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Abstract—Cloud providers offer heterogeneous virtual 

machines for the execution of a variety of tasks requested by 

users. These virtual machines are managed by the cloud 

provider, eliminating the need for users to set up and maintain 

their hardware. This makes accessing the computing resources 

necessary to run applications and services more accessible and 

cost-effective. The task scheduling problem can be expressed as a 

discrete optimization issue known as NP-hard. To address this 

problem, we propose a hybrid meta-heuristic algorithm using the 

Capuchin Search Algorithm (CapSA) and the Particle Swarm 

Optimization (PSO) algorithm. PSO excels in global exploration, 

while CapSA is adept at fine-tuning solutions through local 

search. We aim to achieve better convergence and solution 

quality by integrating both algorithms. Our proposed method's 

performance is thoroughly evaluated through extensive 

experimentation, comparing it to standalone PSO and CapSA 

approaches. The findings reveal that our hybrid algorithm 

outperforms the individual techniques in terms of both total 

execution time and total execution cost metrics. The novelty of 

our work lies in the synergistic integration of PSO and CapSA, 

addressing the limitations of traditional optimization methods for 

cloud task scheduling. The proposed hybrid approach opens up 

intriguing directions for future research in dynamic task 

scheduling, multi-objective optimization, adaptive algorithms, 

integration with emerging technologies, and real-world 

deployment scenarios. 
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I. INTRODUCTION 

Cloud computing is a well-known computing model that 
hosts and delivers various services via the Internet [1]. It 
enables users to access computing resources on demand, thus 
reducing the cost of ownership and IT management. Cloud 
computing services are provided pay-as-you-go and typically 
include storage, software, analytics, and networking [2]. The 
cloud computing paradigm has allowed companies to move, 
process, and run some of the services and applications in cloud 
environments, providing convenient access to a wide range of 
resources easily and conveniently. In addition, these services 
are tailored to each customer's requirements [3]. Originally, 
due to the emergence of big data, conventional hardware could 
not handle heterogeneous workloads flowing onto the 
infrastructure. Consequently, many IT companies are migrating 
their infrastructure to the cloud to handle these diverse and 
heterogeneous tasks. Cloud computing models offer several 
potential benefits, including flexibility, highly resilient virtual 
architectures, on-demand services, elasticity, and scalability. 
Multi-tenant computing environments share resources among 

users. A scheduler module checks the resource status and 
allocates it under user requests [4]. Scheduling plays a crucial 
role in achieving optimal real-time performance in cloud 
computing. The scheduling algorithms map the tasks into the 
cloud environment and utilize the available resources, thereby 
reducing latency and response time for requests and increasing 
resource utilization and system throughput [5]. 

The fusion of IoT, big data, artificial intelligence (AI), 
machine learning (ML), deep learning, feature and channel 
selection, meta-heuristic algorithms, and association rule 
mining with cloud computing has ushered in a new era of 
technological possibilities. IoT connects a vast array of 
devices, generating immense volumes of data that can be 
harnessed in the cloud for analysis and processing [6]. Big 
data, with its inherent complexity and scale, finds a natural fit 
in cloud computing, which offers the necessary storage and 
computational capabilities to extract valuable insights [7, 8]. AI 
and ML form the backbone of intelligent cloud applications, 
enabling systems to learn from data patterns and make 
informed decisions [9-11]. Deep learning, a subset of ML, is 
especially powerful in cloud computing for tasks such as image 
recognition, natural language processing, and complex data 
analysis [12-14]. Feature and channel selection play a crucial 
role in optimizing cloud-based applications by identifying 
pertinent data attributes and sources, leading to improved 
efficiency and accuracy [15]. Meta-heuristic algorithms, with 
their ability to efficiently solve complex optimization 
problems, facilitate resource allocation, load balancing, and 
task scheduling in cloud environments [16-19]. Association 
rule mining is essential for discovering meaningful patterns 
and relationships within vast datasets, empowering businesses 
to make data-driven decisions and gain a competitive edge 
[20]. The integration of these concepts in cloud computing is 
transformative for businesses and industries alike. Cloud-based 
IoT solutions facilitate real-time data analysis and decision-
making, enabling predictive maintenance, personalized 
services, and improved operational efficiency. The ability to 
process and store big data in the cloud ensures data 
accessibility, scalability, and cost-effectiveness for 
organizations. Furthermore, AI and ML capabilities in the 
cloud enable innovative applications like virtual assistants, 
recommendation systems, and fraud detection. 

Many researchers have addressed the problem of 
scheduling tasks; however, it has remained an NP-hard 
problem. This means that scheduling tasks is a computationally 
difficult problem, and finding an optimal solution is not 
feasible in a reasonable time. As a result, numerous heuristics 
have been created to solve this issue effectively [21]. Cloud 
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environments consist of geographically distributed data 
centers. These data centers are connected by high-speed 
networks, making it possible to transfer data between them 
quickly. This enables cloud providers to use distributed 
scheduling algorithms that can use multiple data centers to 
solve the task scheduling problem more efficiently. There are 
thousands of servers in each data center. Each server has an 
array of virtual machines equipped with various resources, 
such as storage, CPU, and memory. To execute tasks, groups 
of virtual machines are allocated to cloud users. It is a complex 
task to schedule the appropriate resources for the task. In order 
to assign tasks to virtual resources, it is necessary to examine 
their characteristics with respect to dependency, length, and 
size. By factoring in the total execution time for all tasks, task 
scheduling algorithms can distribute the workload across 
virtual machines. 

In this research paper, we introduce a novel hybrid meta-
heuristic algorithm that combines the strengths of the Capuchin 
Search Algorithm (CapSA) and the Particle Swarm 
Optimization (PSO) algorithm. The decision to merge these 
two approaches was motivated by their complementary 
characteristics in tackling optimization problems. While PSO is 
renowned for its efficient global exploration capabilities, 
CapSA excels in local search strategies, making it adept at 
fine-tuning solutions. The integration of PSO and CapSA 
allows us to harness their unique strengths synergistically, 
aiming for improved convergence and solution quality. During 
the experimentation phase, our hybrid approach demonstrated 
superior performance to standalone PSO and CapSA, as 
evident in total execution time and total execution cost metrics. 
Furthermore, our evaluation of existing methods for cloud task 
scheduling revealed specific limitations hindering their 
effectiveness in this context. Traditional optimization 
algorithms often struggle to find solutions in large search 
spaces because they lack robust exploration capabilities. On the 
other hand, local search algorithms may get trapped in local 
optima, preventing them from achieving global optimality. Our 
proposed hybrid PSO-CapSA approach effectively addresses 
these limitations. By leveraging PSO's global exploration 
capabilities, the algorithm conducts a diverse search across the 
solution space, mitigating the risk of premature convergence to 
suboptimal solutions. Additionally, CapSA's local search 
enhances the precision of the algorithm by refining solutions 
and escaping local optima. This combination empowers our 
method to tackle cloud task scheduling challenges more 
effectively than existing approaches. 

The paper is arranged in the following manner. Section II 
summarizes the literature. Section III discusses the problem 
statement and the proposed algorithm. Section IV illustrates the 
findings and analyses. Section V presents the conclusion. 

II. RELATED WORK 

Dai, et al. [22] propose a novel task-scheduling algorithm 
that incorporates multiple quality of service criteria into the 
scheduling process, like reliability, security, expenditure, and 
time. It combines genetic as well as Ant Colony Optimization 
(ACO) algorithms. ACO employs the genetic algorithm to 
generate an initial pheromone efficiently. A four-dimensional 
quality of service objective is evaluated utilizing a designed 

fitness function. The optimum resource is then identified using 
the ACO algorithm. The proposed algorithm was implemented 
on several real-world tasks and demonstrated significant 
improvements in the quality of service. The consequences 
demonstrated that the suggested algorithm achieved better 
scheduling than existing algorithms. 

Tang, et al. [23] proposed the DVFS-enabled Energy-
efficient Workflow Task Scheduling (DEWTS) algorithm to 
reduce energy consumption and ensure the quality of service 
adhering to deadlines. DEWTS is built upon a dynamic voltage 
frequency scaling approach that assigns appropriate processing 
speeds to tasks based on their deadlines. By combining 
potentially inefficient processors, DEWTS can utilize the slack 
time repeatedly after servers have been merged by reclaiming 
the slack time. This ensures that peak performance is 
maintained and the power wasted is minimized. The DEWTS 
algorithm can effectively manage servers with different 
deadlines and dynamically adjust the processors' frequency and 
voltage. After calculating the starting scheduling sequence for 
all tasks, DEWTS determines the total makespan and deadline 
by applying the Heterogeneous-Earliest-Finish-Time (HEFT) 
algorithm. The underutilized processors are combined by 
terminating the last node and reallocating the assigned tasks to 
the processors according to the number of running tasks and 
the energy consumption of each processor. Results from the 
experiments demonstrate that DEWTS reduces entire power 
consumption by up to 46 percent for a variety of parallel 
applications while balancing scheduling performance based on 
randomly generated DAG workflows. 

Keshanchi, et al. [24] introduced a powerful and enhanced 
genetic algorithm to optimize task-scheduling solutions. Based 
on model-checking techniques, they have developed a 
behavioral modeling approach to verify the algorithm's 
validity. Next, Linear Temporal Logic (LTL) functions are 
used to extract the expected specifications. A Labeled 
Transition System (LTS) is used to obtain optimal results in the 
validation process. The algorithm was tested on various tasks 
and provided better performance and scalability than existing 
methods. The results were validated using the LTS model, and 
the algorithm was effective in generating optimal task-
scheduling solutions. According to the verification outcomes, 
the validity of the suggested algorithm is assessed with respect 
to some reachability, fairness, specifications, and deadlock-free 
performance. Statistical analysis, as well as simulation 
findings, indicate that the designed approach is superior to 
traditional heuristic algorithms. The proposed algorithm has 
been successfully implemented in a deployed system, 
demonstrating its effectiveness and scalability. The results of 
the verification process show that the algorithm achieves the 
desired results with minimal computational cost. 

Lin, et al. [25] presented a power efficiency model for 
cloud servers. To optimize energy consumption in cloud 
environments, they propose a heuristic task scheduling 
algorithm (ECOTS) that utilizes the power efficiency of the 
server to guide task scheduling. Multiple vital factors are taken 
into account by ECOTS, including degradation of performance, 
power efficiency models for servers, and resource requirements 
for tasks, with the goal of reducing the energy consumption of 
the system without compromising performance. ECOTS is 
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characterized by its simplicity in terms of time and space and 
the ability to search globally to find an effective scheduling 
strategy. An evaluation of the effectiveness of ECOTS was 
conducted by simulating a heterogeneous cluster environment. 
It has been demonstrated that the ECOTS algorithm achieves 
the highest energy efficiency level. 

The energy efficiency of task scheduling in cloud data 
center architectures was studied by Sharma and Garg [26], who 
also created a new hybrid meta-heuristic algorithm according 
to the harmony-inspired genetic algorithms. It combines the 
exploration capabilities of a genetic algorithm with the 
exploitation capabilities of harmony searches to provide rapid 
convergence while intelligently sensing both local and global 
optimal regions without wasting time in local or global optimal 
regions. Key goals include reducing the time required for 
computation and the energy it consumes. In contrast, secondary 
objectives include reducing energy consumption and 
scheduling execution overhead. 

Alsaidy, et al. [27] propose a heuristic algorithm for 
developing the initialization of the Particle Swarm 
Optimization (PSO) algorithm. The PSO is initially configured 
using the minimum completion time (MCT) and longest job to 
fastest processor (LJFP) algorithms. Both algorithms are tested 
in terms of their efficiency to minimize total energy 
consumption, degree of imbalance, and total execution time. A 
comparison is also made between the proposed algorithms and 
recent methods. The simulation outcomes demonstrate that the 
suggested algorithms are more effective and superior to 
traditional PSO and comparative algorithms. 

Saravanan, et al. [28] used the enhanced wild horse 
optimization algorithm and the levy flight algorithm for task 
scheduling. This method generates a multi-objective fitness 
function by optimizing resource utilization and minimizing the 
makespan. The simulation results indicated that the suggested 
method outperformed others in a variety of situations. The 
algorithm was successful in achieving better task scheduling 
compared to traditional algorithms. It achieved better outcomes 
regarding completion time, cost, as well as energy efficiency. 
The proposed method was also found to be scalable and robust, 
able to handle a large number of tasks and resources. 

III. PROPOSED METHOD 

This section begins with a description of the problem 
statement. Then, the standard PSO and CapSA algorithms are 
discussed to determine the basis for the suggested algorithm. 
This section also examines the fitness function incorporated 
into the proposed algorithm. 

A. Problem Statement 

The process of scheduling cloud-based tasks is illustrated in 
Fig. 1. Initially, users' tasks are placed in a queue. The tasks are 
then retrieved from the queue and allocated to the available 
cloud resources. Once the tasks are finished, the results are sent 
back to the users. This procedure continues until each task is 
completed. Generally, static and dynamic are the two kinds of 
task scheduling algorithms. Static scheduling algorithms 
require detailed information regarding the environment and the 
tasks. Dynamic scheduling algorithms monitor the system 
continuously and are capable of balancing workloads. In the 
following way, the task scheduling problem is described. The 
task scheduling problem consists of assigning n tasks of users 
to m heterogeneous virtual machines based on some constraints 
in order to optimize some objective functions. We have 
observed that task scheduling is an objective-driven strategy 
that involves allocating computing resources to specific tasks 
periodically to maximize one or more objectives. This process 
requires analysis of data related to the task, such as the 
resource requirements, the time needed to complete the task, 
and the task's priority. Optimizing task scheduling can result in 
significant cost savings by allocating resources efficiently. 
Furthermore, effective task scheduling can help improve the 
system's overall performance. In the cloud computing 
environment, the scheduling policy should address this 
problem from two different perspectives, customer and cloud 
provider perspectives. The customer's objective is to lower the 
cost of executing the tasks, and the cloud provider's objective is 
to maximize the utilization of the infrastructure. Thus, cost and 
performance should be considered when designing the 
scheduling policy. In this regard, scheduling is a major concern 
in the cloud environment, as it directly impacts the 
performance of the cloud system as well as the cloud service 
consumer. 

 
Fig. 1. Task scheduling in cloud computing. 
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Assume that                    represents the set 
of virtual machines available within a data center. These virtual 
machines are provided to cloud users in order to fulfill their 
task requests. Each virtual machine is equipped with 
processing power expressed in Millions of Instructions Per 
Second (MIPS). A cloud broker allocates tasks to appropriate 
virtual machines according to details of existing resources and 
requirements of tasks. The collection of tasks to execute on the 
virtual machines at the data center is expressed as   
            . Tasks are defined by their length and 
processing requirements, which are specified by Millions of 
Instructions (MIs). 

B. Fitness Function 

Fitness functions represent the desired objectives to be 
optimized. They measure the performance of the problem 
being solved and direct the search process toward finding the 
best solution. Fitness functions are generally represented as 
mathematical functions, which can be used to evaluate the 
candidate solutions. Fitness functions may be multi-objective 
from two perspectives: prior and posterior. In an a priori 
approach, the fitness function is designed to optimize multiple 
objectives from the beginning. In a posteriori approach, a 
single-objective fitness function is used, and the multiple 
objectives are satisfied through post-processing. According to 
the prior strategy, objectives are given a weight that reflects 
their significance in producing a single-value function, referred 
to as a fitness value. The posterior approach produces non-
dominant solutions. This paper uses priori principles to develop 
the fitness function. Total execution time and total execution 
cost are included in the fitness function. In mathematical terms, 
the fitness function considered is expressed by Eq. 1. 

                 (1) 

Cloud computing is designed to meet users' functional 
needs while reducing costs. Consequently, a scheduling 
algorithm should provide users access to their necessary 
applications at a minimal cost. Costs associated with storage, 
communication, and execution are all contained in the cost of 
cloud computing. Execution cost consists of the price per unit 
interval applied by the virtual machine and the execution time 
of all tasks executed by that virtual machine. Eq. 2 can be used 
to calculate the total execution cost of a workflow. 

     ∑
     

 

 
                      (2) 

In Eq. 2,       measures the time taken to execute task Ti by 

jth VM,   is the period during which the user utilizes the 
resources, and     represents the cost of a type-i VM instance 

for a unit of time in the cloud data center. The total execution 
time or makespan is a key metric used to measure the 
performance of a task scheduling approach. It is the sum of the 
longest completion times of tasks within a workflow. 
Optimizing the makespan is an important part of workflow 
scheduling. Eq. 3 can be used to calculate the makespan of a 
workflow. 

             |           (3) 

In Eq. 3, CTi is represented the completion time of task Ti 
in the workflow. In other words, it is characterized as the 

variation between task Ti's start and end times. Eq. 4 is used to 
calculate the completion time. According to Eq. 5, the waiting 
time of task Ti equals the total completion time of its 
predecessors. Eq. 6 calculates the execution time of task Ti on 
VMj.        represents the size of each core in MIPS, 
         indicates how many cores are allocated to the 

virtual machine VMj, as well as        indicates the size of 
task Ti in MI. 

    {
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C. Proposed Algorithm 

The proposed algorithm combines the PSO and Capuchin 
Search Algorithm (CapSA). The algorithm consists of running 
the PSO algorithm during the first half of the total iterations, 
initializing the most optimal solution produced by the PSO 
algorithm (gbest) to CapSA, and running CapSA for the second 
half of the total iterations. The best CapSA solution is the most 
efficient assignment of tasks to virtual machines. After the total 
iterations are finished, the algorithm takes the best solution 
from PSO and CapSA and finds the best fitness value. This 
solution is returned as the final output of the proposed 
algorithm. 

In order to apply any algorithm to a workflow scheduling 
problem, the problem must be modeled in terms of the tasks 
that need to be completed, their precedence relationships, the 
resources and time needed to complete each task, and other 
factors. Once the problem is accurately modeled, the 
appropriate algorithm can be applied to find an optimal 
solution. This problem can be viewed as a mapping between 
user tasks and virtual machines. As shown in Fig. 2, an array 
can represent the proposed algorithm's solution. Tasks and 
assigned VMs are represented by an array's index and array’s 
values, respectively. Population refers to the set of solutions. In 
the first iteration, the population is first initialized using a 
random solution. As the algorithm is iterated, the solution is 
improved. Fig. 3 illustrates a random population initialization. 
Each population is evaluated to determine its fitness. The 
population with the highest fitness is considered the most 
optimal solution. Selection processes are then used to identify 
solutions for reproduction. 

 
Fig. 2. A solution array. 
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Fig. 3. Initializing the population. 

Using Eq. 7, the algorithm determines the execution time 
and assigns them to the execution time matrix. The element 
value demonstrates the execution time; for example, ET1,1 
represents the execution time of task T1 on VM1. According to 
Eq. 8, the cost matrix contains the execution cost of each 
virtual machine.            correspond to the unit execution 
costs of the virtual machines              . 
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The PSO algorithm is an evolutionary algorithm derived 
from bird swarms or fish schools. It optimizes an issue by 
iteratively seeking to enhance a candidate solution concerning 
a given quality measure. It works by moving a population of 
candidate solutions, known as particles, throughout the search 
space in accordance with straightforward mathematical 
formulas. The movement of particles is guided by their best-
known position and the best-known positions in the search 
space, which are updated as other particles find better 
positions. Position pi and velocity vi are the two parameters 
that describe a particle. Pbest and gbest are two parameters that 
affect the particle’s position. Gbest represents the best position 
of neighboring particles, while Pbest represents the best 
position visited by the particle. Position and velocity are 
updated after each iteration of the algorithm. The velocity is 
updated using Eq. 9. 

   
      

                
     

               
     

  
 (9) 

In Eq. 9,    
  corresponds to the velocity of the ith particle 

in the dth dimension on iteration t. Eq. 10 is used to update the 

particle’s position. In Eq. 10,    
  displays the position of 

particle i in the dth dimension at time t. 

   
       

     
    (10) 

The CapSA is inspired by capuchin monkeys’ dynamic 
behavior when navigating between branches and riverbanks for 
food [29, 30]. It uses three great navigation methods: jumping, 
swinging, and climbing. According to CSA, capuchin 
populations can be categorized into two important groups: the 
leaders and the followers. The leaders guide their followers and 
keep track of each other. Three principal concepts are used by 

capuchin leaders and swarm members when looking for food 
sources: explore independently, cooperate in locating better 
food sources, and lead by example. In the search for food 
sources, the Alpha males, as well as Alpha females, lead the 
other group members. By assisting the other group members in 
discovering food sources, the Alpha male serves as a leader. 
An iterative solution is determined using the above strategies. 
In order to select the best features, CapSA follows the 
following steps: 

 CapSA initialization: Like other meta-heuristic 
algorithms, CapSA generates a predetermined number 
of individuals (i.e., capuchins) to serve as its 
population. Each individual represents a potential 
answer to the task scheduling problem in this paper. A 
capuchin array can be viewed as a d-dimensional 
matrix. The matrix for the initial population is shown in 
Eq. 11. 
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 (11) 

 In Eq. 11, n stands for the number of capuchins, d 
demonstrates the number of variables, xid indicates the 
dimension of the ith capuchin, and x signifies the 
position of the capuchins. Eq. 12 is used to compute the 
first situation of each capuchin. 

                    (12) 

 In Eq. 12,     and     define upper and lower bounds 

for the jth capuchin, respectively, as well as t varies 
uniformly from 0 to 1. 

 Generation of solutions by capuchins: In CapSA, a new 
population originates from the position of the capuchin, 
the best capuchin, and F, which represents the food 
source. In a d-dimensional search domain, capuchins 
should iteratively update this food source. The 
following equation is used in our proposed algorithm to 
generate new solutions. In Eq. 13,     is the probability 
of the balance generated by the tail of the capuchin 
during leaping movements,   is the angle at which 

capuchins jump,   
  is the velocity of the ith capuchin in 

the dimension j, g is gravity equal to 9.81,    refers to 

the food’s position in the dimension, and   
  refers to the 

position of the alpha capuchins and their following 
capuchins within the dimension j. A capuchin’s jump 
angle can be determined using Eq. 14, where r is a 
uniformly generated number from 0 to 1. 

  
     

      
           

 
 (13) 

θ  
 

 
     (14) 

IV. EXPERIMENTAL RESULTS 

In this section, the proposed algorithm's performance is 
compared with previous algorithms under Montage workflows 
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with 50 and 100 tasks.  The proposed algorithm was simulated 
and evaluated using the WorkflowSim -1.1 toolkit, an 
extension of Cloudsim. Comparisons are made among the 
proposed algorithm as well as standalone PSO and CapSA. 
Table I provides a summary of the simulation parameters that 
were utilized for evaluating the algorithm. 

1) Total execution time comparison (50 tasks): As 

depicted in Fig. 4, the algorithms were compared regarding 

the total execution time as iterations increased from 50 to 500. 

The proposed algorithm consistently outperformed CapSA in 

all iterations. While slight degradations were observed in 

comparison with PSO at several iterations, the proposed 

algorithm exhibited an average improvement in performance. 

These findings indicate that the proposed algorithm is more 

effective than both CapSA and PSO in completing tasks in a 

shorter time. Moreover, the results demonstrate that the 

proposed algorithm maintains consistent performance as the 

number of iterations increases. 

2) Execution costs comparison (50 tasks): Fig. 5 illustrates 

the comparison of execution costs among the algorithms. The 

proposed algorithm exhibited improvements of 9.7%, 1.4%, 

12.6%, 10.6%, 3.8%, 15.2%, 11.1%, 14.4%, 19.9%, and 

13.3% compared to CapSA for all considered iterations. In 

terms of PSO, the proposed algorithm demonstrated a 

significant drop in total execution cost of up to 10%. Overall, 

the experimental results indicate that the proposed algorithm is 

more efficient than both CapSA and PSO. Additionally, the 

proposed algorithm exhibited faster convergence compared to 

these algorithms. 

3) Total execution time comparison (100 tasks): Fig. 6 

demonstrates that for 100 tasks, the proposed algorithm 

consistently reduced the total execution time compared to 

CapSA and PSO in all iterations. 

4) Execution costs comparison (100 tasks): In Fig. 7, the 

algorithms were compared based on their total execution costs 

for 100 tasks. The proposed algorithm outperformed CapSA in 

all iterations, with a decrease of 0.6%, 0.3%, 0.2%, 1%, 0.9%, 

1.2%, 1.4%, 0.4%, 1.1%, and 1.3% for all considered 

iterations. Compared to PSO, the proposed algorithm showed 

improvements of 0.11%, 0.04%, 0.02%, and 0.15% for 

iterations 200, 250, 300, and 500, respectively. These results 

indicate that the proposed algorithm is more effective and 

efficient in finding better solutions for the given problem 

compared to CapSA and PSO. Furthermore, it consistently 

produces better results as the number of iterations increases. 

Overall, the presented results demonstrate the superior 

performance of the proposed hybrid algorithm in terms of both 

total execution time and execution costs when compared to the 

standalone PSO and CapSA algorithms.. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

VM policy Time shared 

Number of processors 1 

Bandwidth 1000 

Ram 512 MB 

MIPS 1000 

Number of virtual machines 5 

Number of tasks 50-100 

 
Fig. 4. Execution time for 50 tasks. 
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Fig. 5. Execution cost for 50 tasks. 

 
Fig. 6. Execution time for 100 tasks. 

 

Fig. 7. Execution cost for 100 tasks. 
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V. CONCLUSION 

Cloud services offer a wide range of solutions to the 
varying computing challenges in the real world. In order to 
accomplish a variety of tasks, users access various cloud 
services. Services provided by different service providers are 
used to handle such tasks. In this paper, a novel hybrid meta-
heuristic algorithm according to the PSO algorithm as well as 
CapSA is proposed. The proposed algorithm uses PSO and 
CapSA to employ complementary global and local search 
strategies. Based on simulation results from the Cloudsim 
simulator, our algorithm outperformed standalone PSO and 
CapSA on both total execution cost and total execution time 
measures. There are several potential open problems in this 
domain for further research. Extending the proposed algorithm 
to handle dynamic task scheduling scenarios, where tasks and 
resource availability fluctuate in real-time, will be essential for 
addressing real-world dynamic workload challenges. This 
adaptability will ensure the algorithm remains efficient and 
effective in dynamic cloud environments. Exploring multi-
objective optimization techniques to optimize cloud task 
scheduling for various performance metrics, such as energy 
consumption, resource utilization, and quality of service (QoS), 
can lead to more comprehensive and versatile solutions. 
Exploring the integration of the proposed algorithm with 
emerging technologies, such as edge computing and AI-driven 
resource management, can open up new possibilities for 
efficient and intelligent task scheduling. This integration will 
leverage the advancements in these fields to enhance the 
scheduling process and overall cloud system performance. 
Conducting real-world deployments and large-scale 
experiments to assess the scalability and applicability of the 
proposed algorithm in practical cloud computing environments 
will be valuable for validating its effectiveness. 
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