stage of Section III-A, having ten
images with two faces each and another ten images containing
three faces each. Table I details the distribution of the six
classes found in the relabeled FMLD from [12] among the
two-face and three-face images.

Fig. 3, 4, 5, and 6 present the multi-face classification accu-
racies measured from the YOLOv5 Small, YOLOv5 Medium,

CenterNet Resnet50, and CenterNet HourGlass104 models,
respectively. Each figure consists of three bar graphs that
show the corresponding mask detection model’s accuracies
in classifying images with one, two, and three faces. The
accuracies for each class present in the relabeled FMLD are
specified, as well as the overall accuracy per model. The labels
for classification accuracies come in the form of percentages
and fractions showing the number of correct predictions over
the total of possible predictions. The dotted line found in each
figure represents the overall accuracy per model, which is just
another way of displaying the values from the bar for overall
accuracy. It helps create a better visualization of the changes
in accuracy while detecting images with varying numbers of
faces. The values for the Single Face Accuracy section per
model were taken from the results obtained in [12]. From the
figures, it can be observed that the overall accuracy for all
models tends to decrease as the number of faces present in an
image increases. The YOLOv5 models perform with similar
levels of accuracy when classifying two-face images, only
suffering from reduced overall accuracies when classifying
three-face images.

Fig. 3. Multi-face classification accuracies of the YOLOv5 small model.

Fig. 4. Multi-face classification accuracies of the YOLOv5 medium model.

Going from detecting single-face images to detecting three-
face images, the YOLOv5 Small and YOLOv5 Medium mod-
els incur an estimated 5% and 10% loss in overall accuracy,
respectively. On the other hand, the CenterNet models are
more prone to losses in overall accuracies upon classifying
images with an increasing number of faces. Going from
detecting single-face images to detecting two-face images, both
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TABLE I. DISTRIBUTION OF THE SIX CLASSES OF THE RELABELED FMLD FOR THE IMAGES CONTAINING TWO OR THREE FACES

Class
Number of Faces

Images with Two Faces Images with Three Faces

Front - Medical Mask 4 4
Front - Non-Medical Mask 3 4
Front - No Mask 3 6
Side - Medical Mask 4 5
Side - Non-Medical Mask 3 6
Side - No Mask 3 5
Total 20 30
Note: Ten images containing two faces each equals 20 faces in total.
Similarly, ten images containing three faces each equals 30 faces in total.

Fig. 5. Multi-face classification accuracies of the CenterNet Resnet50 model.

Fig. 6. Multi-face classification accuracies of the CenterNet HourGlass104.

CenterNet models suffer from an approximated 10% loss in
overall accuracy. Moving further to detecting images with three
faces, the CenterNet Resnet50 model somehow obtains the
same level of accuracy compared to its performance on two-
face image detection. Conversely, the CenterNet HourGlass104
model incurs an additional 25% decline in overall accuracy,
accumulating an estimated total loss of 35% in overall accu-
racy when classifying three-face images compared to when
classifying single-face images. Among all mask detection
models, the CenterNet HourGlass104 model experiences the
greatest decline in overall accuracy upon classifying images
with multiple faces. This can be possibly attributed to the
susceptibility of CenterNet models to overfitting as discussed
in the model training procedure in [12]. Overfitting makes it
difficult for the said models to perform well on inputs that

differ from those that they were trained on, which are single-
face images.

Fig. 7 presents the different inference speeds of the models
on images with one, two, and three faces. From the graph,
it can be observed that the fastest mask detection model,
having the least inference time in milliseconds, is the YOLOv5
Small model, followed by the YOLOv5 Medium, then the
CenterNet Resnet50, and finally the CenterNet HourGlass104.
The arrangement of the models in increasing inference speed
corresponds to their arrangement in increasing network size,
making the former quite expected. Being the smallest of the
four models, the YOLOv5 Small model is relatively computa-
tionally lightweight and thus faster to execute. Conversely, the
CenterNet HourGlass104 model is computationally intensive
and thus slower to run, since it has the largest network size
among the models. In testing multi-face detection, the models’
inference speeds incur an initial decrease upon detecting two-
face images compared to when detecting single-face images.
However, there is negligible change in the speeds of the models
when going from detecting two-face images to detecting three-
face images. Based on these results, classifying images with
even more faces may not have significant effects on the
models’ inference speeds. It is also important to note that the
speeds specified in Fig. 7 were recorded during the first round
of inference on the test images. Upon repeated inferencing in
several rounds, the speeds measured turned out to be faster,
but such speeds were no longer considered.

Fig. 7. Multi-face inference speeds of all of the four models of this study.

Furthermore, the multi-face inference speeds of the
YOLOv5 models, which were also presented in Fig. 7, were
shown in more detail in Fig. 8. From the graphs, it can be
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seen that the inference times were dominated by the inferenc-
ing process itself, while the pre-process and Non-Maximum
Suppression (NMS) stages took up only small portions. The
YOLOv5 models automatically generated the speed breakdown
after the inferencing process. Since the CenterNet models have
no similar capability, their inference speed breakdown did not
get included anymore.

Fig. 8. Breakdown of the multi-face inference speeds of the YOLOv5
models.

Fig. 9, 10, 11, and 12 show the results for the validation of
the multi-face classification accuracies of the YOLOv5 Small,
YOLOv5 Medium, CenterNet Resnet50, and CenterNet Hour-
Glass104 models, respectively. Each figure is divided into two
cluster groups, the first group is for results on two-face images
while the second one is for results on three-face images. The
first cluster in each group presents the classification accuracies
of the corresponding model when individually inferencing the
faces that comprise the synthetic multi-face images. On the
other hand, the second cluster in each group presents the
model’s accuracies upon inferencing the merged images with
two or three faces themselves. The results verify that the
differences in accuracy when classifying images with one face
and those with multiple faces are caused by the changes in
the number of faces contained in them. For most of the mask
detection models, their classification accuracies were higher
when single-face images were inferenced individually and not
as components of a synthetic multi-face image. However, the
results obtained from the YOLOv5 Small model deviate from
the general observation, as its classification accuracies were
found to be higher when inferencing images with multiple
faces compared to those with only one face. These further
support the earlier findings about YOLOv5 models being able
to classify two-face images with similar levels of accuracy
and only obtaining reduced overall accuracies upon classifying
three-face images. The discussion on CenterNet models being
more prone to declines in accuracy due to an increase in the
number of detected faces also gets further confirmed.

B. Real-Time Implementation in Raspberry Pi

Table II shows the classification accuracies of the YOLOv5
models when tested on the Raspberry Pi. These accuracies are
for images with single faces only, as the combined validation
and test set images from [12] are used without making modi-
fications. The table presents a direct comparison between the
model’s classification accuracy on the desktop computer and

Fig. 9. Validation of the Multi-Face classification accuracies of the YOLOv5
small model.

Fig. 10. Validation of the Multi-Face classification accuracies of the
YOLOv5 medium model.

its accuracy upon running on the Raspberry Pi. Each table cell
corresponds to a particular mask detection model and image
class, containing the ratio of the number of correctly predicted
images from the class by the model to the total number of
images in the class and the equivalent accuracy in percentage
form.

From these results, the differences in classification accura-
cies of the YOLOv5 Small and Medium models when tested on

Fig. 11. Validation of the Multi-Face classification accuracies of the
CenterNet Resnet50 model.
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TABLE II. COMPARISON OF CLASSIFICATION ACCURACIES ON DESKTOP VERSUS ON RASPBERRY PI

Model Front - Medical Mask Front - Non Medical Mask Front - No Mask Side - Medical Mask Side - Non Medical Mask Side - No Mask Overall
YOLOv5 Small
(Desktop)

9/10
Accuracy = 90%

9/10
Accuracy = 90%

10/10
Accuracy = 100%

9/10
Accuracy = 90%

10/10
Accuracy = 100%

8/10
Accuracy = 80%

55/60
Accuracy = 91.67%

YOLOv5 Small
(Raspberry Pi)

9/10
Accuracy = 90%

9/10
Accuracy = 90%

10/10
Accuracy = 100%

10/10
Accuracy = 100%

10/10
Accuracy = 100%

9/10
Accuracy = 90%

57/60
Accuracy = 95%

YOLOv5 Medium
(Desktop)

10/10
Accuracy = 100%

8/10
Accuracy = 80%

10/10
Accuracy = 100%

8/10
Accuracy = 80%

10/10
Accuracy = 100%

10/10
Accuracy = 100%

56/60
Accuracy = 93.33%

YOLOv5 Medium
(Raspberry Pi)

9/10
Accuracy = 90%

7/10
Accuracy = 70%

10/10
Accuracy = 100%

8/10
Accuracy = 80%

9/10
Accuracy = 90%

8/10
Accuracy = 80%

51/60
Accuracy = 85%

Bold = Highest Value in Column

Fig. 12. Validation of the Multi-Face classification accuracies of the
CenterNet HourGlass104 model.

the desktop computer and the Raspberry Pi can be examined.
The YOLOv5 Small model obtained a greater classification
accuracy on the Raspberry Pi than on the desktop computer,
being able to correctly predict two additional images belonging
to the Side - Medical Mask and Side - No Mask classes.
The opposite was true for the YOLOv5 Medium model, as
it achieved a lower classification accuracy when running on
the Raspberry Pi than on the desktop computer. There were
fewer correctly predicted images under the Front - Medical
Mask, Front - Non-Medical Mask, Side - Non-Medical Mask,
and Side - No Mask classes. Overall, there was a minimal
difference of 3.33% for the classification accuracies of the
YOLOv5 Small model and a larger discrepancy of 8.33% for
the accuracies of the YOLOv5 Medium model.

Varying performance metric values for the same deep
learning models when run on the Raspberry Pi and on other
platforms have also been recorded in [21][22][23]. Unfortu-
nately, the said studies could not offer an explanation behind
the discrepancy in accuracies or confidence scores upon testing
on different devices, including the Raspberry Pi. Similarly,
this study failed to come up with reasons for the difference
in the mask detection models’ classification accuracies on the
desktop computer and on the Raspberry Pi.

Moreover, Fig. 13 presents the inference speeds of the
YOLOv5 models upon testing on the Raspberry Pi. In general,
the inferencing of YOLOv5 models took a longer time on
the Raspberry Pi than on the desktop computer. The inference
times of the models on the Raspberry Pi were divided by their
inference times on the desktop computer to obtain the speedup
values. For the YOLOv5 Small model, it performed 68.75,
29.09, and 27.99 times faster on the desktop computer than on

the Raspberry Pi in inferencing images containing one, two,
and three faces, respectively. On the other hand, the YOLOv5
Medium model obtained speedup values of 137.28, 57.83,
and 59.08 upon inferencing single-face, two-face, and three-
face images, respectively. Both models experienced the highest
speedups with single-face images, which aligns with how the
YOLOv5 Small and Medium models had lower inference
times on the desktop computer when inferencing images with
one face than those with two or three faces. Meanwhile, the
YOLOv5 Small and Medium models had inference times of
similar levels for single-face, two-face, and three-face images
on the Raspberry Pi.

Fig. 13. Multi-face inference speeds of the YOLOv5 models when ran on
the desktop machine versus when ran on the Raspberry Pi.

Overall, the YOLOv5 Small model turns out to be the most
ideal for deployment on low-end computing devices. There
was only a small difference in the classification accuracies of
the YOLOv5 Small model when running it on the Raspberry
Pi and on the desktop computer. As seen in Table II, the
YOLOv5 Small model obtained the highest overall classifica-
tion accuracy when tested on the Raspberry Pi. Furthermore,
less discrepancy in the said model’s inference speeds can be
observed upon inferencing on the desktop computer then on the
Raspberry Pi. The YOLOv5 Small model achieved an infer-
ence time of about two seconds per image on the Raspberry
Pi, still falling within the acceptable range. Conversely, the
YOLOv5 Medium model obtained an inference time of about
five seconds per image, already considered to be somehow too
slow. It also recorded a greater difference in inference speeds
compared to the YOLOv5 Small model when inferencing on
the desktop computer and on the Raspberry Pi.
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V. CONCLUSION

Generally, the mask detection models were found to be
capable of multi-face detection, although the accuracies were
observed to decline in the presence of more faces in an image.
In terms of inference speed, the YOLOv5 models performed
faster than the CenterNet models due to their smaller network
sizes. Moreover, it was observed that the number of faces in an
image did not significantly affect the models’ inference speeds.

For the implementation on the Raspberry Pi 4 Model B
embedded platform, only the YOLOv5 Small and Medium
models were used. Going from inferencing on the desktop
computer to the Raspberry Pi, the YOLOv5 Small model
experienced a 3.33% increase in classification accuracy, while
the YOLOv5 Medium model suffered from an 8.33% decrease
in accuracy. In terms of inference speed, the YOLOv5 models
generally exhibited a slower mask detection performance on
the Raspberry Pi than on the desktop computer, with the
YOLOv5 Small model having an inference time of about
two seconds per image and the YOLOv5 Medium model
obtaining an inference time of about five seconds per image.
Furthermore, both models recorded the highest speedup values
when inferencing single-face images, just as they achieved
lower inference times with single-face images on the desktop
computer compared to multi-face images. Considering both
the classification accuracy and inference speed, the YOLOv5
Small model was regarded to be potentially the best model for
use on lower resource platforms.

Future work may involve the use and evaluation of other
object detection models for the robust face mask detection
task. Developed models can also be tested on several kinds
of embedded systems, such as the Jetson Nano. It might also
be worth looking into the addition of more mask-wearing
categories, including incorrectly masked faces, among others.
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abs/1904.07850 (2019).

[14] Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012,
Kwon, Y., TaoXie, Fang, J., imyhxy, Michael, K., Lorna, V, A., Montes,
D., Nadar, J., Laughing, tkianai, yxNONG, Skalski, P., Wang, Z., Hogan,
A., Fati, C., Mammana, L., AlexWang1900, Patel, D., Yiwei, D., You,
F., Hajek, J., Diaconu, L., and Minh, M. T. ultralytics/yolov5: v6.1 -
TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference,
Feb. 2022.

[15] Wang, C.-Y., Mark Liao, H.-Y., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W.,
AND Yeh, I.-H. Cspnet: A new backbone that can enhance learning
capability of cnn. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW) (2020), pp. 1571–1580.

[16] Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. Path aggregation network
for instance segmentation. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2018), pp. 8759–8768.

[17] Xu, R., Lin, H., Lu, K., Cao, L., and Liu, Y. A forest fire detection
system based on ensemble learning. Forests 12 (02 2021), 217.

[18] ben Abdel Ouahab, I., Elaachak, L., Bouhorma, M., and Alluhaidan,
Y. A. Real-time Facemask Detector using Deep Learning and Raspberry
Pi. In 2021 International Conference on Digital Age & Technological
Advances for Sustainable Development (ICDATA) (2021), pp. 23-30.

[19] Mohandas, R., Bhattacharya, M., Penica, M., Van Camp, K., and Hayes,
M.J. On the use of Deep Learning Enabled Face Mask Detection For
Access/Egress Control Using TensorFlow Lite Based Edge Deployment
on a Raspberry Pi. In 2021 32nd Irish Signals and Systems Conference
(ISSC) (2021), pp. 1-6.

[20] Reza, S. R., Dong, X., and Qian, L. Robust Face Mask Detection using
Deep Learning on IoT Devices. In 2021 IEEE International Conference
on Communications Workshops (ICC Workshops) (2021), pp. 1-6.

[21] Feng, H., Mu, G., Zhong, S., Zhang, P., and Yuan, T. Benchmark
analysis of yolo performance on edge intelligence devices. Cryptography
6, 2 (2022).

[22] Sabri, Z. S., and Li, Z. Low-cost intelligent surveillance system based
on fast cnn. PeerJ Computer Science 7 (Feb 2021), e402.
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