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Abstract—Fog computing can be considered a decentralized 

computing approach that essentially extends the capabilities 

offered by cloud computing to the periphery of the network. In 

addition, due to its proximity to the user, fog computing proves 

to be highly efficient in minimizing the volume of data that needs 

to be transmitted, reducing overall network traffic, and 

shortening the distance that data must travel. But this 

technology, like other new technologies, has challenges, and 

scheduling and optimal allocation of resources is one of the most 

important of these challenges. Accordingly, this research aims to 

propose an optimal solution for efficient scheduling within the 

fog computing environment through the application of the 

advanced cat swarm optimization algorithm. In this solution, the 

two main behaviors of cats are implemented in the form of seek 

and tracking states. Accordingly, processing nodes are 

periodically examined and categorized based on the number of 

available resources; servers with highly available resources are 

prioritized in the scheduling process for efficient scheduling. 

Subsequently, the congested servers, which may be experiencing 

various issues, are migrated to alternative servers with ample 

resources using the virtual machine live migration technique. 

Ultimately, the effectiveness of the proposed solution is assessed 

using the iFogSim simulator, demonstrating notable reductions 

in execution time and energy consumption. So, the proposed 

solution has led to a 20% reduction in execution time while also 

improving energy efficiency by more than 15% on average. This 

optimization represents a trade-off between improving 

performance and reducing resource consumption. 

Keywords—Scheduling; fog computing; optimal balancing; cat 

swarm optimization algorithm 

I. INTRODUCTION 

In order to overcome the challenges arising from resource 
limitations in IoT devices, the prevalent approach has been to 
rely on large-scale cloud data centers for interactions between 
IoT devices and supporting end servers [1]. However, as the 
number of IoT devices and their generated data continue to 
escalate, reliance on cloud-based infrastructure has become 
costly, inefficient, and often unfeasible [2]. In response to this 
issue, fog computing has emerged as a solution by offering 
networking, storage, and computing resources in proximity to 
IoT devices and users [3, 4]. One notable advantage of fog 
computing is its ability to reduce service latency for end-user 

applications, unlike the cloud, which typically exhibits higher 
latency due to its more extensive computing capacity and 
remote storage [5]. The exponential growth of the Internet of 
Things has posed significant challenges for cloud computing, 
including network failures and increased latency. To tackle 
these challenges, cloud computing has sought to bring cloud 
capabilities closer to IoT devices. Fog computing entails the 
utilization of heterogeneous and distributed processing nodes, 
presenting challenges for fog-based services in accommodating 
the diverse aspects of a constrained environment [23]. By 
examining the structural and service-oriented characteristics of 
fog computing, various challenges become apparent, with 
optimal scheduling being particularly significant. Scheduling 
holds great importance in the realm of the Internet of Things as 
it has the potential to decrease execution time and minimize 
energy consumption [6, 24]. However, scheduling problems 
become increasingly complex with the growing number of 
services and requests, leading to a rapid increase in the number 
of possible solutions. Due to the exponential growth of feasible 
states, it becomes impractical to evaluate all possibilities to 
determine the best scheduling exhaustively, resulting in these 
problems falling under the NP-Hard category that deterministic 
methods cannot be used in solving this category of problems 
due to their time-consuming nature, and meta-heuristic 
methods should be developed to solve these problems properly 
[2, 25]. Meta-heuristic methods have been the attention of 
researchers due to their simplicity, flexibility, no need for 
derivation, and escape from local optima. The No Free Lunch 
(NFL) theorem establishes that no meta-heuristic algorithm can 
solve all optimization problems perfectly. In other words, an 
algorithm that performs well on a set of problems may not 
yield favorable outcomes for another set of problems [3, 26]. 
Taking this into account, this study introduces an advanced 
strategy based on the cat swarm optimization (CSO) algorithm 
to achieve optimal scheduling in cloud infrastructure. The 
primary objective is to significantly reduce energy 
consumption in cloud data centers by effectively allocating 
tasks to processing servers, thereby preventing server overload 
or underload. The following section presents a literature review 
on scheduling and load balancing, followed by an examination 
of the proposed technique in section 3. Finally, in section 4, the 
proposed technique is implemented in the iFogSim simulator, 
and the results are evaluated. 
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Fig. 1. Fog computing architecture. 

A. Fog Computing 

As illustrated in Fig. 1, fog computing operates by 
conducting local processing and storage of IoT data on IoT 
devices rather than transmitting the data to the cloud. In 
contrast to the cloud, fog computing offers faster response 
times and improved quality, making it an optimal choice for 
enabling the Internet of Things. It is known for providing 
efficient and secure services to a wide range of users [4, 27]. 
While the cloud serves as an intermediary between endpoint 
clients and cloud computing, fog computing occurs closer to 
the edge of the cloud and end devices, resulting in significantly 
lower latency. Cloud computing services are located on the 

Internet, whereas fog computing operates at the edge of the 
local network. Real-time interactions are supported by both 
cloud and fog computing, but processing data and applications 
in the cloud can be time-consuming, particularly for large-scale 
data. Fog computing facilitates centralized resource 
management, including the allocation of computing, 
networking, and storage resources. The primary objective of 
fog computing is to equip network edges and network devices 
with virtual services for processing, storage, and network 
provisioning [5, 28]. Table I provides a comparison of the 
similarities and differences between fog computing and cloud 
computing.

TABLE I.  DIFFERENCES BETWEEN CLOUD AND FOG INFRASTRUCTURE 

Cloud Computing Fog Computing Ability 

Up (depending on the user's path to DC) Low Delay 

several minutes milliseconds Response time 

In cloud data centers Network edge Service location 

months or years (according to the contract) transitory Data storage period 

Several steps one step Steps between user and server 

no Very local Aware of location 

concentrated Distributed architecture 

Broadband, MPLS wireless Type of communication 

High Low Possibility of data recording 

It cannot be defined or controlled can be defined End-to-end security 

Very low unlimited Data collection nodes 

Limited support supports Mobility support 
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Fog computing offers significant advantages by reducing 
data transfer, traffic, and distance traveled. It involves 
decentralizing computations to the edge of the network, where 
downstream data processing occurs in cloud services and 
upstream data processing occurs in Internet of Things (IoT) 
services [6, 29]. In cloud computing, information storage and 
processing are directed towards the network edge and closer to 
the source of information generation. Instead of transmitting 
IoT-generated data to distant data centers or remote servers for 
storage and processing, this data is stored on local servers and 
storage devices through a local gateway. This approach 
enhances the speed of information analysis and alleviates 
network congestion [7, 30]. The concept behind fog computing 
is that computation should be performed in close proximity to 
data sources. It has the potential to impact society as 
significantly as cloud computing. Fog computing offers 
numerous advantages over traditional architectures, particularly 
optimizing resource utilization within a cloud computing 
system. By conducting computations at the network edge, fog 
computing reduces network traffic. Essentially, edge 
computing operates within the cloud but in proximity to objects 
interacting with IoT data. As depicted in Fig. 1, fog computing 
acts as an intermediary between the cloud and end devices, 
bringing processing, storage, and network services closer to the 
end devices. These devices, known as edge nodes, can be 
deployed anywhere with a network connection. In essence, fog 
computing extends cloud infrastructure to the network edge. 
While fog and cloud computing share network, computing, and 
storage resources, they utilize similar mechanisms and features 
such as virtualization and multi-tenancy [8, 31]. 

II. RELATED WORK 

The study in [9] focuses on addressing concerns related to 
scheduling and resource allocation within fog computing for 
various types of applications. In this research, it has been stated 
that different programs composed of a collection of interrelated 
services are mapped to cloud computing for processing, but the 
placement of services has its challenges. Accordingly, this 
article presents a distributed placement strategy, the main goal 
of which is to reduce energy consumption and the cost of 
communication. The proposed method is based on game 
theory, which uses iterative combinatorial auction (ICA). The 
proposed solution through game theory makes significant 
changes in the ICA method. Based on this, the proposed 
solution is decentralized and is able to interact between fog 
nodes and applications so that decisions related to placement 
are made in each round. The results of the evaluations show the 
optimality of the solution in reducing the cost of 
communication and increasing the productivity of the fog node 
processor, which is an important advantage considering the 
limited resources in the fog nodes. In [10], a solution for 
autonomous scheduling of services on devices on the edge of 
the network is presented. In this solution, the dynamic 
capability of programs based on microservices is used in order 
to provide an adaptive solution for placement. The main 
objective of this solution is to minimize the response time of 
services, ultimately enhancing the quality of user experience, 
particularly in critical services. In this method, the decision 
about the placement of the service is made based on the 
response time of the applications. Various functions have been 

used for this purpose. Then, through the use of a meta-heuristic 
algorithm based on PSO, a decision is made regarding the 
placement of the service. The first input parameter for the 
algorithm is the graph call related to the application service. 

In the end, through a series of evaluations, it was shown 
that the proposed solution was able to perform the placement 
of services and microservices in such a way that the response 
time is minimized. The authors in [11, 32] have presented a 
lightweight framework for providing fog computing services to 
be used by IoT devices that are sensitive to delay, and their 
needs must be answered in real-time. The FogPlan solution is a 
QoS-aware proposal, and the placement of services in it is done 
according to the network status. This framework works with 
minimal assumptions and information about IoT nodes. Then a 
probabilistic formula for the optimization problem, along with 
two heuristic algorithms, has been presented to answer the QoS 
needs. By using this solution, in addition to more accurate 
positioning, the amount of delay and network cost can also be 
reduced. In the evaluations, it has been concluded that the 
solution has reduced the average delay and the scheduling costs 
through the optimal scheduling of services. 

Research [12] introduces a task scheduling policy in fog 
computing that is based on graph partitions. The main 
objective of this solution is to enhance accessibility. By 
employing this method, the quality-of-service delivery is 
enhanced through program prioritization across all cloud 
devices and transferring services to these devices. The main 
idea is based on the premise that the more necessary services 
are provided near the user, the quality and delay of service 
delivery can be reduced. Based on this, with the help of graphic 
partitions, the desired services and related tasks are determined 
and based on the number of available resources, the best 
possible placement is done. In the end, the proposed solution 
has been evaluated with a linear programming approach, and 
the results indicate an improvement in accessibility and service 
delivery. The work described in [13] focuses on scheduling 
application components within hybrid cloud and fog systems 
based on network function virtualization (NFV) principles. 
This study investigates the main challenges of deploying 
components related to cloud and fog applications in NFV. In 
fact, these challenges are mostly expressed due to the 
heterogeneity between the components. To solve this problem 
in this research, a model based on four hierarchies 1) sequence, 
2) parallel, 3) selection and 4) compliance loop was used. In 
this solution, it is assumed that the program components are 
implemented as VFSs, and the structural diagrams represent an 
application program that follows the proposed hierarchical 
structure. In this structure, each VFN becomes a tree, where the 
leaf nodes represent the program components, and the costs of 
the model are calculated by gathering the information of the 
nodes from bottom to top. The main goal of this method is to 
minimize the processing costs, which are modeled using an 
ILP integer programmer. The authors of [14] propose a concept 
to address the challenge of deploying Internet of Things (IoT) 
services within the fog computing environment. They model 
the deployment problem of IoT applications on resources as an 
optimization problem. The concept of a "fog colony" is 
introduced, and the coordinated fog cell colony and 
deployment approach are presented as a solution for deploying 
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services on virtual resources within the fog domain. The 
optimization problem primarily focuses on the deployment and 
execution time of the application, aiming to maximize resource 
utilization in the fog through a greedy heuristic method based 
on the genetic algorithm. In this model, the communication and 
subscription of fog cell services are done by the control node. 
Also, the communication between the cells and the control 
node with the cloud is made possible by the fog computing 
management system. 

In the end, the results of this research have been compared 
with the classical approach that executes all tasks in the cloud. 
The intended evaluations have been carried out in the iFogSim 
simulator environment, and the results indicate that the 
optimization method has a favorable effect on the use of fog 
resources, and the genetic algorithm has a lower delay for 
execution compared to the cloud. In [15], a service placement 
algorithm is presented for efficient use of the network and 
improvement of energy consumption. This algorithm 
sequentially allocates application modules with the highest 
needs to the nodes with the highest capacities. To test the 
proposed algorithms, the program has been implemented on 
network topologies named JSON. The scenario has been 
implemented with more than three different network topologies 
and workloads. The proposed cloud-fog placement and 
deployment method were evaluated by comparing it with the 
traditional cloud-based deployment approach. The evaluation 
considered program delay (response time), network usage, and 
energy consumption as the primary metrics. Data was collected 
from the iFoSim simulator using the proposed placement and 
resource deployment methods. The results demonstrate the 
favorable impact of the proposed placement approach across 
all three topologies, showcasing improvements in network 
utilization, program delay (response time), and energy 
consumption compared to the traditional cloud-based approach. 
The authors in [16] presented a tool called FogTorch. 
Accordingly, the first part of the article presents a model for 
the use of service quality systems in multi-sector applications 
of the Internet of Things for fog architecture. In the second 
part, the results of using Monte Carlo simulations for the 
FogTroch tool are stated, and the application of this tool is 
examined in terms of service quality and resource 
consumption. 

FogTroch is a tool that enables the simulation and 
comparison of different fog scenarios in the design phase, as 
well as the resource and quality-of-service (QoS) aware 
deployment of IoT applications through cloud-fog architecture. 
It takes into account various processing resources such as CPU, 
RAM, storage, and software, along with QoS constraints like 
latency and bandwidth, which are essential for real-time fog 
applications. Notably, FogTroch is the first tool capable of 
estimating the quality of service resulting from fog-based 
application deployments based on probability distribution 
models of bandwidth and delay provided by communication 
links. Additionally, it provides estimates of resource 
consumption within the fog layer, allowing for the optimization 
of resource utilization among different fog nodes. In [17], a 
dynamic module is presented to schedule the tasks of Internet 
of Things applications in edge and cloud computing. Through 
this solution, the problem related to IoT requests in a 

heterogeneous network environment based on edge cloud has 
been solved. As a result, a mapping between the application 
module and the main resources of the devices can be created. 
In this way, problems related to the delay of tasks and energy 
consumption can be overcome. To achieve this objective, the 
application employs a dynamic discovery algorithm that 
enables the step-by-step execution of operations in the fog 
computing environment. This algorithm helps to reduce the 
delay in task execution by efficiently discovering and 
allocating resources. Through simulations conducted in the 
iFogSim environment, the results demonstrate the remarkable 
service quality of the applications, accompanied by a 
significant reduction in energy consumption compared to other 
scheduling strategies. The combination of the dynamic 
discovery algorithm and the fog computing environment 
contributes to improved application performance and energy 
efficiency. 

After conducting a thorough examination of the 
aforementioned studies, we have identified their strengths and 
limitations in several aspects: 

 Studies, such as [9], [13], [14] have provided 
comprehensive introductions to the theoretical 
concepts and platforms of fog computing. They have 
significantly contributed to the research on 
optimization strategies in this field. 

 Several existing studies, like [10]-[12] and [15]-[17] 
have focused on optimizing the trade-off between time 
and energy consumption in fog computing scenarios. 
However, one critical aspect they often overlook is the 
consideration of task characteristics and resource types 
concerning the problem of balancing delay and device 
load. This omission can lead to inefficient resource 
allocation and potential wastage of resources. 

Our research falls within the category of optimizing Quality 
of Service (QoS) and energy consumption simultaneously. It 
complements and extends existing works in several ways. For 
instance, unlike the study in [10] where multiple user devices 
share one Multi-access Edge Computing (MEC) server, or [11] 
where a single device generates a task, our approach considers 
a more complex system involving multiple users and multiple 
fog nodes. Additionally, our focus is on reducing the energy 
consumption of the fog nodes themselves, which sets us apart 
from the majority of existing approaches that primarily aim to 
minimize energy consumption on the mobile devices 
[9,11,12,16,17]. Furthermore, we present a novel approach that 
jointly minimizes the overall energy consumption and the 
execution time while taking into account the computation 
resource constraints of fog devices. This approach offers a 
comprehensive optimization strategy for the system. 

III. PROPOSED METHOD 

The primary objective of the scheduling solution is to 
efficiently allocate n tasks to m machines, where n > m, with 
the aim of minimizing both the execution time and energy 
consumption. To achieve this objective, it is crucial to compute 
the resource availability of all machines. An upper bound is 
established for the minimization function, which is defined as 
m × Lmax. Here, Lmax represents the maximum execution time 
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for each node. Thus, for any task scheduling completion time 
G, it should satisfy the condition m × Lmax > G. In other words, 
the execution of the assigned tasks will take at least as long as 
Lmax for each container. Let's consider S = (S1, S2, ..., Sn) as 
the set of user tasks given to the system. During the scheduling 
process, these user tasks are assigned to available fog nodes. 
Each node is equipped with {PE1, PE2, ..., PEm} processing 
elements to handle service tasks. Each processing element has 
a distinct processing speed characteristic denoted as PES and 
the CSO (Cat Swarm Optimization) algorithm [18, 33] is used 
to allocate resources and schedule tasks in a fog infrastructure 
effectively. 

The CSO algorithm models the two primary behaviors of 
cats, known as tracking and searching modes, using sub-
models. By combining these modes in a defined ratio, the cat 
crowding optimization algorithm exhibits strong performance. 
Similar to particle swarm optimization, the positions of the cats 
serve as solutions, and the algorithm utilizes the cats' behavior 
to solve optimization problems. In the cat swarm optimization, 
the number of cats to be used is determined, and each cat 
possesses a position with M dimensions. Additionally, each cat 
has a speed for each dimension and a fitness value indicating 
its level of fitness. This fitness value is obtained using a fitness 
function. Furthermore, each cat is assigned a flag to identify 
whether it is in tracking or seeking mode [19, 34]. 

The aim of this research is to minimize energy 
consumption and reduce the execution time of user requests in 
the cloud infrastructure. To achieve this, the cat swarm 
optimization algorithm is modified to enable the effective 
allocation of resources to tasks. The modified algorithm 
optimizes the resource allocation process, leading to improved 
energy efficiency and reduced request execution time. By 
leveraging this modified cat swarm optimization algorithm, the 
cloud infrastructure can allocate resources more effectively, 
resulting in enhanced performance and reduced energy 
consumption. In the proposed solution, a set of cats will be 
used; some of which are in search mode and at the same time, 
some others are in tracking mode. In this method, each cat 
represents a specific task-resource mapping. The cats are 
updated based on their current state, and the goal is to 
minimize the cost of mapping. The fitness value is assigned to 
each cat, reflecting the quality of its mapping solution. In each 
iteration of the algorithm, a new set of cats is selected to be in 
the search state, where they explore different mappings. 
Ultimately, the cat with the best fitness value represents the 
best mapping solution, which results in the lowest cost among 
all the possible mappings. By iteratively updating the cats and 
selecting the best solutions, the algorithm aims to find an 
optimal task-resource mapping that minimizes cost and 
improves overall efficiency. Accordingly, in the following, the 
search and tracking modes are examined as a sub-model to 
model the cat's search behavior to find the desired target: 
processing servers in this research. 

A. Seeking Mode 

During the search process in the SM (Seeking Mode) of the 
algorithm, the exploration of different regions in the search 
space is conducted. However, the search is limited to the local 
vicinity of the current position of the seeking cat. This 
approach focuses on refining existing solutions rather than 

exploring distant areas of the search space. Fig. 2 illustrates 
this local search behavior. There are four main factors 
considered in the seeking mode of each cat: 

1) Search Memory Source (SMP): This factor determines 

the size of the search memory for each cat, representing the 

positions previously searched by the cat. Based on the fitness 

functions, the cat chooses one position from its memory as a 

potential candidate for movement. 

2) Number of Dimensions that Change (CDC): This factor 

determines the number of dimensions in the current position 

of the cat that will be modified during the search process. 

3) Search in the Defined Range of Dimensions (SRD): 

This factor indicates the rate of change for the selected 

dimensions. If a dimension is chosen for modification, the 

difference between the new and old values will be within the 

range defined by SRD. 

4) Attention to the Current Position (SPC): This factor is a 

Boolean variable that determines whether the current position 

of the cat is considered a candidate for movement or not. It 

ensures that the current position, which has already been 

explored, is not included in the search memory (SMP). 

By considering these factors, the seeking mode of the cat 
swarm optimization algorithm focuses on local search, 
efficiently exploring and refining solutions within the vicinity 
of the current positions of the cats. 

The seeking mode algorithm, as depicted in Fig. 3, outlines 
the steps followed when a cat is in seeking mode [35]. The 
algorithm proceeds as follows: 

1) Create j copies of the current position of cat k (Catk), 

where j is equal to SMP (Search Memory Source). If the value 

of SPC (Attention to the position) is true, then j is adjusted to 

(SMP-1), allowing the current position to be considered one of 

the candidates. 

2) For each copy, based on the CDC (Number of 

Dimensions that Change), increase the SRD (Search in the 

defined range of dimensions) by a percentage of the current 

values and add it to the previous values. This step determines 

the range within which the selected dimensions can change 

during the search. 

3) Calculate the fitness function (FS) for each candidate 

point generated in the previous step. 

4) If not, all FS values are exactly equal, proceed to 

calculate the probability of selecting each candidate position 

based on the normalized fitness (fit) of that position. If all FS 

values are equal, set the probability of selecting all candidate 

positions to be equal. 

By following this algorithm, the seeking mode effectively 
explores the search space by creating multiple copies of the 
current position, determining the range of changes in 
dimensions, evaluating the fitness for each candidate point, and 
selecting the next position based on the calculated 
probabilities. 
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Fig. 2. Seeking mode. 

 
Fig. 3. Seeking mode algorithm. 

B. Tracing State 

The tracking mode algorithm, which describes the behavior 
of the cat when tracking the target, can be outlined in the 
following three steps: 

1) Calculate the new position of the cat based on its 

current position and speed in each dimension. The cat moves 

in the search space according to its velocity, exploring 

different locations. 

2) Evaluate the fitness of the new position using the 

fitness function. This assesses the quality or cost associated 

with the new mapping. 

3) Update the cat's position to the best position found 

during the tracking process. The cat moves towards the 

position that yields the minimum cost or maximum quality, 

improving its mapping. 

By following these steps, the cat in tracking mode 
continuously adjusts its position based on its velocity, 
evaluates the fitness of the new position, and updates its 
location to the best position encountered during the tracking 
process. This allows the cat to gradually converge towards an 
optimal solution by iteratively exploring and refining its 
mappings. 
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In the first step, the speed synchronization for each 
dimension (vk, d) is calculated according to the following 
relationship: 

                     (               )          

          

xbest,d shows the position of the cat that has the highest value 
of fitness and xk,d is the position of the kth cat. c1 is a fixed 
number, and r1 is a random number in the interval [0,1]. In the 
second step, it is checked that the speeds are within the defined 
range. If there were a higher speed, it would be replaced with 
the maximum possible value in the desired range, and finally, 
in the third step, the position of the cat will update according to 
the following relationship: 

xk,d = xk,d + kk,d 

In fact, TS is for Teaching-Learning-Based Optimization. 
During this phase, the cats aim to exploit the information about 
the best position found so far to reach the optimal solution. 
Even though a cat's position change may be large during this 
phase, the search is still focused on the best solution found so 
far. Please refer to Fig. 4 for an illustration. 

In other words, at this stage, the set of answers obtained 
from the best location of the cat in the current iteration is 
updated. As seen, cat swarm optimization uses two sub-models 
of seek and tracking mode; the way to combine these two sub-
models to perform scheduling operations is described in the 
next section. 

C. Scheduling 

The optimal utilization of available resources is the main 
goal of task scheduling that provides a basis for load balancing. 
In order to reduce the cost of services provided to users, fog 
service providers adopt different policies depending on the 
type of user and the desired services. However, the aim of this 

study is to reduce the resource consumption cost. Thus, 
parameters such as energy consumption and traffic 
consumption are considered. These parameters are formulated 
based on the following equations to be used in the CSO-based 
approach. 

D. Modelling Energy Consumption 

In order to model the amount of energy consumed, the 
proposed approach in [20, 36, 40] is used. The idea of this 
model is based on the fact that there is a linear relationship 
between processor efficiency and power consumption. In other 
words, if we know the processing time of a task and the 
efficiency of the processor, we can calculate the energy 
consumed by that task. This means that by understanding how 
long a task takes to complete and how efficiently the processor 
performs it, we can determine the energy usage associated with 
that task. 

The efficiency of a given resource rj in a given time is 
calculated as follows. 

    ∑     
 
      (1) 

Here, n represents the number of tasks currently in 
progress, and uij represents the amount of resources consumed 
by task tj. Accordingly, the energy consumption (Ej) of 
resource rj in a given time can be calculated using the 
following formula: 

                       (2) 

E. Traffic Consumption 

This section aims to model the network's bandwidth usage 
and the volume of traffic produced by individual physical 
machines. 

   ∑            
∑   

      

    (3) 

 
Fig. 4. Tracing state. 
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   represents the communication between physical machine 

j and other physical machines. λ(j, m) denotes the traffic load 
between physical machines j and m. Vj indicates a set of 
physical machines connected to physical machine j. Ci 
represents the weight of the communication link between two 
physical machines at level i. ρ(m, j) represents the 
communication level between physical machines m and j. 

The multi-objective cost function for modeling the fog 
computing environment is formulated based on these two 
parameters as follows: 

Minimize      ∑   
 
     (4) 

Minimize     ∑   
 
     (5) 

The minimum cost for task scheduling is obtained using the 
above functions. In the following, it is described how to 
combine two states tracking and seeking: 

1) The initial population consists n cats. 

2) The cats in this scenario are distributed randomly 

within a d-dimensional search space by assigning each cat a 

random speed for each dimension within a given range. 

3) A number of cats are randomly selected. According to 

the Mixture Ratio (MR), some cats are put in the searching 

state, and the remaining ones are considered for the tracking 

state. 

4) The movement of cats is based on their flag value 

which shows the tracking or seeking states. 

5) The fitness value of each cat is evaluated, and the 

position of the best cat (Xbest) is recorded and stored. 

6) The situation of cats is updated according to their 

position. Then, step 3 is repeated. 

7) Steps 5 and 6 are repeated iteratively until the 

termination criterion is met. i.e. a complete task scheduling is 

reached. 

The pseudo-code for scheduling based on CSO is depicted 
in Fig. 5. 

It is important to note that while executing scheduled 
commands on processing servers using cat swarm 
optimization, it is possible for some servers to fail to execute 
the commands or experience additional traffic and load due to 
delays in processing previous commands or hardware and 
software errors. Meanwhile, some servers may remain idle 
after completing their assigned commands. To address this, the 
resources of processing servers are periodically monitored, and 
the following three conditions are used to determine the status 
of their resources: 

 If the resource consumption of a server has exceeded 
95% of its maximum efficiency, it is categorized as an 
overloaded machine. 

 If the resource consumption of a server is lower than the 
average efficiency determined (usually in the range of 
10%), it is categorized as a server with a low load. 

 Servers that do not meet the above conditions are 
considered normal servers. 

 

Fig. 5. Pseudo-code of algorithm. 
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Now to balance the load, the following load-balancing 
strategies can be applied: 

 Servers in overloaded mode: Loads of these servers can 
be migrated to other servers in the Punder (low load) or 
normal mode. This can be achieved through the virtual 
machine migration technique, where the tasks and loads 
are transferred to another server that has sufficient 
resources to accommodate them. 

 Servers with an efficiency below 10%: These servers 
can be considered candidates for task migration and 
subsequent shutdown. By migrating their tasks to other 
servers, the load on the underutilized servers can be 
increased, and energy consumption can be reduced by 
shutting down the inefficient servers. 

By applying these load-balancing strategies, the goal is to 
optimize resource utilization, minimize overload conditions, 
and reduce energy consumption in the system. 

IV. EVALUATION 

The implementation and evaluation of the proposed 
approach require a set of programming tools. These tools are 

necessary and useful for implementing different scenarios and 
evaluating the results. The comparison of the proposed 
approach with other existing techniques can also be made using 
these tools. For this purpose, the iFogSim2 simulator is used in 
this study [21, 37]. In order to evaluate the performance of the 
proposed approach, it is compared with metaheuristic 
algorithms such as PSO, ACO, Genetic (GA) and Random 
(RND) scheduling algorithms. In this study, the workload of 
simulations in the real traced data of the CoMon project is 
used, which is a monitoring infrastructure for PlanetLab [22, 
38]. The main attributes of the cat swarm optimization 
algorithm are illustrated in Table II. 

A. Evaluation Results 

The outcomes of the assessment are depicted in Fig. 6 to 
10. The initial evaluation encompassed three distinct 
experiments involving varying numbers of virtual machines. 
The objective was to explore how algorithms operate with 
diverse virtual resources and examine the correlation between 
resource quantity, execution time, and energy consumption. 
The subsequent results are presented below. Fig. 6 illustrates 
the energy consumption for all three solutions corresponding to 
the number of available virtual resources. 

TABLE II.  MAIN CHARACTERISTICS OF THE CSO ALGORITHM 

The position of cats in each dimension Decision-making variables 

The position of cats Solution 

Previous position of cats The previous solution 

The new position of cats New solution 

Any cats exhibit the highest level of fitness. Better answer 

Random location of cats Initialization of answers 

Use tracking and seeking modes. How to create a new answer 

 

Fig. 6. Energy consumption in different tests. 
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As depicted in Fig. 6, an increase in the number of virtual 
machines leads to a rise in energy consumption across all three 
solutions. However, the proposed method consistently exhibits 
lower energy consumption at each stage. Although the 
optimality rate was initially low in the first test, it improved in 
subsequent evaluations as the number of available resources 
increased. This improvement was facilitated by the optimal 
arrangement of virtual machines achieved through CSO 
scheduling. Consequently, the proposed solution outperforms 
other methods with a significantly higher optimality rate. 
Moving forward, Fig. 7 evaluates the implementation time of 
the solutions in three distinct modes. 

As depicted in Fig. 7, the execution time of the solutions 
increases with the growth in the number of virtual machines. 
However, the proposed method effectively addresses this issue 
through optimal resource allocation, the precise arrangement of 
virtual machines, and achieving load balancing. Consequently, 
the proposed solution outperforms the others by completing 
tasks in a shorter period in all three tests. The optimization 
carried out with the assistance of the CSO algorithm enables 
the identification of the best available nodes, resulting in the 
allocation of resources to the most suitable machines. As a 
result, both the execution time and energy consumption are 
reduced. 

 
Fig. 7. Execution time of solutions in different experiments. 

 
Fig. 8. Energy consumption (KW/hr). 
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The next test was done with a constant amount of virtual 
and available resources, as well as applying a workload based 
on the CoMon project [38, 39]. The results of the evaluation of 
all algorithms are shown below. First, in Fig. 8, the amount of 
energy consumption of the proposed solution is shown in 
comparison with the other solutions. 

Fig. 8 clearly illustrates a significant reduction in energy 
consumption within the proposed solution compared to other 
algorithms. This achievement can be attributed to the allocation 
and optimal arrangement of resources facilitated by the 
enhanced cat swarm optimization algorithm. In the proposed 
solution, the process of identifying available nodes has been 
optimized using the algorithm, and resource allocation is 
performed based on the status of these available resources. 
Consequently, energy consumption is minimized through the 
creation of optimal scheduling, alongside a reduction in 
execution time. 

By adopting the proposed approach, notable improvements 
can be observed. For instance, in comparison to the RND-
based solution, energy consumption has been reduced by 
approximately 24%. Similarly, compared to the PSO 
algorithm, the proposed solution demonstrates a reduction of 
approximately 10% in energy consumption. These results 
highlight the effectiveness and efficiency of the proposed 
method in optimizing energy consumption. Due to the fact that 
the amount of available resources is checked in every resource 
allocation operation, this energy reduction was predictable. In 
the following Fig. 9, the implementation time of the solutions 
is shown. 

Indeed, in fog computing, minimizing the execution time of 
requests is crucial alongside reducing energy consumption. As 
depicted in the diagram in Fig. 9, the proposed solution 
exhibits a remarkable reduction in execution time compared to 
alternative approaches. Specifically, compared to schedules 
based on the PSO and ACO algorithms, the proposed solution 
achieves a reduction of approximately 21%. Furthermore, in 
comparison to the RND-based schedule, the execution time is 
reduced by approximately 33%. These results highlight the 
significant gains in efficiency and speed achieved through the 
proposed solution, further enhancing the benefits of fog 
computing. 

This significant reduction in execution time can be 
attributed to the scheduling and optimal resource arrangement, 
as well as the establishment of load balancing through the 
proposed solution based on the cat swarm optimization 
algorithm. The solution efficiently utilizes the processing 
servers' resources by considering their status and allocating 
resources accordingly. Additionally, Fig. 10 presents the level 
of violation of the service level agreement (SLA). 

The service level agreement (SLA) serves as the framework 
for establishing the expected level of service. It defines the 
formal conditions for the provided service, including aspects 
such as performance and availability. Fig. 10 illustrates that the 
proposed solution, through effective load balancing, enhances 
the reliability and availability of servers within the fog 
computing infrastructure compared to alternative solutions. In 
other words, the proposed solution exhibits a lower percentage 
of SLA violations, indicating its superior ability to meet the 
agreed-upon service level requirements. 

 
Fig. 9. Execution time (millisecond). 
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Fig. 10. Percentage of Service Level Agreement (%SLA) violation. 

V. CONCLUSION 

This research introduces an approach based on the CSO 
algorithm to achieve optimal scheduling and load balancing. 
The proposed technique aims to prevent server overload or 
underload by efficiently allocating tasks to physical servers. To 
enhance the performance further, the CSO algorithm is 
extended by incorporating new parameters, including the 
amount of available resources and network traffic. By 
considering these factors, the proposed approach minimizes the 
execution time of requests by appropriately distributing tasks 
among candidate servers. Finally, the proposed approach is 
implemented and simulated in iFogSim, allowing for a 
comparison with other algorithms such as PSO, ACO, GA, and 
Random. The results obtained from the simulation demonstrate 
that the proposed approach successfully achieves its objectives 
and surpasses the other methods in terms of execution time and 
energy consumption. This highlights the effectiveness and 
superiority of the proposed approach in optimizing these 
important performance metrics. It could improve the energy 
consumption compared to ACO and PSO by the values of 24% 
and 10%, respectively. 

Additionally, the execution time is significantly reduced, 
and in compared to ACO and PSO, the proposed approach 
could improve the execution time by 21% and 22%, 
respectively. The observed improvement can be attributed to 
the load balancing achieved in the fog environment through the 
combined utilization of the CSO-based scheduling method and 
virtual machine migration technique. This combination 
effectively distributes tasks and resources across the fog 
network, ensuring optimal utilization and minimizing resource 
imbalances. As a result, the proposed approach enhances load 
balancing, leading to improved performance in terms of 
execution time and energy consumption. The results also show 
that the proposed approach has less violations in SLA when 
compared to the other algorithms and consequently provides 

more reliable servers with higher availability in the fog 
infrastructure. 

VI. FUTURE WORK 

The proposed approach can be applied to Content Delivery 
Networks (CDNs). Therefore, the CSO-based approach enables 
the identification and replication of the best content within 
alternative servers. By leveraging the capabilities of the CSO 
algorithm, the proposed approach effectively identifies the 
optimal servers to store and replicate content. This ensures that 
content is efficiently distributed across multiple servers, 
enhancing availability, fault tolerance, and overall system 
performance. In fact, by generalizing this approach and using 
the tracking mode of cats, the best contents can be obtained to 
be cached and replicated in servers found in the seeking mode. 
As a result, the performance of such cloud servers can greatly 
improve. 
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