
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1009 | P a g e

www.ijacsa.thesai.org

Cloud Task Scheduling using Particle Swarm

Optimization and Capuchin Search Algorithms

Gang WANG
1*

, Jiayin FENG
2
, Dongyan JIA

3
, Jinling SONG

4
, Guolin LI

5

Hebei Normal University of Science & Technology, Qinhuangdao 066004, China

Abstract—Cloud providers offer heterogeneous virtual

machines for the execution of a variety of tasks requested by

users. These virtual machines are managed by the cloud

provider, eliminating the need for users to set up and maintain

their hardware. This makes accessing the computing resources

necessary to run applications and services more accessible and

cost-effective. The task scheduling problem can be expressed as a

discrete optimization issue known as NP-hard. To address this

problem, we propose a hybrid meta-heuristic algorithm using the

Capuchin Search Algorithm (CapSA) and the Particle Swarm

Optimization (PSO) algorithm. PSO excels in global exploration,

while CapSA is adept at fine-tuning solutions through local

search. We aim to achieve better convergence and solution

quality by integrating both algorithms. Our proposed method's

performance is thoroughly evaluated through extensive

experimentation, comparing it to standalone PSO and CapSA

approaches. The findings reveal that our hybrid algorithm

outperforms the individual techniques in terms of both total

execution time and total execution cost metrics. The novelty of

our work lies in the synergistic integration of PSO and CapSA,

addressing the limitations of traditional optimization methods for

cloud task scheduling. The proposed hybrid approach opens up

intriguing directions for future research in dynamic task

scheduling, multi-objective optimization, adaptive algorithms,

integration with emerging technologies, and real-world

deployment scenarios.

Keywords—Cloud computing; virtualization; task scheduling;

optimization; resource utilization; capuchin search algorithm;

particle swarm optimization

I. INTRODUCTION

Cloud computing is a well-known computing model that
hosts and delivers various services via the Internet [1]. It
enables users to access computing resources on demand, thus
reducing the cost of ownership and IT management. Cloud
computing services are provided pay-as-you-go and typically
include storage, software, analytics, and networking [2]. The
cloud computing paradigm has allowed companies to move,
process, and run some of the services and applications in cloud
environments, providing convenient access to a wide range of
resources easily and conveniently. In addition, these services
are tailored to each customer's requirements [3]. Originally,
due to the emergence of big data, conventional hardware could
not handle heterogeneous workloads flowing onto the
infrastructure. Consequently, many IT companies are migrating
their infrastructure to the cloud to handle these diverse and
heterogeneous tasks. Cloud computing models offer several
potential benefits, including flexibility, highly resilient virtual
architectures, on-demand services, elasticity, and scalability.
Multi-tenant computing environments share resources among

users. A scheduler module checks the resource status and
allocates it under user requests [4]. Scheduling plays a crucial
role in achieving optimal real-time performance in cloud
computing. The scheduling algorithms map the tasks into the
cloud environment and utilize the available resources, thereby
reducing latency and response time for requests and increasing
resource utilization and system throughput [5].

The fusion of IoT, big data, artificial intelligence (AI),
machine learning (ML), deep learning, feature and channel
selection, meta-heuristic algorithms, and association rule
mining with cloud computing has ushered in a new era of
technological possibilities. IoT connects a vast array of
devices, generating immense volumes of data that can be
harnessed in the cloud for analysis and processing [6]. Big
data, with its inherent complexity and scale, finds a natural fit
in cloud computing, which offers the necessary storage and
computational capabilities to extract valuable insights [7, 8]. AI
and ML form the backbone of intelligent cloud applications,
enabling systems to learn from data patterns and make
informed decisions [9-11]. Deep learning, a subset of ML, is
especially powerful in cloud computing for tasks such as image
recognition, natural language processing, and complex data
analysis [12-14]. Feature and channel selection play a crucial
role in optimizing cloud-based applications by identifying
pertinent data attributes and sources, leading to improved
efficiency and accuracy [15]. Meta-heuristic algorithms, with
their ability to efficiently solve complex optimization
problems, facilitate resource allocation, load balancing, and
task scheduling in cloud environments [16-19]. Association
rule mining is essential for discovering meaningful patterns
and relationships within vast datasets, empowering businesses
to make data-driven decisions and gain a competitive edge
[20]. The integration of these concepts in cloud computing is
transformative for businesses and industries alike. Cloud-based
IoT solutions facilitate real-time data analysis and decision-
making, enabling predictive maintenance, personalized
services, and improved operational efficiency. The ability to
process and store big data in the cloud ensures data
accessibility, scalability, and cost-effectiveness for
organizations. Furthermore, AI and ML capabilities in the
cloud enable innovative applications like virtual assistants,
recommendation systems, and fraud detection.

Many researchers have addressed the problem of
scheduling tasks; however, it has remained an NP-hard
problem. This means that scheduling tasks is a computationally
difficult problem, and finding an optimal solution is not
feasible in a reasonable time. As a result, numerous heuristics
have been created to solve this issue effectively [21]. Cloud

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1010 | P a g e

www.ijacsa.thesai.org

environments consist of geographically distributed data
centers. These data centers are connected by high-speed
networks, making it possible to transfer data between them
quickly. This enables cloud providers to use distributed
scheduling algorithms that can use multiple data centers to
solve the task scheduling problem more efficiently. There are
thousands of servers in each data center. Each server has an
array of virtual machines equipped with various resources,
such as storage, CPU, and memory. To execute tasks, groups
of virtual machines are allocated to cloud users. It is a complex
task to schedule the appropriate resources for the task. In order
to assign tasks to virtual resources, it is necessary to examine
their characteristics with respect to dependency, length, and
size. By factoring in the total execution time for all tasks, task
scheduling algorithms can distribute the workload across
virtual machines.

In this research paper, we introduce a novel hybrid meta-
heuristic algorithm that combines the strengths of the Capuchin
Search Algorithm (CapSA) and the Particle Swarm
Optimization (PSO) algorithm. The decision to merge these
two approaches was motivated by their complementary
characteristics in tackling optimization problems. While PSO is
renowned for its efficient global exploration capabilities,
CapSA excels in local search strategies, making it adept at
fine-tuning solutions. The integration of PSO and CapSA
allows us to harness their unique strengths synergistically,
aiming for improved convergence and solution quality. During
the experimentation phase, our hybrid approach demonstrated
superior performance to standalone PSO and CapSA, as
evident in total execution time and total execution cost metrics.
Furthermore, our evaluation of existing methods for cloud task
scheduling revealed specific limitations hindering their
effectiveness in this context. Traditional optimization
algorithms often struggle to find solutions in large search
spaces because they lack robust exploration capabilities. On the
other hand, local search algorithms may get trapped in local
optima, preventing them from achieving global optimality. Our
proposed hybrid PSO-CapSA approach effectively addresses
these limitations. By leveraging PSO's global exploration
capabilities, the algorithm conducts a diverse search across the
solution space, mitigating the risk of premature convergence to
suboptimal solutions. Additionally, CapSA's local search
enhances the precision of the algorithm by refining solutions
and escaping local optima. This combination empowers our
method to tackle cloud task scheduling challenges more
effectively than existing approaches.

The paper is arranged in the following manner. Section II
summarizes the literature. Section III discusses the problem
statement and the proposed algorithm. Section IV illustrates the
findings and analyses. Section V presents the conclusion.

II. RELATED WORK

Dai, et al. [22] propose a novel task-scheduling algorithm
that incorporates multiple quality of service criteria into the
scheduling process, like reliability, security, expenditure, and
time. It combines genetic as well as Ant Colony Optimization
(ACO) algorithms. ACO employs the genetic algorithm to
generate an initial pheromone efficiently. A four-dimensional
quality of service objective is evaluated utilizing a designed

fitness function. The optimum resource is then identified using
the ACO algorithm. The proposed algorithm was implemented
on several real-world tasks and demonstrated significant
improvements in the quality of service. The consequences
demonstrated that the suggested algorithm achieved better
scheduling than existing algorithms.

Tang, et al. [23] proposed the DVFS-enabled Energy-
efficient Workflow Task Scheduling (DEWTS) algorithm to
reduce energy consumption and ensure the quality of service
adhering to deadlines. DEWTS is built upon a dynamic voltage
frequency scaling approach that assigns appropriate processing
speeds to tasks based on their deadlines. By combining
potentially inefficient processors, DEWTS can utilize the slack
time repeatedly after servers have been merged by reclaiming
the slack time. This ensures that peak performance is
maintained and the power wasted is minimized. The DEWTS
algorithm can effectively manage servers with different
deadlines and dynamically adjust the processors' frequency and
voltage. After calculating the starting scheduling sequence for
all tasks, DEWTS determines the total makespan and deadline
by applying the Heterogeneous-Earliest-Finish-Time (HEFT)
algorithm. The underutilized processors are combined by
terminating the last node and reallocating the assigned tasks to
the processors according to the number of running tasks and
the energy consumption of each processor. Results from the
experiments demonstrate that DEWTS reduces entire power
consumption by up to 46 percent for a variety of parallel
applications while balancing scheduling performance based on
randomly generated DAG workflows.

Keshanchi, et al. [24] introduced a powerful and enhanced
genetic algorithm to optimize task-scheduling solutions. Based
on model-checking techniques, they have developed a
behavioral modeling approach to verify the algorithm's
validity. Next, Linear Temporal Logic (LTL) functions are
used to extract the expected specifications. A Labeled
Transition System (LTS) is used to obtain optimal results in the
validation process. The algorithm was tested on various tasks
and provided better performance and scalability than existing
methods. The results were validated using the LTS model, and
the algorithm was effective in generating optimal task-
scheduling solutions. According to the verification outcomes,
the validity of the suggested algorithm is assessed with respect
to some reachability, fairness, specifications, and deadlock-free
performance. Statistical analysis, as well as simulation
findings, indicate that the designed approach is superior to
traditional heuristic algorithms. The proposed algorithm has
been successfully implemented in a deployed system,
demonstrating its effectiveness and scalability. The results of
the verification process show that the algorithm achieves the
desired results with minimal computational cost.

Lin, et al. [25] presented a power efficiency model for
cloud servers. To optimize energy consumption in cloud
environments, they propose a heuristic task scheduling
algorithm (ECOTS) that utilizes the power efficiency of the
server to guide task scheduling. Multiple vital factors are taken
into account by ECOTS, including degradation of performance,
power efficiency models for servers, and resource requirements
for tasks, with the goal of reducing the energy consumption of
the system without compromising performance. ECOTS is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1011 | P a g e

www.ijacsa.thesai.org

characterized by its simplicity in terms of time and space and
the ability to search globally to find an effective scheduling
strategy. An evaluation of the effectiveness of ECOTS was
conducted by simulating a heterogeneous cluster environment.
It has been demonstrated that the ECOTS algorithm achieves
the highest energy efficiency level.

The energy efficiency of task scheduling in cloud data
center architectures was studied by Sharma and Garg [26], who
also created a new hybrid meta-heuristic algorithm according
to the harmony-inspired genetic algorithms. It combines the
exploration capabilities of a genetic algorithm with the
exploitation capabilities of harmony searches to provide rapid
convergence while intelligently sensing both local and global
optimal regions without wasting time in local or global optimal
regions. Key goals include reducing the time required for
computation and the energy it consumes. In contrast, secondary
objectives include reducing energy consumption and
scheduling execution overhead.

Alsaidy, et al. [27] propose a heuristic algorithm for
developing the initialization of the Particle Swarm
Optimization (PSO) algorithm. The PSO is initially configured
using the minimum completion time (MCT) and longest job to
fastest processor (LJFP) algorithms. Both algorithms are tested
in terms of their efficiency to minimize total energy
consumption, degree of imbalance, and total execution time. A
comparison is also made between the proposed algorithms and
recent methods. The simulation outcomes demonstrate that the
suggested algorithms are more effective and superior to
traditional PSO and comparative algorithms.

Saravanan, et al. [28] used the enhanced wild horse
optimization algorithm and the levy flight algorithm for task
scheduling. This method generates a multi-objective fitness
function by optimizing resource utilization and minimizing the
makespan. The simulation results indicated that the suggested
method outperformed others in a variety of situations. The
algorithm was successful in achieving better task scheduling
compared to traditional algorithms. It achieved better outcomes
regarding completion time, cost, as well as energy efficiency.
The proposed method was also found to be scalable and robust,
able to handle a large number of tasks and resources.

III. PROPOSED METHOD

This section begins with a description of the problem
statement. Then, the standard PSO and CapSA algorithms are
discussed to determine the basis for the suggested algorithm.
This section also examines the fitness function incorporated
into the proposed algorithm.

A. Problem Statement

The process of scheduling cloud-based tasks is illustrated in
Fig. 1. Initially, users' tasks are placed in a queue. The tasks are
then retrieved from the queue and allocated to the available
cloud resources. Once the tasks are finished, the results are sent
back to the users. This procedure continues until each task is
completed. Generally, static and dynamic are the two kinds of
task scheduling algorithms. Static scheduling algorithms
require detailed information regarding the environment and the
tasks. Dynamic scheduling algorithms monitor the system
continuously and are capable of balancing workloads. In the
following way, the task scheduling problem is described. The
task scheduling problem consists of assigning n tasks of users
to m heterogeneous virtual machines based on some constraints
in order to optimize some objective functions. We have
observed that task scheduling is an objective-driven strategy
that involves allocating computing resources to specific tasks
periodically to maximize one or more objectives. This process
requires analysis of data related to the task, such as the
resource requirements, the time needed to complete the task,
and the task's priority. Optimizing task scheduling can result in
significant cost savings by allocating resources efficiently.
Furthermore, effective task scheduling can help improve the
system's overall performance. In the cloud computing
environment, the scheduling policy should address this
problem from two different perspectives, customer and cloud
provider perspectives. The customer's objective is to lower the
cost of executing the tasks, and the cloud provider's objective is
to maximize the utilization of the infrastructure. Thus, cost and
performance should be considered when designing the
scheduling policy. In this regard, scheduling is a major concern
in the cloud environment, as it directly impacts the
performance of the cloud system as well as the cloud service
consumer.

Fig. 1. Task scheduling in cloud computing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1012 | P a g e

www.ijacsa.thesai.org

Assume that represents the set
of virtual machines available within a data center. These virtual
machines are provided to cloud users in order to fulfill their
task requests. Each virtual machine is equipped with
processing power expressed in Millions of Instructions Per
Second (MIPS). A cloud broker allocates tasks to appropriate
virtual machines according to details of existing resources and
requirements of tasks. The collection of tasks to execute on the
virtual machines at the data center is expressed as
 . Tasks are defined by their length and
processing requirements, which are specified by Millions of
Instructions (MIs).

B. Fitness Function

Fitness functions represent the desired objectives to be
optimized. They measure the performance of the problem
being solved and direct the search process toward finding the
best solution. Fitness functions are generally represented as
mathematical functions, which can be used to evaluate the
candidate solutions. Fitness functions may be multi-objective
from two perspectives: prior and posterior. In an a priori
approach, the fitness function is designed to optimize multiple
objectives from the beginning. In a posteriori approach, a
single-objective fitness function is used, and the multiple
objectives are satisfied through post-processing. According to
the prior strategy, objectives are given a weight that reflects
their significance in producing a single-value function, referred
to as a fitness value. The posterior approach produces non-
dominant solutions. This paper uses priori principles to develop
the fitness function. Total execution time and total execution
cost are included in the fitness function. In mathematical terms,
the fitness function considered is expressed by Eq. 1.

 (1)

Cloud computing is designed to meet users' functional
needs while reducing costs. Consequently, a scheduling
algorithm should provide users access to their necessary
applications at a minimal cost. Costs associated with storage,
communication, and execution are all contained in the cost of
cloud computing. Execution cost consists of the price per unit
interval applied by the virtual machine and the execution time
of all tasks executed by that virtual machine. Eq. 2 can be used
to calculate the total execution cost of a workflow.

 ∑

 (2)

In Eq. 2, measures the time taken to execute task Ti by

jth VM, is the period during which the user utilizes the
resources, and represents the cost of a type-i VM instance

for a unit of time in the cloud data center. The total execution
time or makespan is a key metric used to measure the
performance of a task scheduling approach. It is the sum of the
longest completion times of tasks within a workflow.
Optimizing the makespan is an important part of workflow
scheduling. Eq. 3 can be used to calculate the makespan of a
workflow.

 | (3)

In Eq. 3, CTi is represented the completion time of task Ti
in the workflow. In other words, it is characterized as the

variation between task Ti's start and end times. Eq. 4 is used to
calculate the completion time. According to Eq. 5, the waiting
time of task Ti equals the total completion time of its
predecessors. Eq. 6 calculates the execution time of task Ti on
VMj. represents the size of each core in MIPS,
 indicates how many cores are allocated to the

virtual machine VMj, as well as indicates the size of
task Ti in MI.

 {

 (4)

 {

 (5)

 (6)

C. Proposed Algorithm

The proposed algorithm combines the PSO and Capuchin
Search Algorithm (CapSA). The algorithm consists of running
the PSO algorithm during the first half of the total iterations,
initializing the most optimal solution produced by the PSO
algorithm (gbest) to CapSA, and running CapSA for the second
half of the total iterations. The best CapSA solution is the most
efficient assignment of tasks to virtual machines. After the total
iterations are finished, the algorithm takes the best solution
from PSO and CapSA and finds the best fitness value. This
solution is returned as the final output of the proposed
algorithm.

In order to apply any algorithm to a workflow scheduling
problem, the problem must be modeled in terms of the tasks
that need to be completed, their precedence relationships, the
resources and time needed to complete each task, and other
factors. Once the problem is accurately modeled, the
appropriate algorithm can be applied to find an optimal
solution. This problem can be viewed as a mapping between
user tasks and virtual machines. As shown in Fig. 2, an array
can represent the proposed algorithm's solution. Tasks and
assigned VMs are represented by an array's index and array’s
values, respectively. Population refers to the set of solutions. In
the first iteration, the population is first initialized using a
random solution. As the algorithm is iterated, the solution is
improved. Fig. 3 illustrates a random population initialization.
Each population is evaluated to determine its fitness. The
population with the highest fitness is considered the most
optimal solution. Selection processes are then used to identify
solutions for reproduction.

Fig. 2. A solution array.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1013 | P a g e

www.ijacsa.thesai.org

Fig. 3. Initializing the population.

Using Eq. 7, the algorithm determines the execution time
and assigns them to the execution time matrix. The element
value demonstrates the execution time; for example, ET1,1
represents the execution time of task T1 on VM1. According to
Eq. 8, the cost matrix contains the execution cost of each
virtual machine. correspond to the unit execution
costs of the virtual machines .

(

) (7)

 (8)

The PSO algorithm is an evolutionary algorithm derived
from bird swarms or fish schools. It optimizes an issue by
iteratively seeking to enhance a candidate solution concerning
a given quality measure. It works by moving a population of
candidate solutions, known as particles, throughout the search
space in accordance with straightforward mathematical
formulas. The movement of particles is guided by their best-
known position and the best-known positions in the search
space, which are updated as other particles find better
positions. Position pi and velocity vi are the two parameters
that describe a particle. Pbest and gbest are two parameters that
affect the particle’s position. Gbest represents the best position
of neighboring particles, while Pbest represents the best
position visited by the particle. Position and velocity are
updated after each iteration of the algorithm. The velocity is
updated using Eq. 9.

 (9)

In Eq. 9,
 corresponds to the velocity of the ith particle

in the dth dimension on iteration t. Eq. 10 is used to update the

particle’s position. In Eq. 10,
 displays the position of

particle i in the dth dimension at time t.

 (10)

The CapSA is inspired by capuchin monkeys’ dynamic
behavior when navigating between branches and riverbanks for
food [29, 30]. It uses three great navigation methods: jumping,
swinging, and climbing. According to CSA, capuchin
populations can be categorized into two important groups: the
leaders and the followers. The leaders guide their followers and
keep track of each other. Three principal concepts are used by

capuchin leaders and swarm members when looking for food
sources: explore independently, cooperate in locating better
food sources, and lead by example. In the search for food
sources, the Alpha males, as well as Alpha females, lead the
other group members. By assisting the other group members in
discovering food sources, the Alpha male serves as a leader.
An iterative solution is determined using the above strategies.
In order to select the best features, CapSA follows the
following steps:

 CapSA initialization: Like other meta-heuristic
algorithms, CapSA generates a predetermined number
of individuals (i.e., capuchins) to serve as its
population. Each individual represents a potential
answer to the task scheduling problem in this paper. A
capuchin array can be viewed as a d-dimensional
matrix. The matrix for the initial population is shown in
Eq. 11.

[

]

 (11)

 In Eq. 11, n stands for the number of capuchins, d
demonstrates the number of variables, xid indicates the
dimension of the ith capuchin, and x signifies the
position of the capuchins. Eq. 12 is used to compute the
first situation of each capuchin.

 (12)

 In Eq. 12, and define upper and lower bounds

for the jth capuchin, respectively, as well as t varies
uniformly from 0 to 1.

 Generation of solutions by capuchins: In CapSA, a new
population originates from the position of the capuchin,
the best capuchin, and F, which represents the food
source. In a d-dimensional search domain, capuchins
should iteratively update this food source. The
following equation is used in our proposed algorithm to
generate new solutions. In Eq. 13, is the probability
of the balance generated by the tail of the capuchin
during leaping movements, is the angle at which

capuchins jump,
 is the velocity of the ith capuchin in

the dimension j, g is gravity equal to 9.81, refers to

the food’s position in the dimension, and
 refers to the

position of the alpha capuchins and their following
capuchins within the dimension j. A capuchin’s jump
angle can be determined using Eq. 14, where r is a
uniformly generated number from 0 to 1.

 (13)

θ

 (14)

IV. EXPERIMENTAL RESULTS

In this section, the proposed algorithm's performance is
compared with previous algorithms under Montage workflows

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1014 | P a g e

www.ijacsa.thesai.org

with 50 and 100 tasks. The proposed algorithm was simulated
and evaluated using the WorkflowSim -1.1 toolkit, an
extension of Cloudsim. Comparisons are made among the
proposed algorithm as well as standalone PSO and CapSA.
Table I provides a summary of the simulation parameters that
were utilized for evaluating the algorithm.

1) Total execution time comparison (50 tasks): As

depicted in Fig. 4, the algorithms were compared regarding

the total execution time as iterations increased from 50 to 500.

The proposed algorithm consistently outperformed CapSA in

all iterations. While slight degradations were observed in

comparison with PSO at several iterations, the proposed

algorithm exhibited an average improvement in performance.

These findings indicate that the proposed algorithm is more

effective than both CapSA and PSO in completing tasks in a

shorter time. Moreover, the results demonstrate that the

proposed algorithm maintains consistent performance as the

number of iterations increases.

2) Execution costs comparison (50 tasks): Fig. 5 illustrates

the comparison of execution costs among the algorithms. The

proposed algorithm exhibited improvements of 9.7%, 1.4%,

12.6%, 10.6%, 3.8%, 15.2%, 11.1%, 14.4%, 19.9%, and

13.3% compared to CapSA for all considered iterations. In

terms of PSO, the proposed algorithm demonstrated a

significant drop in total execution cost of up to 10%. Overall,

the experimental results indicate that the proposed algorithm is

more efficient than both CapSA and PSO. Additionally, the

proposed algorithm exhibited faster convergence compared to

these algorithms.

3) Total execution time comparison (100 tasks): Fig. 6

demonstrates that for 100 tasks, the proposed algorithm

consistently reduced the total execution time compared to

CapSA and PSO in all iterations.

4) Execution costs comparison (100 tasks): In Fig. 7, the

algorithms were compared based on their total execution costs

for 100 tasks. The proposed algorithm outperformed CapSA in

all iterations, with a decrease of 0.6%, 0.3%, 0.2%, 1%, 0.9%,

1.2%, 1.4%, 0.4%, 1.1%, and 1.3% for all considered

iterations. Compared to PSO, the proposed algorithm showed

improvements of 0.11%, 0.04%, 0.02%, and 0.15% for

iterations 200, 250, 300, and 500, respectively. These results

indicate that the proposed algorithm is more effective and

efficient in finding better solutions for the given problem

compared to CapSA and PSO. Furthermore, it consistently

produces better results as the number of iterations increases.

Overall, the presented results demonstrate the superior

performance of the proposed hybrid algorithm in terms of both

total execution time and execution costs when compared to the

standalone PSO and CapSA algorithms..

TABLE I. SIMULATION PARAMETERS

Parameter Value

VM policy Time shared

Number of processors 1

Bandwidth 1000

Ram 512 MB

MIPS 1000

Number of virtual machines 5

Number of tasks 50-100

Fig. 4. Execution time for 50 tasks.

122

124

126

128

130

132

134

136

138

50 100 150 200 250 300 350 400 450 500

E
x
ec

u
ti

o
n
 t

im
e

Iteration

PSO CapSA PSO-CapSA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1015 | P a g e

www.ijacsa.thesai.org

Fig. 5. Execution cost for 50 tasks.

Fig. 6. Execution time for 100 tasks.

Fig. 7. Execution cost for 100 tasks.

460

480

500

520

540

560

580

600

620

50 100 150 200 250 300 350 400 450 500

E
x
ec

u
ti

o
n
 c

o
st

Iteration

PSO CapSA PSO-CapSA

200

220

240

260

280

300

320

50 100 150 200 250 300 350 400 450 500

E
x
ec

u
ti

o
n
 t

im
e

Iteration

PSO CapSA PSO-CapSA

1000

1060

1120

1180

1240

1300

1360

1420

50 100 150 200 250 300 350 400 450 500

E
x
ec

u
ti

o
n
 c

o
st

Iteration

PSO CapSA PSO-CapSA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1016 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

Cloud services offer a wide range of solutions to the
varying computing challenges in the real world. In order to
accomplish a variety of tasks, users access various cloud
services. Services provided by different service providers are
used to handle such tasks. In this paper, a novel hybrid meta-
heuristic algorithm according to the PSO algorithm as well as
CapSA is proposed. The proposed algorithm uses PSO and
CapSA to employ complementary global and local search
strategies. Based on simulation results from the Cloudsim
simulator, our algorithm outperformed standalone PSO and
CapSA on both total execution cost and total execution time
measures. There are several potential open problems in this
domain for further research. Extending the proposed algorithm
to handle dynamic task scheduling scenarios, where tasks and
resource availability fluctuate in real-time, will be essential for
addressing real-world dynamic workload challenges. This
adaptability will ensure the algorithm remains efficient and
effective in dynamic cloud environments. Exploring multi-
objective optimization techniques to optimize cloud task
scheduling for various performance metrics, such as energy
consumption, resource utilization, and quality of service (QoS),
can lead to more comprehensive and versatile solutions.
Exploring the integration of the proposed algorithm with
emerging technologies, such as edge computing and AI-driven
resource management, can open up new possibilities for
efficient and intelligent task scheduling. This integration will
leverage the advancements in these fields to enhance the
scheduling process and overall cloud system performance.
Conducting real-world deployments and large-scale
experiments to assess the scalability and applicability of the
proposed algorithm in practical cloud computing environments
will be valuable for validating its effectiveness.

REFERENCES

[1] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[2] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[3] O. Ali, A. Shrestha, J. Soar, and S. F. Wamba, "Cloud computing-enabled
healthcare opportunities, issues, and applications: A systematic review,"
International Journal of Information Management, vol. 43, pp. 146-158,
2018.

[4] V. Hayyolalam, B. Pourghebleh, and A. A. Pourhaji Kazem, "Trust
management of services (TMoS): Investigating the current mechanisms,"
Transactions on Emerging Telecommunications Technologies, vol. 31,
no. 10, p. e4063, 2020.

[5] A. Najafizadeh, A. Salajegheh, A. M. Rahmani, and A. Sahafi, "Multi-
objective Task Scheduling in cloud-fog computing using goal
programming approach," Cluster Computing, vol. 25, no. 1, pp. 141-165,
2022.

[6] A. Peivandizadeh and B. Molavi, "Compatible authentication and key
agreement protocol for low power and lossy network in IoT
environment," Available at SSRN 4194715, 2022.

[7] M. Ilbeigi, A. Morteza, and R. Ehsani, "Emergency Management in
Smart Cities: Infrastructure-Less Communication Systems," in
Construction Research Congress 2022, pp. 263-271.

[8] M. Javidan, H. Esfandi, and R. Pashaie, "Optimization of data acquisition
operation in optical tomography based on estimation theory," Biomedical
optics express, vol. 12, no. 9, pp. 5670-5690, 2021.

[9] M. Bagheri et al., "Data conditioning and forecasting methodology using
machine learning on production data for a well pad," in Offshore
Technology Conference, 2020: OTC, p. D031S037R002.

[10] B. M. Jafari, X. Luo, and A. Jafari, "Unsupervised Keyword Extraction
for Hashtag Recommendation in Social Media," in The International
FLAIRS Conference Proceedings, 2023, vol. 36.

[11] C. Han and X. Fu, "Challenge and Opportunity: Deep Learning-Based
Stock Price Prediction by Using Bi-Directional LSTM Model," Frontiers
in Business, Economics and Management, vol. 8, no. 2, pp. 51-54, 2023.

[12] R. Soleimani and E. Lobaton, "Enhancing Inference on Physiological and
Kinematic Periodic Signals via Phase-Based Interpretability and Multi-
Task Learning," Information, vol. 13, no. 7, p. 326, 2022.

[13] S. P. Rajput et al., "Using machine learning architecture to optimize and
model the treatment process for saline water level analysis," Journal of
Water Reuse and Desalination, 2022.

[14] S. Vairachilai, A. Bostani, A. Mehbodniya, J. L. Webber, O.
Hemakesavulu, and P. Vijayakumar, "Body Sensor 5 G Networks
Utilising Deep Learning Architectures for Emotion Detection Based On
EEG Signal Processing," Optik, p. 170469, 2022.

[15] M. Javidan, M. Yazdchi, Z. Baharlouei, and A. Mahnam, "Feature and
channel selection for designing a regression-based continuous-variable
emotion recognition system with two EEG channels," Biomedical Signal
Processing and Control, vol. 70, p. 102979, 2021.

[16] S. Aghakhani and M. S. Rajabi, "A new hybrid multi-objective
scheduling model for hierarchical hub and flexible flow shop problems,"
AppliedMath, vol. 2, no. 4, pp. 721-737, 2022.

[17] S. Aghakhani, A. Larijani, F. Sadeghi, D. Martín, and A. A. Shahrakht,
"A Novel Hybrid Artificial Bee Colony-Based Deep Convolutional
Neural Network to Improve the Detection Performance of Backscatter
Communication Systems," Electronics, vol. 12, no. 10, p. 2263, 2023.

[18] S. Mahmoudinazlou and C. Kwon, "A Hybrid Genetic Algorithm for the
min-max Multiple Traveling Salesman Problem," arXiv preprint
arXiv:2307.07120, 2023.

[19] S. Mahmoudinazlou and C. Kwon, "A Hybrid Genetic Algorithm with
Type-Aware Chromosomes for Traveling Salesman Problems with
Drone," arXiv preprint arXiv:2303.00614, 2023.

[20] M. Shahin et al., "Cluster-based association rule mining for an
intersection accident dataset," in 2021 International Conference on
Computing, Electronic and Electrical Engineering (ICE Cube), 2021:
IEEE, pp. 1-6.

[21] Y. Kumar, S. Kaul, and Y.-C. Hu, "Machine learning for energy-resource
allocation, workflow scheduling and live migration in cloud computing:
State-of-the-art survey," Sustainable Computing: Informatics and
Systems, vol. 36, p. 100780, 2022.

[22] Y. Dai, Y. Lou, and X. Lu, "A task scheduling algorithm based on genetic
algorithm and ant colony optimization algorithm with multi-QoS
constraints in cloud computing," in 2015 7th international conference on
intelligent human-machine systems and cybernetics, 2015, vol. 2: IEEE,
pp. 428-431.

[23] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, "An energy-
efficient task scheduling algorithm in DVFS-enabled cloud environment,"
Journal of Grid Computing, vol. 14, pp. 55-74, 2016.

[24] B. Keshanchi, A. Souri, and N. J. Navimipour, "An improved genetic
algorithm for task scheduling in the cloud environments using the priority
queues: formal verification, simulation, and statistical testing," Journal of
Systems and Software, vol. 124, pp. 1-21, 2017.

[25] W. Lin, W. Wang, W. Wu, X. Pang, B. Liu, and Y. Zhang, "A heuristic
task scheduling algorithm based on server power efficiency model in
cloud environments," Sustainable computing: informatics and systems,
vol. 20, pp. 56-65, 2018.

[26] M. Sharma and R. Garg, "HIGA: Harmony-inspired genetic algorithm for
rack-aware energy-efficient task scheduling in cloud data centers,"
Engineering Science and Technology, an International Journal, vol. 23,
no. 1, pp. 211-224, 2020.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1017 | P a g e

www.ijacsa.thesai.org

[27] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, "Heuristic initialization of
PSO task scheduling algorithm in cloud computing," Journal of King
Saud University-Computer and Information Sciences, vol. 34, no. 6, pp.
2370-2382, 2022.

[28] G. Saravanan, S. Neelakandan, P. Ezhumalai, and S. Maurya, "Improved
wild horse optimization with levy flight algorithm for effective task
scheduling in cloud computing," Journal of Cloud Computing, vol. 12,
no. 1, p. 24, 2023.

[29] M. Mohseni, F. Amirghafouri, and B. Pourghebleh, "CEDAR: A cluster-
based energy-aware data aggregation routing protocol in the internet of
things using capuchin search algorithm and fuzzy logic," Peer-to-Peer
Networking and Applications, pp. 1-21, 2022.

[30] M. Braik, A. Sheta, and H. Al-Hiary, "A novel meta-heuristic search
algorithm for solving optimization problems: capuchin search algorithm,"
Neural computing and applications, vol. 33, pp. 2515-2547, 2021.

