
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

New Approach based on Association Rules for
Building and Optimizing OLAP Cubes on Graphs

Redouane LABZIOUI1, Khadija LETRACHE2, Mohammed RAMDANI3
Informatics Department, LIM Laboratory

Faculty of Sciences and Techniques of Mohammedia
University Hassan II, Casablanca, Morocco

Abstract—The expansion of data has prompted the creation
of various NoSQL (Not only SQL) databases, including graph-
oriented databases, which provide an understandable abstraction
for modeling complex domains and managing highly connected
data. However, to add graph data to existing decision sup-
port systems, new data warehouse systems that consider the
special characteristics of graphs need to be developed. This
work proposes a novel method for creating a data warehouse
under a graph database and demonstrates how OLAP (Online
Analytical Processing) structures created for reporting can be
handled by graph databases. Additionally, the paper suggests
using aggregation algorithms based association rules techniques
to improve the efficiency of reporting and data analysis within
a graph-based data warehouse. Finally, we provide a Cypher
language implementation of the suggested approach to evaluate
and validate our approach.

Keywords—NoSQL; graph-oriented databases; data warehouse;
OLAP; aggregation algorithms; association rules; cypher language

I. INTRODUCTION

Modern databases have been considerably altered by the
expansion of data. NoSQL databases have expanded as a result
of these new demands and now come in a wide range of models
[1], including key-value, document, column, and graph.

In particular, graph-oriented databases are one of the most-
known various of NoSQL systems; they have attracted a lot
of attention and popularity. Graph-oriented databases are a
fundamental form that offer an understandable abstraction to
model numerous complicated domains, manage highly con-
nected data, and run sophisticated queries over them [2] [3].

Currently, many businesses and entrepreneurs are interested
in developing business intelligence systems on graph databases
to take advantage of its benefits. Enterprises are also inter-
ested in expanding their OLAP analysis to include the new
forms of data because OLAP technology is currently widely
used[4].However, despite the growing interest in graph-based
data warehouses and their potential benefits, there is a lack
of research addressing the challenge of creating an optimized
OLAP model under graphs, specifically focusing on selecting
the most relevant OLAP aggregations to effectively meet the
diverse user’s needs. This gap calls for further investigation
and exploration to bridge the divide between the advantages
of graph-based data warehousing and the need for efficient and
user-centric aggregation selection techniques. The aim of this
study is to create new data warehouse under graph database
systems that consider the special characteristics of graphs,

this work also aims to optimize the efficiency of reporting
and data analysis within this graph-based data warehouse
by employing user-centric aggregation techniques that select
the most relevant OLAP aggregations to meet the diverse
needs of users effectively. To address this issue, it is possible
to use aggregation algorithms that automatically select the
most relevant aggregations for the cube. These aggregation
algorithms are often based on machine learning and data
mining techniques to identify the best possible aggregations
based on raw data. The use of these algorithms can help reduce
cube build time and improve the accuracy of analysis results.
In this context, we demonstrate how OLAP structures created
for reporting can be handled by graph databases, additionally,
We provide new approach to optimize OLAP cube using the
association rules algorithm.

The remainder of this paper is organized as follows. In
Section II, we present some works of the literature reviews
related on graph data warehouse. In Section III, we give
a background overview of our approach. In Section IV, we
describe the implementation of our approach as well as a case
study to assess it. Section V concludes this paper and suggest
future research directions.

II. RELATED WORK

Many approaches were proposed in the literature as a result
of the growing interest in combining graph databases and
business intelligence technology in recent years. In [5], The
authors have proposed a new concept Graph Cube, a new
data warehouse model that supports OLAP queries in large
multidimensional networks, in the Graph Cube the dimensions
are based on the attributes of the nodes, while the computed
measures represent the aggregations of these node attributes.
The Graph Cube approach have some limitations in analyzing
dynamic or evolving graphs, where the structure of the graph
changes over time. Moreover, the accuracy and reliability of
the analysis results may be affected by data quality issues such
as missing or erroneous data. In [6], The author introduce a
GraphAware Framework for Neo4j, which enables the pre-
calculation and storage of node information in graphs. For
instance, the framework can compute the number of friends
in a social network and store the result for efficient querying.
The GraphAware Framework also supports the analysis of
node degrees in the graph, which can be useful for identifying
important or influential nodes. The GraphAware Framework
is focused on precalculating and storing node information,
which may be limited in scope and may not capture the

www.ijacsa.thesai.org 997 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

full complexity of the graph data. For example, some graph
analytics tasks may require more sophisticated computations
that go beyond simple node attributes, such as graph centrality
measures or community detection. In [7], The authors proposed
to use the graph structure as a basis for OLAP queries; this
approach relies on using the performance and efficiency of
the Neo4j graph database to store and query OLAP queries.
In this model, dimensions and measures are transformed into
nodes. The connection between dimensions and measures is
done through arcs of the graph. For hierarchical dimensions
are also stored in nodes and linked together by hierarchi-
cal relationships. The approach is limited to using only the
snowflake model, which may not be suitable for all types of
data. This may restrict the flexibility and adaptability of the
approach. In [8], The author’s goal is to compare the execution
times of the identical OLAP queries in the relational and graph
databases by using a MusicBrainz database data warehouse in
a PostgreSQL relational environment and then implementing
the same decision model in Neo4j. The authors only tested
their approach on a single dataset (the MusicBrainz database),
which may limit the generalizability of their results. Addition-
ally, they only considered a specific decision model and did
not explore the potential impact of different OLAP queries
or decision models on the performance of the two database
types. Furthermore, while the results of the study showed
that the graph database outperformed the relational database
in terms of execution time, the authors did not provide a
detailed analysis of the factors that contributed to these results.
This lack of analysis makes it difficult to fully understand
the advantages and disadvantages of each database type for
OLAP queries. In [9],The authors define a set of transforma-
tion rules that can transform conceptual models into graph-
oriented models. They have defined four transformation rules,
namely: fact transformation, Name and Identifier of Dimension
Transformation, Hierarchies Transformation, Transformation
of the relation between Fact and Dimension. Still within the
framework of Datawarehouse modelling in a NoSQL graph
database, the authors propose a conceptual mapping between a
multidimensional schema and a graph-oriented NoSQL model.
The authors chose to concentrate on proving the viability
of their approach rather than providing any experimental
campaign to validate it. In [10], the authors proposes to
integrate NoSQL Graph-oriented Data into Data Warehouses
as a solution to tackle Big Data challenges, The paper intro-
duces a new approach called “Big-Parallel-ETL” that adapts
the classical ETL (Extract-Transform-Load) process with Big
Data technologies, leveraging the efficiency of the MapReduce
concept for parallel processing. However, this work does not
address OLAP aggregations. The authors in [11], suggest a
set of guidelines to create a graph data model from a multidi-
mensional data model (MDM2G). Then the authors compare
the performance of the two star and snowflake designs in the
graphs and relational databases, in terms of dimensionality and
size. After doing this comparison, the authors concluded that a
graph implementation of a data warehouse with multiple tables
is more effective than a relational implementation, and that a
star model performs similarly to a snowflake model in graph
databases. The study does not provide a detailed description
of the conversion rules and does not present any experimental
results or validation of the proposed approach.In [12], the
authors proposed employing two alternative logical models,
equivalent to the ROLAP (Relational Online Analytical Pro-

cessing) and MOLAP (Multidimensional Online Analytical
Processing) models, to create OLAP engines within a graph
database. They specify a set of guidelines for mapping these
models from the multidimensional model. Additionally, they
suggest an aggregation technique for constructing the lattice
of cuboids from a data warehouse. However, the choice of
aggregations is random and imprecise, which makes the model
unoptimized and burdens the graph with several unnecessary
nodes. The authors in [13], suggest an approach founded on
a multi-version evolutionary schema model. Data instances
corresponding to various schema versions are stored in a
graph data warehouse. A meta-model is utilized to manage
these warehouse schema versions. Additionally, they introduce
evolution functions at the schema level. To validate their
approach, they implement a software prototype and conduct
a case study that demonstrates queries on schema versions,
cross-queries, and the runtime performance of their approach.
However, the impact of the multi-version approach on OLAP
aggregations is not addressed in this study.

The Table I provides a comprehensive summary of the
literature review, highlighting the key findings and identified
gaps in the research.

All of the cited works provide an important context for
the implementation of decision systems using graph databases.
However, most of these works focus on converting relational
data warehouses into graph databases or applying traditional
business intelligence methods, which can limit the advantages
of using graph databases. Our proposed approach is different
and relies on the properties of graphs to implement data
warehouses. It highlights the importance of studying a model
that optimizes the choice of OLAP aggregations to enhance
the graph cube’s performance. By selecting the optimal set of
aggregations for a graph cube, OLAP query performance can
be significantly improved, resulting in faster query response
times and more efficient use of system resources. This can
enable users to analyze larger volumes of data more quickly
and accurately, leading to more informed decision-making.
Moreover, reducing the computational resources required to
execute OLAP queries can result in cost savings for organiza-
tions that need to process large amounts of data.

III. OUR APPROACH AND BACKGROUND INFORMATION

A. Background Information

Graph Oriented Database: Store data entities as nodes
and entity relationships as edges. A periphery always has a start
node, an end node, a type, and a direction. A node can describe
relationships, actions, parent-child ownership, etc. The number
and type of relationships a node can have are unlimited.

A property graph is defined as

www.ijacsa.thesai.org 998 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

TABLE I. LITERATURE REVIEW

Year Authors Findings Gaps
2011 Zhao et al. Graph Cube: A new paradigm for

Data Warehouse (DW) that sup-
ports OLAP queries in large mul-
tidimensional networks, with di-
mensions based on node attributes
and computed measures represent-
ing aggregations.

Limitations in analyzing dynamic or evolving graphs and
potential data quality issues.

2013 Bachman GraphAware Framework for Neo4j
enables pre-calculation and storage
of node information for efficient
querying, but may not capture the
full complexity of graph data.

Limited in handling more sophisticated computations be-
yond simple node attributes.

2014 Castelltort et al. Proposes using graph structure as a
basis for OLAP queries, but limited
to the snowflake model, reducing
flexibility.

May not be suitable for all types of data.

2019 Vaisman et al. Comparing the execution timings
of identical OLAP queries in rela-
tional and graph databases reveals
that the graph database provides
superior performance.

Lack of detailed analysis of factors contributing to the
performance difference.

2020 Sellami et al. Define transformation rules to con-
vert conceptual models into graph-
oriented models.

No experimental campaign to validate the approach.

2021 Soussi Propose parallel loading based in-
tegration of NoSQL graph-oriented
data into data warehouses.

Doesn’t address OLAP aggregations.

2022 Akid et al. creating graph data models based
on multidimensional data and com-
paring star and snowflake designs
in graphs and relational databases.

Lack of detailed conversion rules and experimental valida-
tion.

2022 Khalil et al. Propose alternative logical models
for OLAP engines within a graph
database and an aggregation tech-
nique for constructing the lattice of
cuboids from a data warehouse.

Unoptimized aggregations and unnecessary nodes in the
graph.

2023 Benhissen et al. Propose an approach based on a
multi-version evolutionary schema
model in a graph data warehouse.

Doesn’t address the impact of multi-version approach on
OLAP aggregations.

G = (N,E,LN , LE , PN , PE),

where:
N is a set of finite nodes,
E ⊆ N ×N represent edges between the nodes.
LN describes the label of the nodes.
LE describes the edges’ label..
PN is a set of characteristics that identify node.
PE is a set of properties that describe an edge.

Conceptual Multi-Dimensional Schema: Before defining
our model, we clarify the concepts of the conceptual model:
(dimensions, hierarchies, and measures) [14].
The attributes of the multidimensional schema are
:(FM , DM , StarM) where[12]:

• FM = F1, . . . , Fn is a set of facts.
• DM = D1, . . . , Di is a set of finite dimensions.
• StarM : Fi → 2Di maps each fact Fn to its

corresponding dimensions Di.

Measures are a group of properties that make up a fact.
Each measure has an aggregate function attached to it [15].
Facts are determined by: (NF ,MF)where:

• NF represent the fact name.
• MS is a collection of measures, every one of which

has an aggregate function.

A dimension consists of a set of attributes representing
different levels of granularity on the data to be analyzed
(measures).

A dimension, denoted Di ∈ DS , This is characterized by
(ND, AD, HD) where:

• ND is the name of the dimension.
• AD = A1, . . . , An is a set of dimension attributes.
• HD = H1, . . . ,Hn is a set of hierarchies, arranging

the properties in accordance with the level of granu-
larity that each one represents.

The Fig. 1 illustrates our multidimensional use case model:

Fig. 1. The multi dimensional model.

www.ijacsa.thesai.org 999 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

[H]

B. Our Approach

Our approach involves leveraging the advantages of graph
databases by creating the OLAP cube in the graph and using
user queries to identify frequently used dimensions in OLAP
analyses. To optimize the aggregations to be created, we use
the Apriori algorithm to extract the most frequently associated
sets of dimensions in OLAP queries, and then apply a rule-
based association algorithm to identify the most relevant
aggregations. The resulting aggregations are created in the
OLAP cube, leading to improved OLAP query performance.
The approach consists of four steps:

• Creation of the graph data warehouse.

• Extraction of the most frequently associated sets of
dimensions in OLAP queries using the Apriori algo-
rithm.

• Identification of the most relevant aggregations using
a rule-based association algorithm.

• Creation of identified aggregations.

1) Graph Data Warehouse: When used with relational
databases, a relational fact table is created for each fact in the
multi dimensional conceptual model. Measures are columns in
the fact table. Additionally, each dimension is transformed into
a normalized dimension table with columns for each attribute
(including parameters and weak attributes). Fact and dimension
tables each have a unique row for storing each instance [16].
Similarly, we provide our rules, which define a graph DW,
using the definitions of multi dimensional model and property
graph ideas that were previously presented.

Dimension DS in our model is created in node format
identified by (LN , PN) where:

• LN represents the label of the node, a node can have
zero to many labels.

• PN represents attributes of the dimension.
Hierarchies: In a graph data warehouse, a hierarchy can be
represented using nodes and edges. Each level of the hierarchy
can be represented as a node, with edges connecting nodes at
different levels to indicate parent-child relationships.

Fact: A fact node in a graph data warehouse can be
represented as a node with edges connecting it to dimension
nodes. The fact node can also have properties that represent
the measures, such as the actual values or aggregate functions
applied to them [17].A fact node, is specified by (NF ,MF)
where:

• NF: represent the fact name.

• MF: It comprises a collection of measures as node
attributes, with each measure linked to an aggregation
function.

Relationship between fact and dimensions: The relationship
between fact and its associated dimensions are represented as
edges connecting nodes in the graph, the link is defined by
(LE , NF , ND, PE), where:

• LE is the label of relationship.

• NF is the fact node.

• ND is a node that represents the dimension linked to
the fact.

• PE represent the properties of the relationship, the
properties are key-value pairs that are used for storing
data on relationships.

2) Algorithm 1: Calculate Frequent Itemsets.: After cre-
ating our OLAP system, the second phase in our approach
is to collect user queries from the OLAP system logs [18].
And after that, we determine common itemsets of predicates
using the Apriori algorithm [19]. In the next phase we will
use the generated itemsets as input to the second association
rule algorithm to determine the most important aggregations
to create. The algorithm starts by initializing an empty list to
store frequent itemsets and another empty list to store previous
frequent itemsets. Then, it loops on user queries predicates
until there are no more frequent itemsets to explore. During
each iteration of the loop, the algorithm generates candidates
for new frequent itemsets by combining previous frequent
itemsets. Then, it calculates the frequency of each candidate
by scanning through all transactions. Candidates that have a
frequency below a minimum support threshold are filtered out.
Finally, the frequent itemsets are added to the list of frequent
itemsets. The candidate generation and filtering functions are
also defined in the algorithm.

www.ijacsa.thesai.org 1000 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

Algorithm 1 Calculate frequent itemsets

// Initialization
frequent itemsets←
previous frequent itemsets←
// Loop until there are no more frequent itemsets to
explore
while (previous frequent itemsets is not empty) do

// Generate candidates
current frequent itemsets ←

generate candidates(previous frequent itemsets)
// Calculate frequency of candidates
for each aggregation in OLAP cube do

for each candidate in current frequent itemsets
do

if candidate is used in aggregation then
candidate.frequency ←

candidate.frequency + 1
end if

end for
end for
// Filter candidates
previous frequent itemsets ←

current frequent itemsets
current frequent itemsets ←

filter candidates(current frequent itemsets,min sup)
// Add frequent itemsets to the list
frequent itemsets ← frequent itemsets ∪

current frequent itemsets
end while

FUNCTION generate candidates(itemsets)
candidates
for each itemset1 in itemsets do

for each itemset2 in itemsets do
if itemset1 ̸= itemset2 and all elements of itemset1

except the last one are the same as the corresponding
elements of itemset2 then

candidate ← union of itemset1 and itemset2,
keeping only the unique elements

if candidate is not already in candidates then
candidates ← candidates ∪ candidate

end if
end if

end for
end for
return candidates
End FUNCTION

FUNCTION filter candidates (candidates, min sup)
frequent candidates←
for each candidate in candidates do

if candidate.frequency ≥ min sup then
frequent candidates ← frequent candidates ∪

candidate
end if

end for
return frequent candidates
End FUNCTION

3) Algorithm2: Generate Association Rules.: The second
algorithm in our approach is used to generate association
rules from frequent itemsets. It first loops through each fre-
quent itemset, and for each itemset it generates all possible
subsets. For each subset, it creates an association rule with
the antecedent being the subset and the consequent being the
complement of the subset in the frequent itemset.

Algorithm 2 Generate Association Rules

association rules←
for each frequent itemset in frequent itemsets do

subsets← generate subsets(frequent itemset)
for each subset in subsets do

antecedent← subset
consequent← (frequent itemset)− (subset)
association rule ← {antecedent :

antecedent, consequent : consequent, confidence : 0}
// Calculate confidence of the rule
frequency antecedent ←

calculate frequency(antecedent)
frequency frequent itemset ←

calculate frequency(frequent itemset)
confidence frequency frequent ←

itemset frequency antecedent
if confidence ≥ min conf then

association rule.confidence← confidence
association rules ← association rules ∪

association rule
end if

end for
end for

FUNCTION generate subsets(itemset)
subsets←
for i← 1 to taille(itemset) do

subset←
for j ← 1 to taille(itemset) do

if j ̸= i then
subset← subset ∪ itemset[j]

end if
end for
subsets← subsets ∪ subset

end for
return subsets
End FUNCTION

FUNCTION calculate frequency (itemset)
frequency ← 0
for transaction in transactions do

if transaction contains all elements of itemset then
frequency ← frequency + 1

end if
end for
return frequency
End FUNCTION

4) Graph Aggregation: The two optimization algorithms
previously defined enable finding the best combinations of ag-
gregations, For improving query performance and maximising
data retrieval in a graph, OLAP aggregations must be created.
Aggregations act as quick-query summaries of data that have

www.ijacsa.thesai.org 1001 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

already been calculated, saving time and resources needed to
obtain the raw data. Complex queries can be conducted in a
fraction of the time it would take to scan the full data set
by specifying and producing the relevant aggregations. In our
approach, aggregations are stored both in the nodes and in the
edges. since the graph allows to put the measures in properties
of the links, the advantage of this model will allow us to
minimize the number of nodes created in the graph, and also
allows us to take advantage of the benefits of graphs. We will
also put in the links between the dimensions the information
of time dimension.
We will store aggregations in relationships when the aggre-
gation combines only one dimension, two dimensions, or
three dimensions (including time dimensions). Aggregations
that combine more than three dimensions will be stored
in nodes. The link-Aggregation is represented by an edge
(LE , NS , NT , PE), where:

• LE is the label of relationship.

• NS is the start node.

• NT is the target node.

• PE represent the properties of the relationship, the
properties are key-value pairs that are used for storing
aggregation on relationships.

IV. APPROACH IMPLEMENTATION AND EVALUATION

A. Implementation of the Graph Warehouse

We implemented our graph warehouse using the Neo4j
database (version 5.1.0)1. Neo4j is a graph database manage-
ment system that uses graph structures with nodes, relation-
ships, and properties to represent and store data[20], enabling
efficient storage and querying of complex, interconnected data.
Neo4j supports ACID-compliant transactions, offers a flexible
data model, and provides a query language called Cypher for
working with graph data[21].

In addition,We used the TPC-H benchmark database as a
source file, We made use of a global flat CSV file that contains
information from a flat meta-model. The TPC-H benchmark
database has been used to provide support for Big Data
technologies, including NoSQL and Hadoop file systems[22].
It generates data in various file formats (xml, jason, csv, tab,
...) following different data models.

The dimensions used in the model are as follows:

• Product dimension with the TypeProduct hierarchy.

• Customer dimension with the cityCustomer and Re-
gionCustomer hierarchy.

• Supplier dimension with the citySupplier and Region-
Supplier hierarchy.

• Year dimension with the Month hierarchy.

The script in Listing 1 is used to import data from a
CSV file (“File.csv”) into Neo4j database by creating nodes to
represent different entities related to the (CUSTOMER) as well
as the hierarchies associated with these entities (CityCustomer

1https://neo4j.com/product/neo4j-graph-database/

and RegionCustomer). The script uses the APOC (Awesome
Procedures on Cypher) library’s apoc.periodic.iterate proce-
dure to efficiently manage the data import from the CSV
file. It performs the import by iterating over batches of data,
allowing it to process large amounts of data while avoiding
overwhelming the system. The function ’LOAD csv WITH
HEADERS FROM “file:///File.csv” as row FIELDTERMINA-
TOR “;” RETURN row’ loads the CSV data with headers
into the “row” variable and uses the semicolon (;) as the
field delimiter. The first function MERGE (creates or up-
dates) a node with the “CUSTOMER” label having properties
“CUSTOMER-ID” and “CUSTOMER-NAME” extracted from
the corresponding columns in the CSV file. The options
batchSize:10000, allow the data to be processed in batches of
10,000 rows in parallel for better performance. The second use
of the MERGE function in the script creates or merges nodes
with the “CityCust” label having properties “CUSTOMER-
CITYID” and “CUSTOMER-CITY” extracted from the CSV
file. Similarly, the third use of the MERGE function is also
used for creating or matching nodes in the graph database for
the “RegionCust” hierarchy.

Listing 1: The Customer Dimension

1

2 // Dimension Customer
3 CALL apoc.periodic.iterate(
4 ’LOAD csv WITH HEADERS FROM ‘‘file:///File.

csv" as row FIELDTERMINATOR ‘‘;"
5 RETURN row’,
6 ’MERGE (C:CUSTOMER [CUSTOMER_ID : row.

CUSTOMER_ID,CUSTOMER_NAME: row.
CUSTOMER_NAME])’,

7 [batchSize:10000, parallel:true]);
8 // Hierarchy CityCustomer
9 CALL apoc.periodic.iterate (

10 ’LOAD CSV WITH HEADERS FROM ‘‘file:///File.
csv" as row FIELDTERMINATOR ‘‘;"

11 RETURN row’,
12 ’MERGE (CC:CityCust [CUTOMER_CITYID : row.

CUSTOMER_CITYID,CUSTOMER_CITY: row.
CUSTOMER_CITY])’,

13 [batchSize:10000, parallel:true]);
14 // Hierarchy RegionCustomer
15 CALL apoc.periodic.iterate(
16 ’LOAD CSV WITH HEADERS FROM ‘‘file:///File.

csv" as row FIELDTERMINATOR ‘‘;"
17 RETURN row’,
18 ’MERGE (RC:RegionCust [CUSTOMER_REGIONID :

row.CUSTOMER_REGIONID,CUSTOMER_REGION:
row.CUSTOMER_REGION])’,

19 [batchSize:10000, parallel:true]);

The provided script in Listing 1 only facilitates the creation
of nodes and hierarchies but does not establish connections
between them. The script in Listing 2 establishes relationships
between nodes in the Neo4j database for the “Customer,”
“CityCustomer,” and “RegionCustomer” hierarchies based on
the data imported from the CSV file. For each row, the
script looks for the “CUSTOMER” node with the matching
“CUSTOMER-ID” property, and the “CityCust” node with the

www.ijacsa.thesai.org 1002 | P a g e

https://neo4j.com/product/neo4j-graph-database/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

matching “CUSTOMER-CITYID” property using the MATCH
clauses. The First MERGE clause creates a relationship of
type CITY-CUSTOMER between the matched “CUSTOMER”
and “CityCust” nodes. The second use of the MERGE clause
creates a relationship of type REGION-CUSTOMER between
the matched “CityCust” and “RegionCust” nodes.

Listing 2: The relationship between the Customer dimension
and its hierarchies

1 // Relationship between Customer and
CityCustomer

2 CALL apoc.periodic.iterate(’LOAD CSV WITH
HEADERS FROM ‘‘file:///File.csv" as row
FIELDTERMINATOR ‘‘;"

3 RETURN row’
4 ’MATCH (C:CUSTOMER [CUSTOMER_ID: row.

CUTOMER_ID])
5 MATCH (CC:CityCust [CUSTOMER_CITYID: row.

CUSTOMER_CITYID])
6 MERGE (C)-[:CITY_CUSTOMER]->(CC)’,
7 [batchSize:2000, iteratelist:true]);
8

9 // Relationship between CityCustomer and
RegionCustomer

10 CALL apoc.periodic.iterate(
11 ’LOAD CSV WITH HEADERS FROM ‘‘file:///File.

csv" AS row FIELDTERMINATOR ‘‘;"
12 RETURN row’,
13 ’MATCH (RC:RegionCust [CUSTOMER_REGIONID: row

.CUSTOMER_REGIONID])
14 MATCH (CC:CityCust [CUSTOMER_CITYID: row.

CUSTOMER_CITYID])
15 MERGE (CC)-[:REGION_CUSTOMER]->(RC)’,
16 [batchSize:2000, iteratelist:true]);

To create the dimensions “PRODUCT”, “SUPPLIER”, and
“Time”, we use a similar approach as employed for the
“CUSTOMER” dimension.

After creating all the dimension nodes and their hierarchies
in the same way, the next step is to create the fact node
that contains the measures, and relationships between the
fact and dimension nodes. The following script in Listing 3,
demonstrates the creation of the fact node in Neo4j and the
relationships between the fact and a dimension node.

The script uses the MERGE clause to create a node labeled
as “FACT” with the specified properties (“ID”, “Price”, and
“QUANTITY”) taken from the corresponding columns in the
CSV file.

For each row, the script uses the MATCH clauses to find
the “CUSTOMER” node with the matching “CUSTOMER-ID”
and the “FACT” node with the matching “ID” property.

The MERGE clause creates a relationship labeled as
“FACT-CUSTOMER” between the matched “FACT” and
“CUSTOMER” nodes.

Listing 3: The Fact Node

1

2 // FACT NODE
3

4 CALL apoc.periodic.iterate(
5 ’LOAD CSV WITH HEADERS FROM ‘‘file:///File.

csv" AS row FIELDTERMINATOR ‘‘;"
6 RETURN row’,
7 ’MERGE (FCT:FACT [ID: row.INTEGRATION_ID,

Price: row.O_TOTALPRICE, QUANTITY:
toInteger(row.L_QUANTITY)])’,

8 [batchSize:10000, parallel:true]);
9

10

11

12 // Relationship FACT/CUSTOMER
13

14 CALL apoc.periodic.iterate(
15 ’LOAD CSV WITH HEADERS FROM ‘‘file:///File.

csv" AS row FIELDTERMINATOR ‘‘;"
16 RETURN row’,
17 ’MATCH (C:CUSTOMER [CUSTOMER_ID: row.

CUSTOMER_ID])
18 MATCH (FCT:FACT [ID: row.INTEGRATION_ID])
19 MERGE (FCT)-[:FACT_CUSTOMER]->(C)’,
20 [batchSize:20000, iteratelist:true]);

In the same way, we create relationships between the fact node
and the other dimensions (PRODUCT, SUPPLIER, TIME).
Using also the apoc.periodic.iterate procedure along with
MATCH and MERGE statements to efficiently import data
from the CSV file and establish the relationships between the
”FACT” nodes and the corresponding nodes in the “PROD-
UCT”, “SUPPLIER”, and “TIME” dimensions in the Neo4j
graph database.

The Fig. 2 represents the implementation of graph ware-
house in Neo4j.

Fig. 2. The graph warehouse of our case study.

B. OLAP Operators

Slice
The slice operator in OLAP enables the selection of slices from
the data based on a condition on the dimension values [7].

In Listing 4 the slice operator is applied to the Customer
Region dimension using the filter condition “AFRICA”, which
allows for selecting the data related to the AFRICA.

www.ijacsa.thesai.org 1003 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

Listing 4: Selecting Price and Quantity Results from Africa.

1 MATCH (RC:RegionCust [CUSTOMER_REGION: ’
AFRICA’])<-[*3]-(m:FACT)

2 RETURN RC.CUSTOMER_REGION, sum(tofloat(m.
Price)), sum(tofloat(m.QUANTITY))

Dice
The Dice operator is used in OLAP to select a subset of data
based on two or more conditions on dimensions. It is similar
to the Slice operator, but allows for finer selection by applying
multiple criteria on dimensions simultaneously.

In Listing 5 the Dice operator is applied to the Cus-
tomer Region and Year dimensions using the filter condition
“AFRICA” and “1997”.

Listing 5: Dice-Selecting Quantity Results with a Dice Oper-
ation.

1 MATCH (RC:RegionCust [CUSTOMER_REGION : ’
AFRICA’])<- [*3]-(m:FACT)

2 MATCH (Y:YEAR [YEAR : 1994])<- [*2]-(m:FACT)
3 RETURN RC.CUSTOMER_REGION, Y.YEAR, sum(

tofloat(m.QUANTITY)) as QUANTITY

Roll Up
In OLAP, [23]the Roll-Up operation is used to aggregate data
at a higher level of hierarchy than the current level[24].It
involves moving from a detailed level to a higher-level concept
[25].The Roll-Up operation is performed by grouping the data
based on the dimensions and then performing the aggregation
function on the measures. The result is a summarized view
of the data at a higher level of abstraction. In Listing 6, the
Roll Up operation is carried out by moving up the Product
dimension’s concept hierarchy (Product � Product Type) and
the hierarchy of dimension Time(Month � Year). This query
creates a relationship between the two dimensions that contains
the aggregated measures.

Listing 6: Roll Up- Price and Quantity summarized by Product
Type and Year.

1 MATCH (TP:TYPE_PRODUCT)<-[*2]-(FCT:FACT)
2 MATCH (Y:YEAR)<-[*2]-(FCT:FACT)
3 WITH distinct TP,Y, sum(tofloat(FCT.Price))

as Price, SUM(tofloat(FCT.QUANTITY)) As
QUANTITY

4 create (TP)<-[:TYPRD_YEAR_AGG [Price: Price,
QUANTITY: QUANTITY]]-(Y)

C. Graph Aggregations

After generating the most frequently user queries, the Apri-
ori Algorithm was then used to determine the most common

dimensions, and then we executed the second algorithm to
generate the most commonly used combinations to create the
aggregations. We set the support to 0.4 and the confidence to
0.7. The Fig. 3 shows the combinations of the most commonly
used dimensions.

Fig. 3. The combinations of the most commonly used dimensions.

To create aggregations in Neo4j, we use the following script
in Listing 7 that stores the aggregations in relationships:

Listing 7: Aggregation Customer-Year

1 CALL apoc.periodic.iterate(
2 ’LOAD CSV WITH HEADERS FROM ‘‘file:///File.

csv" AS row FIELDTERMINATOR ‘‘;"
3 RETURN row’,
4 ’MATCH (C:CUSTOMER)<-[]-(FCT:FACT)
5 MATCH (Y:YEAR)<-[*2]-(FCT:FACT)
6 CREATE (C)<-[:CUST_YEAR_AGG [Price: toFloat(

row.O_TOTALPRICE),QUANTITY: toFloat(row.
L_QUANTITY)]]-(A)’,

7 [batchSize:10000, parallel:true]);

In Listing 8, the script is used to create aggregations that are
stored in nodes, not in relationships.

Listing 8: Aggregation Customer-Product-Supplier

1 CALL apoc.periodic.iterate(
2 ’LOAD CSV WITH HEADERS FROM ‘‘file:///File.

csv" AS row FIELDTERMINATOR ‘‘;"
3 RETURN row’,
4 ’MATCH (P:PRODUCT)<-[]-(FCT:FACT)
5 MATCH (C:CUSTOMER)<-[]-(FCT:FACT)
6 MATCH (S:SUPPLIER) <-[]-(FCT:FACT)
7 create (PCS:PROD_CUST_SUPP [PRICE: toFloat(

row.O_TOTALPRICE),QUANTITY: toFloat(row.
L_QUANTITY)])

8 create (P)<-[:PROD_3]-(PCS)
9 create(C)<-[:CUST_3]-(PCS)

10 create (S)<-[:SUPP_3]-(PCS)’,
11 [batchSize:10000, parallel:true]);

www.ijacsa.thesai.org 1004 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

The Fig. 4 shows the creation of aggregations using in ap-
proach.

Fig. 4. Stored aggregations.

D. Experimental Results and Evaluation

To validate our approach and measure the effectiveness of
optimizing the OLAP cube in the graph, we conducted a series
of experiments in which we evaluated performance before and
after using our optimization approach. We measured the query
execution time before and after adding optimized aggregations,
and compared the execution times to determine if adding
the optimized aggregations led to a significant improvement
in performance. We conducted our test on an i7 processor
machine with 16GB of RAM and 1TB of storage memory.
Additionally, we used the TPC-H database with a scale factor
of SF1 (1GB). We use in Table II, Cypher queries before and
after optimization.

TABLE II. CYPHER QUERIES BEFORE AND AFTER OPTIMIZATION

Query Before Optimization After Optimization
Q 1

MATCH (RS:RegionSupp)
<-[*3]-(FCT:FACT)
return SUM(tofloat(

FCT.Price))
AS Price,
RS.SUPPLIER_REGION

MATCH (RS:RegionSupp)
<-[:REGION_SUPP_AG]-
(RA:Region_Supp_AGG)
return RA.Price
,RS.SUPPLIER_REGION

Q 2

MATCH(Y:YEAR)<-
[*2]-(m:FACT)
MATCH(TP:TYPE_PRODUCT

)
<-[*2]-(m:FACT)
return Y.YEAR, TP.

BRAND
,sum(tofloat(m.Price)

)as Price

MATCH(TP:TYPE_PRODUCT
)

<-[r:TYPRD_YEAR_AGG]
-(Y:YEAR)
return Y.YEAR, TP.

BRAND
,sum(tofloat(r.Price)

) as Price

Q 3

MATCH (C:CUSTOMER)
<-[]

-(FCT:FACT)
MATCH (P:PRODUCT)<-
[]-(FCT:FACT)
return sum(tofloat(

FCT.Price))
as Price
,C.CUSTOMER_NAME,P.

PRODUCT_NAME

MATCH (P:PRODUCT)-
[r:AGG_CUST_PROD]->(C

:CUSTOMER)
return r.Price,C.

CUSTOMER_NAME
,P.PRODUCT_NAME

Q 4

MATCH (TP:
TYPE_PRODUCT)

<-[*2]-(FCT:FACT)
return SUM(tofloat(

FCT.QUANTITY))
As QUANTITY, TP.BRAND

MATCH (TP:
TYPE_PRODUCT)

<-[:TYPE_PROD_AG]
-(TPAGG:TYPE_PROD_AGG

)
return TPAGG.QUANTITY

,
TP.BRAND

Q 5

MATCH (P:PRODUCT)<-
[:FACT_PRODUCT]-(FCT:

FACT)
MATCH (C:CUSTOMER)<-
[:FACT_CUSTOMER]-(FCT

:FACT)
MATCH (S:SUPPLIER)<-
[:FACT_SUPPLIER]-(FCT

:FACT)
return SUM(tofloat(

FCT.Price))
AS PRICE,
P.PRODUCT_NAME,C.

CUSTOMER_NAME,
S.SUPPLIER_NAME LIMIT

43

MATCH (P:PRODUCT)<-[:
PROD_3]

-(PCS:PROD_CUST_SUPP)
MATCH (C:CUSTOMER)

<-[:CUST_3]
-(PCS:PROD_CUST_SUPP)
MATCH (S:SUPPLIER)

<-[:SUPP_3]
-(PCS:PROD_CUST_SUPP)
return PCS.PRICE,P.

PRODUCT_NAME,
C.CUSTOMER_NAME,S.

SUPPLIER_NAME
LIMIT 43

www.ijacsa.thesai.org 1005 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

The Fig. 5 shows the query execution time before and after
the optimization of the model.

[Query Execution Time]

[Query Execution in neo4j]

Fig. 5. Query execution time.

The results demonstrate that the execution time of the
queries decreased after the optimization and usage of OLAP
aggregations, although the execution time may vary depending
on the complexity of the query, with complex queries requiring
traversal of numerous relationships taking more time, while
simple queries involving only a few relationships having
relatively short execution times.

For instance, in the first query, the execution time before
optimization was approximately 14266 milliseconds, and after
optimization, it reduced to 3 milliseconds. This translates
to an impressive percentage improvement of approximately
99%. Furthermore, in the query 4, we achieved considerable
improvements as well, the execution time decreased from
3,978 milliseconds to 2 milliseconds,substantial gains in per-
formance clearly demonstrate the effectiveness of our approach
in making the system nearly 2,000 times faster than its previous
state.

The significant reduction in execution time showcases how
this approach can make the system multiple times faster than
its previous state, enhancing the efficiency of reporting and
data analysis within the graph-based data warehouse.

We also compared our model implemented in the graph
and the ROLAP model, comparing the execution time of the
same multidimensional queries in Neo4j and Oracle.

Table III shows the queries used in the comparison between
Graph OLAP and ROLAP.

TABLE III. RELATIONAL QUERY VS GRAPH QUERY

Query Relational Query Graph Query
Q 1

SELECT
sum(o_totalprice) as

Price,
supplier_region
from w_fact_1gb_f3
Group by

supplier_region

MATCH (RS:RegionSupp)
<-[:REGION_SUPP_AG]-
(RA:Region_Supp_AGG)
return RA.Price
,RS.SUPPLIER_REGION

Q 2

SELECT
sum(o_totalprice) as

Price,
orderyear AS YEAR,
brand as PRODCUT_TYPE
from w_fact_1gb_f3
GROUP BY orderyear,
brand

MATCH(TP:TYPE_PRODUCT
)

<-[r:TYPRD_YEAR_AGG]
-(Y:YEAR)
return Y.YEAR, TP.

BRAND
,sum(tofloat(r.Price)

) as Price

Q 3

SELECT
sum(o_totalprice) as

Price,
product_name,
customer_name
from w_fact_1gb_f3
GROUP BY
product_name,
customer_name

MATCH (P:PRODUCT)-
[r:AGG_CUST_PROD]->(C

:CUSTOMER)
return r.Price,C.

CUSTOMER_NAME
,P.PRODUCT_NAME

Q 4

SELECT
sum(l_quantity) as

QUANTITY,
brand as PRODUCT_TYPE
FROM
w_fact_1gb_f3
GROUP BY brand

MATCH (TP:
TYPE_PRODUCT)

<-[:TYPE_PROD_AG]
-(TPAGG:TYPE_PROD_AGG

)
return TPAGG.QUANTITY

,
TP.BRAND

Q 5

select * from (
SELECT
sum(o_totalprice) as

Price,
product_name,
customer_name,
supplier_name
FROM w_fact_1gb_f3
GROUP BY
product_name,
customer_name,
supplier_name)
where ROWNUM <= 43;

MATCH (P:PRODUCT)<-[:
PROD_3]

-(PCS:PROD_CUST_SUPP)
MATCH (C:CUSTOMER)

<-[:CUST_3]
-(PCS:PROD_CUST_SUPP)
MATCH (S:SUPPLIER)

<-[:SUPP_3]
-(PCS:PROD_CUST_SUPP)
return PCS.PRICE,P.

PRODUCT_NAME,
C.CUSTOMER_NAME,S.

SUPPLIER_NAME
LIMIT 43

www.ijacsa.thesai.org 1006 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

The Figure 6 shows the query execution time in the Graph
OLAP and ROLAP.

Fig. 6. Query execution time in Oracle and Neo4j.

The results also show that the Graph cube delivers per-
formance levels that are better than those of the ROLAP
model.we also notice that Graph databases provide a great
degree of flexibility for searching through data by conducting
more complex pathways or by following direct linkages. While
SQL queries that use joins to mix data from various tables
provide the basis for data traversal in a relational architecture.
While joins can be effective, they can also be less flexible and
intuitive when navigating complex relationships.

V. CONCLUSION

Graph-Oriented Databases offers a clear abstraction for
managing heavily connected data and modelling complicated
domains. In this Paper we present our contribution for devel-
oping a data warehouse under a graph database, our approach
relies on the properties of graphs to implement graph data
warehouse. To enhance the graph cube’s performance we
provide a new technique that optimizes the choice of OLAP
aggregations by using the association rules algorithm.

To validate our approach and measure the effectiveness
of OLAP cube optimization in the graph, we conducted a
series of experiments in which we evaluated the performance
before and after the optimization, we also compared our model
with the relational model in terms of query performance.
The experiment’s findings demonstrate the benefits of creating
OLAP systems under graph oriented databases when using a
large amount of data. In our future research works we will
concentrate on the implementation of decision systems in other
Nosql databases such as document and column databases using
new approaches.

REFERENCES

[1] Aqib Ali, Samreen Naeem, Sania Anam, and Muham-
mad Munawar Ahmed. A state of art survey for big
data processing and nosql database architecture. IJCDS
Journal, May 2023.

[2] Amine Ghrab, Oscar Romero, Sabri Skhiri, and Esteban
Zimányi. Topograph: an end-to-end framework to build
and analyze graph cubes. Information Systems Frontiers,
23(1):203–226, 2021.

[3] Matteo Kamm, Manuel Rigger, Chengyu Zhang, and
Zhendong Su. Testing graph database engines via query
partitioning. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Anal-
ysis, pages 140–149, 2023.

[4] Amine Ghrab, Oscar Romero, Sabri Skhiri, Alejandro
Vaisman, and Esteban Zimányi. A framework for building
olap cubes on graphs. In Advances in Databases and
Information Systems: 19th East European Conference,
ADBIS 2015, Poitiers, France, September 8-11, 2015,
Proceedings 19, pages 92–105. Springer, 2015.

[5] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han.
Graph cube: on warehousing and OLAP multidimen-
sional networks. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
data, pages 853–864, Athens Greece, June 2011. ACM.

[6] Michal Bachman. Graphaware: Towards online analytical
processing in graph databases. Department of Computing,
Master, 2013.

[7] Arnaud Castelltort and Anne Laurent. Fuzzy queries
over nosql graph databases: perspectives for extending the
cypher language. In Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems:
15th International Conference, IPMU 2014, Montpellier,
France, July 15-19, 2014, Proceedings, Part III 15, pages
384–395. Springer, 2014.

[8] Alejandro Vaisman, Florencia Besteiro, and Maximiliano
Valverde. Modelling and querying star and snowflake
warehouses using graph databases. In New Trends in
Databases and Information Systems: ADBIS 2019 Short
Papers, Workshops BBIGAP, QAUCA, SemBDM, SIM-
PDA, M2P, MADEISD, and Doctoral Consortium, Bled,
Slovenia, September 8–11, 2019, Proceedings 23, pages
144–152. Springer, 2019.

[9] Amal Sellami, Ahlem Nabli, and Faiez Gargouri. Trans-
formation of data warehouse schema to nosql graph data
base. In Intelligent Systems Design and Applications:
18th International Conference on Intelligent Systems De-
sign and Applications (ISDA 2018) held in Vellore, India,
December 6-8, 2018, Volume 2, pages 410–420. Springer,
2020.

[10] Nassima Soussi. Big-Parallel-ETL: New ETL for Mul-
tidimensional NoSQL Graph Oriented Data. Journal
of Physics: Conference Series, 1743(1):012037, January
2021.

[11] Hajer Akid, Gabriel Frey, Mounir Ben Ayed, and Nicolas
Lachiche. Performance of nosql graph implementations
of star vs. snowflake schemas. IEEE Access, 10:48603–
48614, 2022.

[12] Abdelhak Khalil and Mustapha Belaissaoui. A Graph-
oriented Framework for Online Analytical Processing.
International Journal of Advanced Computer Science and
Applications, 13(5), 2022.

[13] Redha Benhissen, Fadila Bentayeb, and Omar Boussaid.
GAMM: graph-based agile multidimensional model. In
Enrico Gallinucci and Lukasz Golab, editors, Proceed-
ings of the 25th International Workshop on Design,
Optimization, Languages and Analytical Processing of
Big Data (DOLAP) co-located with the 26th Interna-
tional Conference on Extending Database Technology
and the 26th International Conference on Database The-
ory (EDBT/ICDT 2023), Ioannina, Greece, March 28,

www.ijacsa.thesai.org 1007 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 7, 2023

2023, volume 3369 of CEUR Workshop Proceedings,
pages 23–32. CEUR-WS.org, 2023.

[14] Ralph Kimball and Margy Ross. The data warehouse
toolkit: the complete guide to dimensional modeling. John
Wiley & Sons, 2011.

[15] Alejandro Vaisman and Esteban Zimányi. Data ware-
house systems. Data-Centric Systems and Applications,
2014.

[16] Yiming Lin, Yeye He, and Surajit Chaudhuri. Auto-
bi: Automatically build bi-models leveraging local join
prediction and global schema graph. arXiv preprint
arXiv:2306.12515, 2023.

[17] Ajith Abraham, Aswani Kumar Cherukuri, Patricia
Melin, and Niketa Gandhi. Intelligent Systems Design
and Applications: 18th International Conference on In-
telligent Systems Design and Applications (ISDA 2018)
Held in Vellore, India, December 6-8, 2018, Volume 1.
Springer, 2020.

[18] Khadija Letrache, Omar El Beggar, and Mohammed
Ramdani. Olap cube partitioning based on association
rules method. Applied Intelligence, 49:420–434, 2019.

[19] Rakesh Agarwal, Ramakrishnan Srikant, et al. Fast
algorithms for mining association rules. In Proc. of the
20th VLDB Conference, volume 487, page 499, 1994.

[20] Faaiz Hussain Shah. Gradual Pattern Extraction from
Property Graphs. PhD thesis, Université Montpellier,
2019.

[21] Ian Robinson, Jim Webber, and Emil Eifrem. Graph
databases: new opportunities for connected data. ”
O’Reilly Media, Inc.”, 2015.

[22] Mohammed El Malki, Arlind Kopliku, Essaid Sabir,
and Olivier Teste. Benchmarking big data olap nosql
databases. In Ubiquitous Networking: 4th International
Symposium, UNet 2018, Hammamet, Tunisia, May 2–5,
2018, Revised Selected Papers 4, pages 82–94. Springer,
2018.

[23] Adriana P Matei. An integrated approach to deliver
OLAP for multidimensional Semantic Web Databases.
PhD thesis, Coventry University, 2015.

[24] Elaheh Pourabbas and Maurizio Rafanelli. Characteri-
zation of hierarchies and some operators in olap envi-
ronment. In Proceedings of the 2nd ACM International
Workshop on Data Warehousing and OLAP, pages 54–59,
1999.

[25] Hans-Joachim Lenz and Bernhard Thalheim. A formal
framework of aggregation for the olap-oltp model. J.
Univers. Comput. Sci., 15(1):273–303, 2009.

www.ijacsa.thesai.org 1008 | P a g e

	Introduction
	Related Work
	Our Approach and Background Information
	Background Information
	Our Approach
	Graph Data Warehouse
	Algorithm 1: Calculate Frequent Itemsets.
	Algorithm2: Generate Association Rules.
	Graph Aggregation

	Approach Implementation and Evaluation
	Implementation of the Graph Warehouse
	OLAP Operators
	Graph Aggregations
	Experimental Results and Evaluation

	Conclusion

