
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1059 | P a g e

www.ijacsa.thesai.org

Optimal Scheduling using Advanced Cat Swarm

Optimization Algorithm to Improve Performance in

Fog Computing

Xiaoyan Huo
1
*, Xuemei Wang

2

Information Construction and Management Center, Jiaozuo University, Jiaozuo, Henan, 454003, China
1

Academic Affairs Division, Jiaozuo Technical College, Jiaozuo Henan, 454000, China
2

Abstract—Fog computing can be considered a decentralized

computing approach that essentially extends the capabilities

offered by cloud computing to the periphery of the network. In

addition, due to its proximity to the user, fog computing proves

to be highly efficient in minimizing the volume of data that needs

to be transmitted, reducing overall network traffic, and

shortening the distance that data must travel. But this

technology, like other new technologies, has challenges, and

scheduling and optimal allocation of resources is one of the most

important of these challenges. Accordingly, this research aims to

propose an optimal solution for efficient scheduling within the

fog computing environment through the application of the

advanced cat swarm optimization algorithm. In this solution, the

two main behaviors of cats are implemented in the form of seek

and tracking states. Accordingly, processing nodes are

periodically examined and categorized based on the number of

available resources; servers with highly available resources are

prioritized in the scheduling process for efficient scheduling.

Subsequently, the congested servers, which may be experiencing

various issues, are migrated to alternative servers with ample

resources using the virtual machine live migration technique.

Ultimately, the effectiveness of the proposed solution is assessed

using the iFogSim simulator, demonstrating notable reductions

in execution time and energy consumption. So, the proposed

solution has led to a 20% reduction in execution time while also

improving energy efficiency by more than 15% on average. This

optimization represents a trade-off between improving

performance and reducing resource consumption.

Keywords—Scheduling; fog computing; optimal balancing; cat

swarm optimization algorithm

I. INTRODUCTION

In order to overcome the challenges arising from resource
limitations in IoT devices, the prevalent approach has been to
rely on large-scale cloud data centers for interactions between
IoT devices and supporting end servers [1]. However, as the
number of IoT devices and their generated data continue to
escalate, reliance on cloud-based infrastructure has become
costly, inefficient, and often unfeasible [2]. In response to this
issue, fog computing has emerged as a solution by offering
networking, storage, and computing resources in proximity to
IoT devices and users [3, 4]. One notable advantage of fog
computing is its ability to reduce service latency for end-user

applications, unlike the cloud, which typically exhibits higher
latency due to its more extensive computing capacity and
remote storage [5]. The exponential growth of the Internet of
Things has posed significant challenges for cloud computing,
including network failures and increased latency. To tackle
these challenges, cloud computing has sought to bring cloud
capabilities closer to IoT devices. Fog computing entails the
utilization of heterogeneous and distributed processing nodes,
presenting challenges for fog-based services in accommodating
the diverse aspects of a constrained environment [23]. By
examining the structural and service-oriented characteristics of
fog computing, various challenges become apparent, with
optimal scheduling being particularly significant. Scheduling
holds great importance in the realm of the Internet of Things as
it has the potential to decrease execution time and minimize
energy consumption [6, 24]. However, scheduling problems
become increasingly complex with the growing number of
services and requests, leading to a rapid increase in the number
of possible solutions. Due to the exponential growth of feasible
states, it becomes impractical to evaluate all possibilities to
determine the best scheduling exhaustively, resulting in these
problems falling under the NP-Hard category that deterministic
methods cannot be used in solving this category of problems
due to their time-consuming nature, and meta-heuristic
methods should be developed to solve these problems properly
[2, 25]. Meta-heuristic methods have been the attention of
researchers due to their simplicity, flexibility, no need for
derivation, and escape from local optima. The No Free Lunch
(NFL) theorem establishes that no meta-heuristic algorithm can
solve all optimization problems perfectly. In other words, an
algorithm that performs well on a set of problems may not
yield favorable outcomes for another set of problems [3, 26].
Taking this into account, this study introduces an advanced
strategy based on the cat swarm optimization (CSO) algorithm
to achieve optimal scheduling in cloud infrastructure. The
primary objective is to significantly reduce energy
consumption in cloud data centers by effectively allocating
tasks to processing servers, thereby preventing server overload
or underload. The following section presents a literature review
on scheduling and load balancing, followed by an examination
of the proposed technique in section 3. Finally, in section 4, the
proposed technique is implemented in the iFogSim simulator,
and the results are evaluated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1060 | P a g e

www.ijacsa.thesai.org

Fig. 1. Fog computing architecture.

A. Fog Computing

As illustrated in Fig. 1, fog computing operates by
conducting local processing and storage of IoT data on IoT
devices rather than transmitting the data to the cloud. In
contrast to the cloud, fog computing offers faster response
times and improved quality, making it an optimal choice for
enabling the Internet of Things. It is known for providing
efficient and secure services to a wide range of users [4, 27].
While the cloud serves as an intermediary between endpoint
clients and cloud computing, fog computing occurs closer to
the edge of the cloud and end devices, resulting in significantly
lower latency. Cloud computing services are located on the

Internet, whereas fog computing operates at the edge of the
local network. Real-time interactions are supported by both
cloud and fog computing, but processing data and applications
in the cloud can be time-consuming, particularly for large-scale
data. Fog computing facilitates centralized resource
management, including the allocation of computing,
networking, and storage resources. The primary objective of
fog computing is to equip network edges and network devices
with virtual services for processing, storage, and network
provisioning [5, 28]. Table I provides a comparison of the
similarities and differences between fog computing and cloud
computing.

TABLE I. DIFFERENCES BETWEEN CLOUD AND FOG INFRASTRUCTURE

Cloud Computing Fog Computing Ability

Up (depending on the user's path to DC) Low Delay

several minutes milliseconds Response time

In cloud data centers Network edge Service location

months or years (according to the contract) transitory Data storage period

Several steps one step Steps between user and server

no Very local Aware of location

concentrated Distributed architecture

Broadband, MPLS wireless Type of communication

High Low Possibility of data recording

It cannot be defined or controlled can be defined End-to-end security

Very low unlimited Data collection nodes

Limited support supports Mobility support

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1061 | P a g e

www.ijacsa.thesai.org

Fog computing offers significant advantages by reducing
data transfer, traffic, and distance traveled. It involves
decentralizing computations to the edge of the network, where
downstream data processing occurs in cloud services and
upstream data processing occurs in Internet of Things (IoT)
services [6, 29]. In cloud computing, information storage and
processing are directed towards the network edge and closer to
the source of information generation. Instead of transmitting
IoT-generated data to distant data centers or remote servers for
storage and processing, this data is stored on local servers and
storage devices through a local gateway. This approach
enhances the speed of information analysis and alleviates
network congestion [7, 30]. The concept behind fog computing
is that computation should be performed in close proximity to
data sources. It has the potential to impact society as
significantly as cloud computing. Fog computing offers
numerous advantages over traditional architectures, particularly
optimizing resource utilization within a cloud computing
system. By conducting computations at the network edge, fog
computing reduces network traffic. Essentially, edge
computing operates within the cloud but in proximity to objects
interacting with IoT data. As depicted in Fig. 1, fog computing
acts as an intermediary between the cloud and end devices,
bringing processing, storage, and network services closer to the
end devices. These devices, known as edge nodes, can be
deployed anywhere with a network connection. In essence, fog
computing extends cloud infrastructure to the network edge.
While fog and cloud computing share network, computing, and
storage resources, they utilize similar mechanisms and features
such as virtualization and multi-tenancy [8, 31].

II. RELATED WORK

The study in [9] focuses on addressing concerns related to
scheduling and resource allocation within fog computing for
various types of applications. In this research, it has been stated
that different programs composed of a collection of interrelated
services are mapped to cloud computing for processing, but the
placement of services has its challenges. Accordingly, this
article presents a distributed placement strategy, the main goal
of which is to reduce energy consumption and the cost of
communication. The proposed method is based on game
theory, which uses iterative combinatorial auction (ICA). The
proposed solution through game theory makes significant
changes in the ICA method. Based on this, the proposed
solution is decentralized and is able to interact between fog
nodes and applications so that decisions related to placement
are made in each round. The results of the evaluations show the
optimality of the solution in reducing the cost of
communication and increasing the productivity of the fog node
processor, which is an important advantage considering the
limited resources in the fog nodes. In [10], a solution for
autonomous scheduling of services on devices on the edge of
the network is presented. In this solution, the dynamic
capability of programs based on microservices is used in order
to provide an adaptive solution for placement. The main
objective of this solution is to minimize the response time of
services, ultimately enhancing the quality of user experience,
particularly in critical services. In this method, the decision
about the placement of the service is made based on the
response time of the applications. Various functions have been

used for this purpose. Then, through the use of a meta-heuristic
algorithm based on PSO, a decision is made regarding the
placement of the service. The first input parameter for the
algorithm is the graph call related to the application service.

In the end, through a series of evaluations, it was shown
that the proposed solution was able to perform the placement
of services and microservices in such a way that the response
time is minimized. The authors in [11, 32] have presented a
lightweight framework for providing fog computing services to
be used by IoT devices that are sensitive to delay, and their
needs must be answered in real-time. The FogPlan solution is a
QoS-aware proposal, and the placement of services in it is done
according to the network status. This framework works with
minimal assumptions and information about IoT nodes. Then a
probabilistic formula for the optimization problem, along with
two heuristic algorithms, has been presented to answer the QoS
needs. By using this solution, in addition to more accurate
positioning, the amount of delay and network cost can also be
reduced. In the evaluations, it has been concluded that the
solution has reduced the average delay and the scheduling costs
through the optimal scheduling of services.

Research [12] introduces a task scheduling policy in fog
computing that is based on graph partitions. The main
objective of this solution is to enhance accessibility. By
employing this method, the quality-of-service delivery is
enhanced through program prioritization across all cloud
devices and transferring services to these devices. The main
idea is based on the premise that the more necessary services
are provided near the user, the quality and delay of service
delivery can be reduced. Based on this, with the help of graphic
partitions, the desired services and related tasks are determined
and based on the number of available resources, the best
possible placement is done. In the end, the proposed solution
has been evaluated with a linear programming approach, and
the results indicate an improvement in accessibility and service
delivery. The work described in [13] focuses on scheduling
application components within hybrid cloud and fog systems
based on network function virtualization (NFV) principles.
This study investigates the main challenges of deploying
components related to cloud and fog applications in NFV. In
fact, these challenges are mostly expressed due to the
heterogeneity between the components. To solve this problem
in this research, a model based on four hierarchies 1) sequence,
2) parallel, 3) selection and 4) compliance loop was used. In
this solution, it is assumed that the program components are
implemented as VFSs, and the structural diagrams represent an
application program that follows the proposed hierarchical
structure. In this structure, each VFN becomes a tree, where the
leaf nodes represent the program components, and the costs of
the model are calculated by gathering the information of the
nodes from bottom to top. The main goal of this method is to
minimize the processing costs, which are modeled using an
ILP integer programmer. The authors of [14] propose a concept
to address the challenge of deploying Internet of Things (IoT)
services within the fog computing environment. They model
the deployment problem of IoT applications on resources as an
optimization problem. The concept of a "fog colony" is
introduced, and the coordinated fog cell colony and
deployment approach are presented as a solution for deploying

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1062 | P a g e

www.ijacsa.thesai.org

services on virtual resources within the fog domain. The
optimization problem primarily focuses on the deployment and
execution time of the application, aiming to maximize resource
utilization in the fog through a greedy heuristic method based
on the genetic algorithm. In this model, the communication and
subscription of fog cell services are done by the control node.
Also, the communication between the cells and the control
node with the cloud is made possible by the fog computing
management system.

In the end, the results of this research have been compared
with the classical approach that executes all tasks in the cloud.
The intended evaluations have been carried out in the iFogSim
simulator environment, and the results indicate that the
optimization method has a favorable effect on the use of fog
resources, and the genetic algorithm has a lower delay for
execution compared to the cloud. In [15], a service placement
algorithm is presented for efficient use of the network and
improvement of energy consumption. This algorithm
sequentially allocates application modules with the highest
needs to the nodes with the highest capacities. To test the
proposed algorithms, the program has been implemented on
network topologies named JSON. The scenario has been
implemented with more than three different network topologies
and workloads. The proposed cloud-fog placement and
deployment method were evaluated by comparing it with the
traditional cloud-based deployment approach. The evaluation
considered program delay (response time), network usage, and
energy consumption as the primary metrics. Data was collected
from the iFoSim simulator using the proposed placement and
resource deployment methods. The results demonstrate the
favorable impact of the proposed placement approach across
all three topologies, showcasing improvements in network
utilization, program delay (response time), and energy
consumption compared to the traditional cloud-based approach.
The authors in [16] presented a tool called FogTorch.
Accordingly, the first part of the article presents a model for
the use of service quality systems in multi-sector applications
of the Internet of Things for fog architecture. In the second
part, the results of using Monte Carlo simulations for the
FogTroch tool are stated, and the application of this tool is
examined in terms of service quality and resource
consumption.

FogTroch is a tool that enables the simulation and
comparison of different fog scenarios in the design phase, as
well as the resource and quality-of-service (QoS) aware
deployment of IoT applications through cloud-fog architecture.
It takes into account various processing resources such as CPU,
RAM, storage, and software, along with QoS constraints like
latency and bandwidth, which are essential for real-time fog
applications. Notably, FogTroch is the first tool capable of
estimating the quality of service resulting from fog-based
application deployments based on probability distribution
models of bandwidth and delay provided by communication
links. Additionally, it provides estimates of resource
consumption within the fog layer, allowing for the optimization
of resource utilization among different fog nodes. In [17], a
dynamic module is presented to schedule the tasks of Internet
of Things applications in edge and cloud computing. Through
this solution, the problem related to IoT requests in a

heterogeneous network environment based on edge cloud has
been solved. As a result, a mapping between the application
module and the main resources of the devices can be created.
In this way, problems related to the delay of tasks and energy
consumption can be overcome. To achieve this objective, the
application employs a dynamic discovery algorithm that
enables the step-by-step execution of operations in the fog
computing environment. This algorithm helps to reduce the
delay in task execution by efficiently discovering and
allocating resources. Through simulations conducted in the
iFogSim environment, the results demonstrate the remarkable
service quality of the applications, accompanied by a
significant reduction in energy consumption compared to other
scheduling strategies. The combination of the dynamic
discovery algorithm and the fog computing environment
contributes to improved application performance and energy
efficiency.

After conducting a thorough examination of the
aforementioned studies, we have identified their strengths and
limitations in several aspects:

 Studies, such as [9], [13], [14] have provided
comprehensive introductions to the theoretical
concepts and platforms of fog computing. They have
significantly contributed to the research on
optimization strategies in this field.

 Several existing studies, like [10]-[12] and [15]-[17]
have focused on optimizing the trade-off between time
and energy consumption in fog computing scenarios.
However, one critical aspect they often overlook is the
consideration of task characteristics and resource types
concerning the problem of balancing delay and device
load. This omission can lead to inefficient resource
allocation and potential wastage of resources.

Our research falls within the category of optimizing Quality
of Service (QoS) and energy consumption simultaneously. It
complements and extends existing works in several ways. For
instance, unlike the study in [10] where multiple user devices
share one Multi-access Edge Computing (MEC) server, or [11]
where a single device generates a task, our approach considers
a more complex system involving multiple users and multiple
fog nodes. Additionally, our focus is on reducing the energy
consumption of the fog nodes themselves, which sets us apart
from the majority of existing approaches that primarily aim to
minimize energy consumption on the mobile devices
[9,11,12,16,17]. Furthermore, we present a novel approach that
jointly minimizes the overall energy consumption and the
execution time while taking into account the computation
resource constraints of fog devices. This approach offers a
comprehensive optimization strategy for the system.

III. PROPOSED METHOD

The primary objective of the scheduling solution is to
efficiently allocate n tasks to m machines, where n > m, with
the aim of minimizing both the execution time and energy
consumption. To achieve this objective, it is crucial to compute
the resource availability of all machines. An upper bound is
established for the minimization function, which is defined as
m × Lmax. Here, Lmax represents the maximum execution time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1063 | P a g e

www.ijacsa.thesai.org

for each node. Thus, for any task scheduling completion time
G, it should satisfy the condition m × Lmax > G. In other words,
the execution of the assigned tasks will take at least as long as
Lmax for each container. Let's consider S = (S1, S2, ..., Sn) as
the set of user tasks given to the system. During the scheduling
process, these user tasks are assigned to available fog nodes.
Each node is equipped with {PE1, PE2, ..., PEm} processing
elements to handle service tasks. Each processing element has
a distinct processing speed characteristic denoted as PES and
the CSO (Cat Swarm Optimization) algorithm [18, 33] is used
to allocate resources and schedule tasks in a fog infrastructure
effectively.

The CSO algorithm models the two primary behaviors of
cats, known as tracking and searching modes, using sub-
models. By combining these modes in a defined ratio, the cat
crowding optimization algorithm exhibits strong performance.
Similar to particle swarm optimization, the positions of the cats
serve as solutions, and the algorithm utilizes the cats' behavior
to solve optimization problems. In the cat swarm optimization,
the number of cats to be used is determined, and each cat
possesses a position with M dimensions. Additionally, each cat
has a speed for each dimension and a fitness value indicating
its level of fitness. This fitness value is obtained using a fitness
function. Furthermore, each cat is assigned a flag to identify
whether it is in tracking or seeking mode [19, 34].

The aim of this research is to minimize energy
consumption and reduce the execution time of user requests in
the cloud infrastructure. To achieve this, the cat swarm
optimization algorithm is modified to enable the effective
allocation of resources to tasks. The modified algorithm
optimizes the resource allocation process, leading to improved
energy efficiency and reduced request execution time. By
leveraging this modified cat swarm optimization algorithm, the
cloud infrastructure can allocate resources more effectively,
resulting in enhanced performance and reduced energy
consumption. In the proposed solution, a set of cats will be
used; some of which are in search mode and at the same time,
some others are in tracking mode. In this method, each cat
represents a specific task-resource mapping. The cats are
updated based on their current state, and the goal is to
minimize the cost of mapping. The fitness value is assigned to
each cat, reflecting the quality of its mapping solution. In each
iteration of the algorithm, a new set of cats is selected to be in
the search state, where they explore different mappings.
Ultimately, the cat with the best fitness value represents the
best mapping solution, which results in the lowest cost among
all the possible mappings. By iteratively updating the cats and
selecting the best solutions, the algorithm aims to find an
optimal task-resource mapping that minimizes cost and
improves overall efficiency. Accordingly, in the following, the
search and tracking modes are examined as a sub-model to
model the cat's search behavior to find the desired target:
processing servers in this research.

A. Seeking Mode

During the search process in the SM (Seeking Mode) of the
algorithm, the exploration of different regions in the search
space is conducted. However, the search is limited to the local
vicinity of the current position of the seeking cat. This
approach focuses on refining existing solutions rather than

exploring distant areas of the search space. Fig. 2 illustrates
this local search behavior. There are four main factors
considered in the seeking mode of each cat:

1) Search Memory Source (SMP): This factor determines

the size of the search memory for each cat, representing the

positions previously searched by the cat. Based on the fitness

functions, the cat chooses one position from its memory as a

potential candidate for movement.

2) Number of Dimensions that Change (CDC): This factor

determines the number of dimensions in the current position

of the cat that will be modified during the search process.

3) Search in the Defined Range of Dimensions (SRD):

This factor indicates the rate of change for the selected

dimensions. If a dimension is chosen for modification, the

difference between the new and old values will be within the

range defined by SRD.

4) Attention to the Current Position (SPC): This factor is a

Boolean variable that determines whether the current position

of the cat is considered a candidate for movement or not. It

ensures that the current position, which has already been

explored, is not included in the search memory (SMP).

By considering these factors, the seeking mode of the cat
swarm optimization algorithm focuses on local search,
efficiently exploring and refining solutions within the vicinity
of the current positions of the cats.

The seeking mode algorithm, as depicted in Fig. 3, outlines
the steps followed when a cat is in seeking mode [35]. The
algorithm proceeds as follows:

1) Create j copies of the current position of cat k (Catk),

where j is equal to SMP (Search Memory Source). If the value

of SPC (Attention to the position) is true, then j is adjusted to

(SMP-1), allowing the current position to be considered one of

the candidates.

2) For each copy, based on the CDC (Number of

Dimensions that Change), increase the SRD (Search in the

defined range of dimensions) by a percentage of the current

values and add it to the previous values. This step determines

the range within which the selected dimensions can change

during the search.

3) Calculate the fitness function (FS) for each candidate

point generated in the previous step.

4) If not, all FS values are exactly equal, proceed to

calculate the probability of selecting each candidate position

based on the normalized fitness (fit) of that position. If all FS

values are equal, set the probability of selecting all candidate

positions to be equal.

By following this algorithm, the seeking mode effectively
explores the search space by creating multiple copies of the
current position, determining the range of changes in
dimensions, evaluating the fitness for each candidate point, and
selecting the next position based on the calculated
probabilities.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1064 | P a g e

www.ijacsa.thesai.org

Fig. 2. Seeking mode.

Fig. 3. Seeking mode algorithm.

B. Tracing State

The tracking mode algorithm, which describes the behavior
of the cat when tracking the target, can be outlined in the
following three steps:

1) Calculate the new position of the cat based on its

current position and speed in each dimension. The cat moves

in the search space according to its velocity, exploring

different locations.

2) Evaluate the fitness of the new position using the

fitness function. This assesses the quality or cost associated

with the new mapping.

3) Update the cat's position to the best position found

during the tracking process. The cat moves towards the

position that yields the minimum cost or maximum quality,

improving its mapping.

By following these steps, the cat in tracking mode
continuously adjusts its position based on its velocity,
evaluates the fitness of the new position, and updates its
location to the best position encountered during the tracking
process. This allows the cat to gradually converge towards an
optimal solution by iteratively exploring and refining its
mappings.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1065 | P a g e

www.ijacsa.thesai.org

In the first step, the speed synchronization for each
dimension (vk, d) is calculated according to the following
relationship:

 ()

xbest,d shows the position of the cat that has the highest value
of fitness and xk,d is the position of the kth cat. c1 is a fixed
number, and r1 is a random number in the interval [0,1]. In the
second step, it is checked that the speeds are within the defined
range. If there were a higher speed, it would be replaced with
the maximum possible value in the desired range, and finally,
in the third step, the position of the cat will update according to
the following relationship:

xk,d = xk,d + kk,d

In fact, TS is for Teaching-Learning-Based Optimization.
During this phase, the cats aim to exploit the information about
the best position found so far to reach the optimal solution.
Even though a cat's position change may be large during this
phase, the search is still focused on the best solution found so
far. Please refer to Fig. 4 for an illustration.

In other words, at this stage, the set of answers obtained
from the best location of the cat in the current iteration is
updated. As seen, cat swarm optimization uses two sub-models
of seek and tracking mode; the way to combine these two sub-
models to perform scheduling operations is described in the
next section.

C. Scheduling

The optimal utilization of available resources is the main
goal of task scheduling that provides a basis for load balancing.
In order to reduce the cost of services provided to users, fog
service providers adopt different policies depending on the
type of user and the desired services. However, the aim of this

study is to reduce the resource consumption cost. Thus,
parameters such as energy consumption and traffic
consumption are considered. These parameters are formulated
based on the following equations to be used in the CSO-based
approach.

D. Modelling Energy Consumption

In order to model the amount of energy consumed, the
proposed approach in [20, 36, 40] is used. The idea of this
model is based on the fact that there is a linear relationship
between processor efficiency and power consumption. In other
words, if we know the processing time of a task and the
efficiency of the processor, we can calculate the energy
consumed by that task. This means that by understanding how
long a task takes to complete and how efficiently the processor
performs it, we can determine the energy usage associated with
that task.

The efficiency of a given resource rj in a given time is
calculated as follows.

 ∑

 (1)

Here, n represents the number of tasks currently in
progress, and uij represents the amount of resources consumed
by task tj. Accordingly, the energy consumption (Ej) of
resource rj in a given time can be calculated using the
following formula:

 (2)

E. Traffic Consumption

This section aims to model the network's bandwidth usage
and the volume of traffic produced by individual physical
machines.

 ∑
∑

 (3)

Fig. 4. Tracing state.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1066 | P a g e

www.ijacsa.thesai.org

 represents the communication between physical machine

j and other physical machines. λ(j, m) denotes the traffic load
between physical machines j and m. Vj indicates a set of
physical machines connected to physical machine j. Ci
represents the weight of the communication link between two
physical machines at level i. ρ(m, j) represents the
communication level between physical machines m and j.

The multi-objective cost function for modeling the fog
computing environment is formulated based on these two
parameters as follows:

Minimize ∑

 (4)

Minimize ∑

 (5)

The minimum cost for task scheduling is obtained using the
above functions. In the following, it is described how to
combine two states tracking and seeking:

1) The initial population consists n cats.

2) The cats in this scenario are distributed randomly

within a d-dimensional search space by assigning each cat a

random speed for each dimension within a given range.

3) A number of cats are randomly selected. According to

the Mixture Ratio (MR), some cats are put in the searching

state, and the remaining ones are considered for the tracking

state.

4) The movement of cats is based on their flag value

which shows the tracking or seeking states.

5) The fitness value of each cat is evaluated, and the

position of the best cat (Xbest) is recorded and stored.

6) The situation of cats is updated according to their

position. Then, step 3 is repeated.

7) Steps 5 and 6 are repeated iteratively until the

termination criterion is met. i.e. a complete task scheduling is

reached.

The pseudo-code for scheduling based on CSO is depicted
in Fig. 5.

It is important to note that while executing scheduled
commands on processing servers using cat swarm
optimization, it is possible for some servers to fail to execute
the commands or experience additional traffic and load due to
delays in processing previous commands or hardware and
software errors. Meanwhile, some servers may remain idle
after completing their assigned commands. To address this, the
resources of processing servers are periodically monitored, and
the following three conditions are used to determine the status
of their resources:

 If the resource consumption of a server has exceeded
95% of its maximum efficiency, it is categorized as an
overloaded machine.

 If the resource consumption of a server is lower than the
average efficiency determined (usually in the range of
10%), it is categorized as a server with a low load.

 Servers that do not meet the above conditions are
considered normal servers.

Fig. 5. Pseudo-code of algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1067 | P a g e

www.ijacsa.thesai.org

Now to balance the load, the following load-balancing
strategies can be applied:

 Servers in overloaded mode: Loads of these servers can
be migrated to other servers in the Punder (low load) or
normal mode. This can be achieved through the virtual
machine migration technique, where the tasks and loads
are transferred to another server that has sufficient
resources to accommodate them.

 Servers with an efficiency below 10%: These servers
can be considered candidates for task migration and
subsequent shutdown. By migrating their tasks to other
servers, the load on the underutilized servers can be
increased, and energy consumption can be reduced by
shutting down the inefficient servers.

By applying these load-balancing strategies, the goal is to
optimize resource utilization, minimize overload conditions,
and reduce energy consumption in the system.

IV. EVALUATION

The implementation and evaluation of the proposed
approach require a set of programming tools. These tools are

necessary and useful for implementing different scenarios and
evaluating the results. The comparison of the proposed
approach with other existing techniques can also be made using
these tools. For this purpose, the iFogSim2 simulator is used in
this study [21, 37]. In order to evaluate the performance of the
proposed approach, it is compared with metaheuristic
algorithms such as PSO, ACO, Genetic (GA) and Random
(RND) scheduling algorithms. In this study, the workload of
simulations in the real traced data of the CoMon project is
used, which is a monitoring infrastructure for PlanetLab [22,
38]. The main attributes of the cat swarm optimization
algorithm are illustrated in Table II.

A. Evaluation Results

The outcomes of the assessment are depicted in Fig. 6 to
10. The initial evaluation encompassed three distinct
experiments involving varying numbers of virtual machines.
The objective was to explore how algorithms operate with
diverse virtual resources and examine the correlation between
resource quantity, execution time, and energy consumption.
The subsequent results are presented below. Fig. 6 illustrates
the energy consumption for all three solutions corresponding to
the number of available virtual resources.

TABLE II. MAIN CHARACTERISTICS OF THE CSO ALGORITHM

The position of cats in each dimension Decision-making variables

The position of cats Solution

Previous position of cats The previous solution

The new position of cats New solution

Any cats exhibit the highest level of fitness. Better answer

Random location of cats Initialization of answers

Use tracking and seeking modes. How to create a new answer

Fig. 6. Energy consumption in different tests.

100

120

140

160

180

200

220

240

1 2 4

NewMethod PSO CSO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1068 | P a g e

www.ijacsa.thesai.org

As depicted in Fig. 6, an increase in the number of virtual
machines leads to a rise in energy consumption across all three
solutions. However, the proposed method consistently exhibits
lower energy consumption at each stage. Although the
optimality rate was initially low in the first test, it improved in
subsequent evaluations as the number of available resources
increased. This improvement was facilitated by the optimal
arrangement of virtual machines achieved through CSO
scheduling. Consequently, the proposed solution outperforms
other methods with a significantly higher optimality rate.
Moving forward, Fig. 7 evaluates the implementation time of
the solutions in three distinct modes.

As depicted in Fig. 7, the execution time of the solutions
increases with the growth in the number of virtual machines.
However, the proposed method effectively addresses this issue
through optimal resource allocation, the precise arrangement of
virtual machines, and achieving load balancing. Consequently,
the proposed solution outperforms the others by completing
tasks in a shorter period in all three tests. The optimization
carried out with the assistance of the CSO algorithm enables
the identification of the best available nodes, resulting in the
allocation of resources to the most suitable machines. As a
result, both the execution time and energy consumption are
reduced.

Fig. 7. Execution time of solutions in different experiments.

Fig. 8. Energy consumption (KW/hr).

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

S800 S1033 S1233

NewMethod PSO CSO

NewMethod GA PSO ACO RND

Series1 163 215 185 177 234

50

70

90

110

130

150

170

190

210

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1069 | P a g e

www.ijacsa.thesai.org

The next test was done with a constant amount of virtual
and available resources, as well as applying a workload based
on the CoMon project [38, 39]. The results of the evaluation of
all algorithms are shown below. First, in Fig. 8, the amount of
energy consumption of the proposed solution is shown in
comparison with the other solutions.

Fig. 8 clearly illustrates a significant reduction in energy
consumption within the proposed solution compared to other
algorithms. This achievement can be attributed to the allocation
and optimal arrangement of resources facilitated by the
enhanced cat swarm optimization algorithm. In the proposed
solution, the process of identifying available nodes has been
optimized using the algorithm, and resource allocation is
performed based on the status of these available resources.
Consequently, energy consumption is minimized through the
creation of optimal scheduling, alongside a reduction in
execution time.

By adopting the proposed approach, notable improvements
can be observed. For instance, in comparison to the RND-
based solution, energy consumption has been reduced by
approximately 24%. Similarly, compared to the PSO
algorithm, the proposed solution demonstrates a reduction of
approximately 10% in energy consumption. These results
highlight the effectiveness and efficiency of the proposed
method in optimizing energy consumption. Due to the fact that
the amount of available resources is checked in every resource
allocation operation, this energy reduction was predictable. In
the following Fig. 9, the implementation time of the solutions
is shown.

Indeed, in fog computing, minimizing the execution time of
requests is crucial alongside reducing energy consumption. As
depicted in the diagram in Fig. 9, the proposed solution
exhibits a remarkable reduction in execution time compared to
alternative approaches. Specifically, compared to schedules
based on the PSO and ACO algorithms, the proposed solution
achieves a reduction of approximately 21%. Furthermore, in
comparison to the RND-based schedule, the execution time is
reduced by approximately 33%. These results highlight the
significant gains in efficiency and speed achieved through the
proposed solution, further enhancing the benefits of fog
computing.

This significant reduction in execution time can be
attributed to the scheduling and optimal resource arrangement,
as well as the establishment of load balancing through the
proposed solution based on the cat swarm optimization
algorithm. The solution efficiently utilizes the processing
servers' resources by considering their status and allocating
resources accordingly. Additionally, Fig. 10 presents the level
of violation of the service level agreement (SLA).

The service level agreement (SLA) serves as the framework
for establishing the expected level of service. It defines the
formal conditions for the provided service, including aspects
such as performance and availability. Fig. 10 illustrates that the
proposed solution, through effective load balancing, enhances
the reliability and availability of servers within the fog
computing infrastructure compared to alternative solutions. In
other words, the proposed solution exhibits a lower percentage
of SLA violations, indicating its superior ability to meet the
agreed-upon service level requirements.

Fig. 9. Execution time (millisecond).

NewMethod GA PSO ACO RND

Series1 120 171 210 205 280

0

50

100

150

200

250

300

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1070 | P a g e

www.ijacsa.thesai.org

Fig. 10. Percentage of Service Level Agreement (%SLA) violation.

V. CONCLUSION

This research introduces an approach based on the CSO
algorithm to achieve optimal scheduling and load balancing.
The proposed technique aims to prevent server overload or
underload by efficiently allocating tasks to physical servers. To
enhance the performance further, the CSO algorithm is
extended by incorporating new parameters, including the
amount of available resources and network traffic. By
considering these factors, the proposed approach minimizes the
execution time of requests by appropriately distributing tasks
among candidate servers. Finally, the proposed approach is
implemented and simulated in iFogSim, allowing for a
comparison with other algorithms such as PSO, ACO, GA, and
Random. The results obtained from the simulation demonstrate
that the proposed approach successfully achieves its objectives
and surpasses the other methods in terms of execution time and
energy consumption. This highlights the effectiveness and
superiority of the proposed approach in optimizing these
important performance metrics. It could improve the energy
consumption compared to ACO and PSO by the values of 24%
and 10%, respectively.

Additionally, the execution time is significantly reduced,
and in compared to ACO and PSO, the proposed approach
could improve the execution time by 21% and 22%,
respectively. The observed improvement can be attributed to
the load balancing achieved in the fog environment through the
combined utilization of the CSO-based scheduling method and
virtual machine migration technique. This combination
effectively distributes tasks and resources across the fog
network, ensuring optimal utilization and minimizing resource
imbalances. As a result, the proposed approach enhances load
balancing, leading to improved performance in terms of
execution time and energy consumption. The results also show
that the proposed approach has less violations in SLA when
compared to the other algorithms and consequently provides

more reliable servers with higher availability in the fog
infrastructure.

VI. FUTURE WORK

The proposed approach can be applied to Content Delivery
Networks (CDNs). Therefore, the CSO-based approach enables
the identification and replication of the best content within
alternative servers. By leveraging the capabilities of the CSO
algorithm, the proposed approach effectively identifies the
optimal servers to store and replicate content. This ensures that
content is efficiently distributed across multiple servers,
enhancing availability, fault tolerance, and overall system
performance. In fact, by generalizing this approach and using
the tracking mode of cats, the best contents can be obtained to
be cached and replicated in servers found in the seeking mode.
As a result, the performance of such cloud servers can greatly
improve.

REFERENCES

[1] Cleveland, S. M., & Haddara, M. (2023). Internet of Things for
Diabetics: Identifying Adoption Issues. Internet of Things, 100798.

[2] Hazra, A., Rana, P., Adhikari, M., & Amgoth, T. (2022). Fog computing
for next-generation internet of things: fundamental, state-of-the-art and
research challenges. Computer Science Review, 48, 100549.

[3] Saad, Z. M., & Mhmood, M. R. (2023). Fog computing system for
internet of things: Survey. Texas Journal of Engineering and
Technology, 16, 1-10.

[4] Vambe, W. T. (2023). Fog Computing Quality of Experience: Review
and Open Challenges. International Journal of Fog Computing (IJFC),
6(1), 1-16.

[5] Das, R., & Inuwa, M. M. (2023). A review on fog computing: issues,
characteristics, challenges, and potential applications. Telematics and
Informatics Reports, 100049.

[6] Royer, C. W. (2022). Fog Computing in Optically Networked Space
Constellations. IEEE Aerospace and Electronic Systems Magazine.

[7] Yadav, A. M., Tripathi, K. N., & Sharma, S. C. (2023). An opposition-
based hybrid evolutionary approach for task scheduling in fog
computing network. Arabian Journal for Science and Engineering, 48(2),
1547-1562.

NewMethod GA PSO ACO RND

Series1 7 10 9.8 12 18

1

3

5

7

9

11

13

15

17

19

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

1071 | P a g e

www.ijacsa.thesai.org

[8] Goudarzi, M., Palaniswami, M., & Buyya, R. (2022). Scheduling IoT
applications in edge and fog computing environments: a taxonomy and
future directions. ACM Computing Surveys, 55(7), 1-41.

[9] Kayal, P., & Liebeherr, J. (2019, July). Distributed placement in fog
computing: An iterative combinatorial auction approach. In 2019 IEEE
39th International Conference on Distributed Computing Systems
(ICDCS) (pp. 2145-2156). IEEE.

[10] Alsmadi, A. M., Ali Aloglah, R. M., Smadi, A. A., Alshabanah, M.,
Alrajhi, D., Alkhaldi, H., & Alsmadi, M. K. (2021). Fog computing
scheduling algorithm for smart city. International Journal of Electrical &
Computer Engineering (2088-8708), 11(3).

[11] Upadhyay, G. M., & Gupta, S. (2022). A Study on Optimal Framework
with Fog Computing for Smart City. Smart IoT for Research and
Industry, 133-143.

[12] Chen Cao, Jianhua Wang, Devin Kwok, Zilong Zhang, Feifei Cui, Da
Zhao, Mulin Jun Li, Quan Zou. webTWAS: a resource for disease
candidate susceptibility genes identified by transcriptome-wide
association study. Nucleic Acids Research.2022, 50(D1): D1123-D1130.

[13] Ning Xu, Zhongyu Chen, Ben Niu, and Xudong Zhao. Event-Triggered
Distributed Consensus Tracking for Nonlinear Multi-Agent Systems: A
Minimal Approximation Approach, IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, DOI:
10.1109/JETCAS.2023.3277544, 2023.

[14] Samiei, M., Hassani, A., Sarspy, S., Komari, I. E., Trik, M., &
Hassanpour, F. (2023). Classification of skin cancer stages using a AHP
fuzzy technique within the context of big data healthcare. Journal of
Cancer Research and Clinical Oncology, 1-15.

[15] Sun, J., Zhang, Y., & Trik, M. (2022). PBPHS: a profile-based
predictive handover strategy for 5G networks. Cybernetics and
Systems,53(6), 1-22.

[16] Khezri, E., Zeinali, E., & Sargolzaey, H. (2022). A novel highway
routing protocol in vehicular ad hoc networks using VMaSC-LTE and
DBA-MAC protocols. Wireless Communications and Mobile
Computing, 2022.

[17] Trik, M., Akhavan, H., Bidgoli, A. M., Molk, A. M. N. G., Vashani, H.,
& Mozaffari, S. P. (2023). A new adaptive selection strategy for
reducing latency in networks on chip. Integration, 89, 9-24.

[18] Haoyu Zhang, Quan Zou, Ying Ju, Chenggang Song, Dong Chen.
Distance-based Support Vector Machine to Predict DNA N6-
methyladine Modification. Current Bioinformatics. 2022, 17(5): 473-
482.

[19] Faticanti, F., De Pellegrini, F., Siracusa, D., Santoro, D., & Cretti, S.
(2020). Throughput-aware partitioning and placement of applications in
fog computing. IEEE Transactions on Network and Service
Management, 17(4), 2436-2450.

[20] Mouradian, C., Kianpisheh, S., Abu-Lebdeh, M., Ebrahimnezhad, F.,
Jahromi, N. T., & Glitho, R. H. (2019). Application component
placement in NFV-based hybrid cloud/fog systems with mobile fog
nodes. IEEE Journal on Selected Areas in Communications, 37(5),
1130-1143.

[21] Hossain, M. R., Whaiduzzaman, M., Barros, A., Tuly, S. R., Mahi, M. J.
N., Roy, S., ... & Buyya, R. (2021). A scheduling-based dynamic fog
computing framework for augmenting resource utilization. Simulation
Modelling Practice and Theory, 111, 102336.

[22] Haoyan Zhang, Xudong Zhao, Huangqing Wang, Ben Niu, Ning Xu,
Adaptive Tracking Control for Output-Constrained Switched MIMO
Pure-Feedback Nonlinear Systems with Input Saturation, Journal of
systems science & complexity, 36: 960–984, 2023.

[23] Heng Zhao, Huanqing Wang, Ben Niu, Xudong Zhao, K. H. Alharbi，
Event-Triggered Fault-Tolerant Control for Input-Constrained Nonlinear

Systems With Mismatched Disturbances via Adaptive Dynamic
Programming，Neural Networks, 164: 508-520, 2023.

[24] Khezri, E., Zeinali, E., & Sargolzaey, H. (2023). SGHRP: Secure
Greedy Highway Routing Protocol with authentication and increased
privacy in vehicular ad hoc networks. Plos one, 18(4), e0282031.

[25] Zhongwen Cao; Ben Niu; Guangdeng Zong; Xudong Zhao; Adil M.
Ahmad, "Active Disturbance Rejection-Based Event-Triggered Bipartite
Consensus Control for Nonaffine Nonlinear Multiagent Systems",
International Journal of Robust and Nonlinear Control,
DOI:10.1002/rnc.6746.

[26] Trik, M., Molk, A. M. N. G., Ghasemi, F., & Pouryeganeh, P. (2022). A
Hybrid Selection Strategy Based on Traffic Analysis for Improving
Performance in Networks on Chip. Journal of Sensors, 2022.

[27] Mokhlesi Ghanevati, D., Khorami, E., Boukani, B., & Trik, M. (2020).
Improve replica placement in content distribution networks with hybrid
technique. Journal of Advances in Computer Research, 11(1), 87-99.

[28] Sandhiya, B., & Canessane, R. A. (2023, March). An Extensive Study of
Scheduling the Task using Load Balance in Fog Computing. In 2023
International Conference on Sustainable Computing and Data
Communication Systems (ICSCDS) (pp. 1586-1593). IEEE.

[29] Mehta, R., Sahni, J., & Khanna, K. (2023). Task scheduling for
improved response time of latency sensitive applications in fog
integrated cloud environment. Multimedia Tools and Applications, 1-24.

[30] Kaur, A., & Auluck, N. (2023). Real‐time trust aware scheduling in fog‐
cloud systems. Concurrency and Computation: Practice and Experience,
e7680.

[31] Trick, M., & Boukani, B. (2014). Placement algorithms and logic on
logic (LOL) 3D integration. Journal of mathematics and computer
science, 8(2), 128-136.

[32] Hai, T., Alizadeh, A. A., Ali, M. A., Dhahad, H. A., Goyal, V.,
Metwally, A. S. M., & Ullah, M. (2023). Machine learning-assisted tri-
objective optimization inspired by grey wolf behavior of an enhanced
SOFC-based system for power and freshwater production. International
Journal of Hydrogen Energy.

[33] Ahmed, A. M., Rashid, T. A., & Saeed, S. A. M. (2020). Cat swarm
optimization algorithm: a survey and performance evaluation.
Computational intelligence and neuroscience, 2020.

[34] Khezri, E., & Zeinali, E. (2021). A review on highway routing protocols
in vehicular ad hoc networks. SN Computer Science, 2, 1-22.

[35] Saleh, D. M., Kadir, D. H., & Jamil, D. I. (2023). A Comparison
between Some Penalized Methods for Estimating Parameters:
Simulation Study. QALAAI ZANIST JOURNAL, 8(1), 1122-1134.

[36] Yahya, R. O., Mahmood, N. H., Kadir, D. H., & Aziz, S. J. (2023). The
Use of Factor Analysis and Cluster Analysis Methods to Identify the
Most Crucial Key Factors Influencing the Psychological Stability of
University Students. Polytechnic Journal of Humanities and Social
Sciences, 4(1), 779-789.

[37] Ihsan, R. R., Almufti, S. M., Ormani, B., Asaad, R. R., & Marqas, R. B.
(2021). A survey on Cat Swarm Optimization algorithm. Asian Journal
of Research in Computer Science, 10(2), 22-32.

[38] Ramachandran, M., & Ganesh, E. N. (2020). Energy Optimized Joint
Channel Assignment and Routing using Cat Swarm Optimization (CSO)
Algorithm in CRAHN. Journal of Green Engineering, 202, 3434-3449.

[39] Mahmud, R., Pallewatta, S., Goudarzi, M., & Buyya, R. (2022).
iFogSim2: An extended iFogSim simulator for mobility, clustering, and
microservice management in edge and fog computing environments.
Journal of Systems and Software, 190, 111351.

[40] Rukmini, S., & Shridevi, S. (2023). An optimal solution to reduce virtual
machine migration SLA using host power. Measurement: Sensors, 25,
100628.

